CSSTUEFER (FEnR)

The Definitive Guid.

O’REILLY"
¥ B R'F A Eric A. Meyer

B=IR

(SS BB HE R (% EnR)
(SS: The Definitive Guide

O’REILLY"

Beijing + Cambridge « Farnham Koln « Paris « Sebastopol « Taipei * Tokyo

O'Reilly Media, Inc. #40 & d K & i pRAL R

FEAF HRT

BEBERME (CIP) HiiRE

CSS tUgitarE: $F3hR: 30/ (32) EHB (Meyer, EA.)
E — A — R REAFHRM, 2007.6

454 J73C . CSS: The Definitive Guide, Third Edition

ISBN 978-7-5641-0777-2

[.C.. D.jG.. WM. FHHIE-—HEITHE, CSS -3

IV.TP393.092

Hh Rl A T 45 1 CIP il %+ (2007) 58 072071 5

TLAERRBURZEER A RIEIC
E 5. 10-2007-093 =

©2006 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University Press,

2007. Authorized reprint of the original English edition, 2006 O'Reilly Media, Inc., the owner of all rights to

publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
¥ X R ol O'Reilly Media, Inc.# #& 2006,

ELH PRl & ok AL B IR 2007, 2 F B RR &G i B A 4K AR 4 2 o AR AR 4K B AR 69 P AT & —— O'Reilly
Media, Inc.)% T

WAL A , AR B @HFT, KB HEFTHRSF &R TFUAETH T4,

4 # 1
AL Gt /
B/
HR 17
W hE/
Ef i/
oA
Wi !
o %
5 B/
€ M/

CSS it 5 —hk (RZEMAR)

o e

Edie Freedman, 5k{#

k¥ H Rt (press.seu.edu.cn)
PR 2 5 (BPB RS 210096)

b 7 EN KA B 23 =)

787 Z K x 9802k 16 A 3375 Ellgk
2007 46 A 1 ik 200746 A 1 RENRI
0001-3500 i

ISBN 978-7-5641-0777-2/TP - 125

68.00 ¢ (i)

O'Reilly Media, Inc.4\48

O'Reilly Media, Inc. & F7E UNIX, X, Internet FiH b AL BB HIREA
SISO IR A F, [AL R A S

ME#%H%4H) (The Whole Internet User's Guide & Catalog) (#41 %) B 51EEEH
TR EEN SO A 2 —) F GNN (B R Internet |1 AR ALK ¥E) ,
WebSite (% —/~ S5 PCHIWeb IR 55 244), O'Reilly Media, Inc.—E 4bF Internet
K R BRI .

Y& HERRKBEFEB, OReilly Media, Inc. & R EMNHHENEBHERE —&—
AR —IRFR. SALHEHBEVERHRFEHALL, O'Reilly Media, Inc. R HREE
I ENLE LR, XS O'Reilly Media, Inc. JE B T —A~4EH A5 R T H Atk Hi hik 7
HIH R 5%, O'Reilly Media, Inc. Fr AR gmiR N ILARTE R 2P R, B —RTIARS
HIHR%E %K. O'Reilly Media, Inc. B F 4 £ B EHI1EE BEE — A S RM R
M ARER. BiER, MIAESHSENE, OReilly Media, Inc. f&k {15 it
#HE 4, B4 O'Reilly Media, Inc. B# M 5T HEIILFBEFRE, FLL O'Reilly
Media, Inc.E T LEEFEEH 2 BEF,

tH i35t BA

BE&E TN AR R BRI IZ R, AREES A — M EARRE R RRVER . HE
PLEARM R BB AN Tl A7, Bki&zhFn B AEEE R T ERARW, i,
TR AL AT 35) e AR S 3 0 2 PRtk AR BT R G, A T B B AR A B 7E S8 — I]
T RRE MR A, ZRE RS H i A1 E O'Reilly Meida, Inc il i, #bb
Se5| %A AR R AT AR NE AL TR A B4R EE, LLRCENR SR f i
FICRTER ZRA RE . K, RENRBFE R SESNES “FE7 iR, HH K
R RIS IEE.

FANE WAL, Bro|BERY B EEREXT E ARSI LB R A 5 . BB RIRF ST 57
Fm B UM A= B9 2R TAR G BT BY , X EN RN R A Fr et . bR O
BEEREERAE R,

BT R EIRZEN R B 5, LA -

o (BEARHEFAMRSH 5K (FZETAR)
e (Ajax on Rails) (FZEiR)

e (Java 5XML B=hR) (FENAR)

e (%2 MySQL) (ZZENAR)

® {Linux Kernel ¥ X FMY (GZENRR)

e (Dynamic HTML fU&Z% % =iR) (FKER)
e (ActionScript 3.0 Cookbook) (EZENAR)

e (CSS:The Missing Manual) (ZZE[i)

e (Linux BERFM FEHIRY GZENRR)

e (Ajax onJava) (FZEKR)

e (WCF Service Zaf2) (FENR)

e (JavaScript fURHEFE FEARY GZENR)

° (CSSHuURtRrE B =h» GZEIRR)

o (RAXRGHRE M) (REEThR)

e (%] JavaScript) (ZEIAR)

e (Rails Cookbook) (EZEMIAR)

Preface

If you are a web designer or document author interested in sophisticated page styl-
ing, improved accessibility, and saving time and effort, this book is for you. All you
really need before starting the book is a decent knowledge of HTML 4.0. The better
you know HTML, of course, the better prepared you’ll be. You will need to know
very little else to follow this book.

This third edition of CSS: The Definitive Guide covers CSS2 and CSS2.1 (up through
the 11 April 2006 Working Draft), the latter of which is, in many ways, a clarifica-
tion of the first. While some CSS3 modules have reached Candidate Recommenda-
tion status as of this writing, [have chosen not to cover them in this edition (with the
exception of some CSS3 selectors). I made this decision because implementation of
these modules is still incomplete or nonexistent. I feel it’s important to keep the
book focused on currently supported and well-understood levels of CSS, and to leave
any future capabilities for future editions.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, variables in text, user-defined files and directories, com-
mands, file extensions, filenames, directory or folder names, and UNC pathnames.

Constant width
Indicates command-line computer output, code examples, Registry keys, and
keyboard accelerators.

Constant width bold
Indicates user input in examples.

Constant width italic
Indicates variables in examples and in Registry keys. It is also used to indicate vari-
ables or user-defined elements within italic text (such as pathnames or filenames).
For instance, in the path \Windows\username, replace username with your name.

xiii

This icon signifies a tip, suggestion, or general note.

A
".
LA
“? ﬂ
This icon indicates a warning or caution.

Property Conventions

Throughout this book, there are boxes that break down a given CSS property. These
have been reproduced practically verbatim from the CSS specifications, but some
explanation of the syntax is in order.

Throughout, the allowed values for each property are listed with the following syntax:

Value: [<length> | thick | thin]{1,4}
Value: [<family-name> , |* <family-name>
Value: <url>? <color> [/ <color>]?
Value: <url> || <color>

Any words between “<” and “>” give a type of value or a reference to another prop-
erty. For example, the property font will accept values that actually belong to the
property font-family. This is denoted by the text <font-family>. Any words pre-
sented in constant width are keywords that must appear literally, without quotes.
The forward slash (/) and the comma (,) must also be used literally.

Several keywords strung together means that all of them must occur in the given
order. For example, help me means that the property must use those keywords in
that exact order.

If a vertical bar separates alternatives (X | Y), then any one of them must occur. A
vertical double bar (X || Y) means that X, Y, or both must occur, but they may
appear in any order. Brackets ([...]) are for grouping things together. Juxtaposition is
stronger than the double bar, and the double bar is stronger than the bar. Thus “V
W [X || YZ”isequivalentto “[VW] | [X[| [YZ]]".

Every word or bracketed group may be followed by one of the following modifiers:

* An asterisk (*) indicates that the preceding value or bracketed group is repeated
zero or more times. Thus, bucket* means that the word bucket can be used any
number of times, including zero. There is no upper limit defined on the number
of times it can be used.

* A plus (+) indicates that the preceding value or bracketed group is repeated one
or more times. Thus, mop+ means that the word mop must be used at least once,
and potentially many more times.

xiv | Preface

* A question mark (?) indicates that the preceding value or bracketed group is
optional. For example, [pine tree]? means that the words pine tree need not be
used (although they must appear in that exact order if they are used).

* A pair of numbers in curly braces ({M,N}) indicates that the preceding value or
bracketed group is repeated at least M and at most N times. For example, ha{1,3}
means that there can be one, two, or three instances of the word ha.

Some examples follow:

give || me || liberty
At least one of the three words must be used, and they can be used in any order. For
example, give liberty, give me, liberty me give, and give me liberty are all valid.

[I] am]? the || walrus
Either the word I or am may be used, but not both, and use of either is optional. In
addition, either the or walrus, or both, must follow in any order. Thus, you could
construct I the walrus, amwalrus the, am the, I walrus, walrus the, and so forth.

koo+ ka-choo
One or more instances of koo must be followed by ka-choo. Therefore, koo koo
ka-choo, koo koo koo ka-choo, and koo ka-choo are all legal. The number of koos is
potentially infinite, although there are bound to be implementation-specific limits.

I really{1,4}? [love | hate] [Microsoft | Netscape | Opera | Safari]
This is the all-purpose web designer’s opinion expresser. This example can be
interpreted as I love Netscape, I really love Microsoft, and similar expressions.
Anywhere from zero to four reallys may be used. You also get to pick between
love and hate, even though only love was shown in this example.

[[Alpha || Baker || Cray],]{2,3} and Delphi
This is a potentially long and complicated expression. One possible result would
be Alpha, Cray, and Delphi. The comma is placed because of its position within
the nested bracket groups.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “CSS: The Definitive Guide, Third
Edition, by Eric A. Meyer. Copyright 2007 O’Reilly Media, Inc., 978-0-596-52733-4.”

Preface | xv

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

How to Contact Us

We at O’Reilly have tested and verified the information in this book to the best of
our ability, but you may find that features have changed (or even that we have made
mistakes!). Please let us know about any errors you find, as well as your suggestions
for future editions, by writing to:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/csstdg3
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O’Reilly
Network, see the O’Reilly web site at:

http:/fwww.oreilly.com

Safari® Enabled

= When you see a Safari® Enabled icon on the cover of your favorite tech-
sa'a" nology book, that means the book is available online through the
BOOKS ONLINE gy g
mrxroerEe O'Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Acknowledgments

I'd like to take a moment to thank the people who have backed me up during the
long process of getting this book to its readers.

xi | Preface

First, I'd like to thank everyone at O’Reilly for all they’ve done over the years, giving
me my break into publishing and continuing to give me the opportunity to produce a
book that matters. For this third edition, I'd like to thank Tatiana Apandi for her
good humor, patience, and understanding as I played chicken with my deadlines.

I'd also like to thank most profoundly my technical reviewers. For the first edition,
that was David Baron and lan Hickson, with additional input from Bert Bos and
Hékon Lie. The second edition was reviewed by Tantek Celik and Ian Hickson. The
fine folks who performed technical review on the third edition, the one you hold in
your hands, were Darrell Austin, Liza Daly, and Neil Lee. All lent their considerable
expertise and insight, keeping me honest and up-to-date on the latest changes in CSS
as well as taking me to task for sloppy descriptions and muddled explanations. None
of the editions, least of all this one, could have been as good as it is without their col-
lective efforts, but of course whatever errors you find in the text are my fault, not
theirs. That’s kind of a cliché, I know, but it’s true nonetheless.

Similarly, I'd like to thank everyone who pointed out errata that needed to be
addressed. I may not have always been good about sending back email right away,
but I read all of your questions and concerns and, when needed, made corrections.
The continued feedback and constructive criticism will only help the book get bet-
ter, as it always has.

There are a few personal acknowledgments to make as well.

To the staff of WRUW, 91.1 FM Cleveland, thank you for nine years of support,
great music, and straight-out fun. Maybe one day I'll bring Big Band back to your air-
waves, and maybe not; but either way, keep on keepin’ on.

To Jeffrey Zeldman, thanks for being a great colleague and partner; and to the whole
Zeldman family, thanks for being such wonderful friends.

To “Auntie” Molly, thanks for always being who you are.

To “Uncle” Jim, thanks for everything, both professionally and personally. It’s no
exaggeration to say [wouldn’t be where [am without your influence, and our lives
would be a good deal poorer without you around.

To the Bread and Soup Crew—]Jim, Genevieve, Jim, Gini, Ferrett, Jen, Jenn, and
Molly—thanks for all your superb cooking and tasty conversation.

To my extended family, thank you as always for your love and support.
To anyone I should have thanked, but didn’t: my apologies. And my thanks.

And to my wife and daughter, more thanks than I can ever express for making my
days richer than I have any right to expect, and for showering me with more love
than I could ever hope to repay. Though I'll keep trying, of course.

—Eric A. Meyer

Cleveland Heights, Ohio
1 August 2006

Preface | xvii

Preface

1.

(SSand Documents

The Web’s Fall from Grace

CSS to the Rescue

Elements

Bringing CSS and XHTML Together

Selectors

Basic Rules

Grouping

Class and ID Selectors

Attribute Selectors

Using Document Structure
Pseudo-Classes and Pseudo-Elements

Structure and the Cascade

Specificity
Inheritance
The Cascade

ValuesandUnits

Numbers
Percentages
Color
Length Units
URLs

CSS2 Units

Table of Contents

............................... 23

23
27
31
38
44
51

62
68
71

77
77
78
83
90
92

Font Families 95
Font Weights 100
Font Size 106
Styles and Variants 114
Stretching and Adjusting Fonts 117
The font Property 120
Font Matching 124

6. TextProperties i, 128
Indentation and Horizontal Alignment 128
Vertical Alignment 134
Word Spacing and Letter Spacing 143
Text Transformation 146
Text Decoration 148
Text Shadows 152

7. BasicVisualFormatting 158
Basic Boxes 158
Block-Level Elements 161
Inline Elements 179
Altering Element Display 198

8. Padding, Borders,and Margins e 207
Basic Element Boxes 207
Margins 211
Borders 223
Padding 238

9. ColorsandBackgrounds 246
Colors 246
Foreground Colors 248
Backgrounds 253

10. Floating and Positioning .. 283
Floating 283
Positioning 302

x | Table of Contents

TableLayoutccovinivivivimsssesssnsmrnsninrnensnses 339

Table Formatting 339
Table Cell Borders 352
Table Sizing 359
Lists and Generated Contentl 370
Lists 370
Generated Content 378
User Interface SEYIES ocnsnmsaissnsss srsmsmenrmenenuwamans vus 395
System Fonts and Colors 395
Cursors 400
Outlines 404
Non-ScreenMedia 411
Designating Medium-Specific Style Sheets 411
Paged Media 413
Aural Styles 429
PropertyReference 449

Selector, Pseudo-Class, and

Pseudo-ElementReference ..., 491
Sample HTML4 StyleSheet 499
... 503

Table of Contents | xi

CHAPTER 1
(SS and Documents

Cascading Style Sheets (CSS) are a powerful way to affect the presentation of a docu-
ment or a collection of documents. Obviously, CSS is basically useless without a doc-
ument of some sort, since it would have no content to present. Of course, the
definition of “document” is extremely broad. For example, Mozilla and related
browsers use CSS to affect the presentation of the browser chrome itself. Still, with-
out the content of the chrome—Dbuttons, address inputs, dialog boxes, windows, and
so on—there would be no need for CSS (or any other presentational information).

The Web’s Fall from Grace

Back in the dimly remembered, early years of the Web (1990-1993), HTML was a
fairly lean language. It was composed almost entirely of structural elements that were
useful for describing things like paragraphs, hyperlinks, lists, and headings. It had
nothing even remotely approaching tables, frames, or the complex markup we
assume is necessary to create web pages. HTML was originally intended to be a
structural markup language, used to describe the various parts of a document; very
little was said about how those parts should be displayed. The language wasn’t con-
cerned with appearance—it was just a clean little markup scheme.

Then came Mosaic.

Suddenly, the power of the World Wide Web was obvious to almost anyone who
spent more than 10 minutes playing with it. Jumping from one document to another
was no more difficult than pointing the cursor at a specially colored bit of text, or
even an image, and clicking the mouse. Even better, text and images could be dis-
played together, and all you needed to create a page was a plain-text editor. It was
free, it was open, and it was cool.

Web sites began to spring up everywhere. There were personal journals, university
sites, corporate sites, and more. As the number of sites increased, so did the demand
for new HTML elements that would each perform a specific function. Authors
started demanding that they be able to make text boldfaced or italicized.

At the time, HTML wasn’t equipped to handle those sorts of desires. You could
declare a bit of text to be emphasized, but that wasn’t necessarily the same as being
italicized-—it could be boldfaced instead, or even normal text with a different color,
depending on the user’s browser and preferences. There was nothing to ensure that
what the author created was what the reader would see.

As a result of these pressures, markup elements like and <BIG> started to creep
into the language. Suddenly, a structural language started to become presentational.

What a Mess

Years later, we have inherited the problems of this haphazard process. Large parts of
HTML 3.2 and HTML 4.0, for example, were devoted to presentational considerations.
The ability to color and size text through the font element, to apply background colors
and images to documents and tables, to use table attributes (such as cellspacing), and
to make text blink on and off are all the legacy of the original cries for “more control!”

For an example of the mess in action, take a quick glance at almost any corporate
web site’s markup. The sheer amount of markup in comparison to actual useful
information is astonishing. Even worse, for most sites, the markup is almost entirely
comprised of tables and font elements, neither of which conveys any real semantic
meaning as to what’s being presented. From a structural standpoint, these pages are
little better than random strings of letters.

For example, let’s assume that for page titles, an author uses font elements instead of
heading elements like h1:

Page Title

Structurally speaking, the font tag has no meaning. This makes the document far less
useful. What good is a font tag to a speech-synthesis browser, for example? If an
author uses heading elements instead of font elements, though, the speaking browser
can use a certain speaking style to read the text. With the font tag, the browser has
no way to know that the text is any different from other text.

Why do authors run roughshod over structure and meaning this way? Because they
want readers to see the page as they designed it. To use structural HTML markup is
to give up a lot of control over a page’s appearance, and it certainly doesn’t allow for
the kind of densely packed page designs that have become so popular over the years.
But consider the following problems with such an approach:

* Unstructured pages make content indexing inordinately difficult. A truly power-
ful search engine would allow users to search only page titles, or only section
headings within pages, or only paragraph text, or perhaps only those paragraphs
that are marked as important. To accomplish such a feat, however, the page con-
tents must be contained within some sort of structural markup—exactly the sort
of markup most pages lack. Google, for example, does pay attention to markup
structure when indexing pages, so a structural page will increase your Google rank.

2 | Chapter1: (SSandDocuments

* Lack of structure reduces accessibility. Imagine that you are blind and rely on a
speech-synthesis browser to search the Web. Which would you prefer: a struc-
tured page that lets your browser read only section headings so that you can
choose which section you’d like to hear more about; or a page that is so lacking
in structure that your browser is forced to read the entire thing with no indica-
tion of what’s a heading, what’s a paragraph, and what’s important? Let’s return
to Google—the search engine is, in effect, the world’s most active blind user, with
millions of friends who accept its every suggestion about where to surf and shop.

* Advanced page presentation is possible only with some sort of document struc-
ture. Imagine a page in which only the section headings are shown, with an
arrow next to each. The user can decide which section heading applies to him
and click on it, thus revealing the text of that section.

* Structured markup is easier to maintain. How many times have you spent sev-
eral minutes hunting through someone else’s HTML (or even your own) in
search of the one little error that’s messing up your page in one browser or
another? How much time have you spent writing nested tables and font ele-
ments, only to get a sidebar with white hyperlinks in it? How many linebreak
elements have you inserted trying to get exactly the right separation between a
title and the following text? By using structural markup, you can clean up your
code and make it easier to find what you’re looking for.

Granted, a fully structured document is a little plain. Due to that one single fact, a
hundred arguments in favor of structural markup won’t sway a marketing depart-
ment from using the type of HTML that was so prevalent at the end of the 20th cen-
tury, and which persists even today. What we need is a way to combine structural
markup with attractive page presentation.

CSS to the Rescue

Of course, the problem of polluting HTML with presentational markup was not lost
on the World Wide Web Consortium (W3C), which began searching for a quick
solution. In 1995, the consortium started publicizing a work-in-progress called CSS.
By 1996, it had become a full Recommendation, with the same weight as HTML
itself. Here’s why.

Rich Styling

In the first place, CSS allows for much richer document appearances than HTML
ever allowed, even at the height of its presentational fervor. CSS lets you set colors on
text and in the background of any element; permits the creation of borders around
any element, as well as the increase or decrease of the space around them; lets you
change the way text is capitalized, decorated (e.g., underlining), spaced, and even
whether it is displayed at all; and allows you to accomplish many other effects.

(SStotheRescue | 3

Take, for example, the first (and main) heading on a page, which is usually the title
of the page itself. The proper markup is:

<h1>Leaping Above The Water</h1>

Now, suppose you want this title to be dark red, use a certain font, be italicized and
underlined, and have a yellow background. To do all of that with HTML, you’d have
to put the h1 into a table and load it up with a ton of other elements like font and U.
With CSS, all you need is one rule:
hi {color: maroon; font: italic 2em Times, serif; text-decoration: underline;
background: yellow;}
That’s it. As you can see, everything you did in HTML can be done in CSS. There’s
no need to confine yourself to only those things HTML can do, however:
h1 {color: maroon; font: italic 2em Times, serif; text-decoration: underline;
background: yellow url(titlebg.png) repeat-x;
border: 1px solid red; margin-bottom: 0; padding: 5px;}
You now have an image in the background of the h1 that is only repeated horizon-
tally, and a border around it, separated from the text by at least five pixels. You’ve
also removed the margin (blank space) from the bottom of the element. These are

feats that HTML can’t even come close to matching—and that’s just a taste of what
CSS can do.

Ease of Use

If the depth of CSS doesn’t convince you, then perhaps this will: style sheets can
drastically reduce a web author’s workload.

First, style sheets centralize the commands for certain visual effects in one handy
place, instead of scattering them throughout the document. As an example, let’s say
you want all of the h2 headings in a document to be purple. Using HTML, the way to
do this would be to put a font tag in every heading, like so:

<h2>This is purple!</h2>

This must be done for every heading of level two. If you have 40 headings in your
document, you have to insert 40 font elements throughout, one for each heading!
That’s a lot of work for one little effect.

Let’s assume that you've gone ahead and put in all those font elements. You're done,
you’re happy—and then you decide (or your boss decides for you) that those h2
headings should really be dark green, not purple. Now you have to go back and fix
every single one of those font elements. Sure, you might be able to find-and-replace,
as long as headings are the only purple text in your document. If you’ve put other
purple font elements in your document, then you can’t find-and-replace because
you’d affect those, too.

4 | Chapter1: (SSand Documents

