E DB aERN &)

(RZEDhR) 63

A. L. Onishchik E. B. Vinberg (Eds.)

Lie Groups and Lie Algebras I1I

Structure of Lie Groups and Lie Algebras

?ﬁi 5 %‘&‘Riﬁt [

FSEREME

g/ﬂ'-&ﬁiﬁit&

www.sciencep.com




Bl FLFRFIF AR 63

Lie Groups and Lie Algebras III

Structure of Lie Groups and Lie Algebras

FRHSFARIm
FRETRBNEN

A. L. Onishchik E. B. Vinberg (Eds.)

b



E=F: 01-2008-5390

A. L. Onishchik, E. B. Vinberg(Eds.): Lie Groups and Lie Algebras III: Structure

of Lie Groups and Lie Algebras
© Springer-Verlag Berlin Heidelberg 1994

This reprint has been authorized by Springer-Verlag (Berlin/Heidelberg/New
York) for sale in the People’s Republic of China only and not for export
therefrom '

AR 5L 0 E A 28 T AR LE RS R AR . RGBT T
A, AR AR RSB RAR-BALAER. & B URAESE AR
MESE, MO, BEETE, BEWR.

B+ % B (CIP) iR

FHSFAR I FHE5FRHL M =Lie Groups and Lie Algebras
III: Structure of Lie Groups and Lie Algebras / (ff % 1) 82 J& 32} (Onishchik,
A L)&gE. —HM. —dba: B HRA, 2009

(ESME £ E R T, 63)
ISBN 978-7-03-023506-0
L#ZE IL B L OFHF-FEX OFRH-EX V. 01525,

1 E R A B 3R CIP $4##% 7(2008) % 186172 &5

FAEG 3 TR A TSP R B B3N H ikt E4e8

VX W
JERE AR A 16 5
HREBC4RS: 100717
http://www.sciencep.com

T LY TP
FRELMR AT BB TS ER
%

20094 1 A% — M FFAR: BS5(720 x 1000)

20094F 1 ASE—KEMR  ED3K. 16 14

ER%L: 1—2 000 FH: 312000
E{fr:,60.00 7T

(B ENR R I, WAL S AR (RBLEn))



Structure of Lie Groups and Lie Algebras
V. V. Gorbatsevich, A. L. Onishchik, E. B. Vinberg

Translated from the Russian
by V. Minachin

Contents
Introduction . . . . . . . .. ..o 7
Chapter 1. General Theorems . . . . . . . . . . . ... ... ... 8
§1. Lie’'s and Engel’s Theorems . . . . . . .. ... ... ..... 8
1.1. Lie’s Theorem . . . . . . .. ... ... .. ..... 8
1.2. Generalizations of Lie’s Theorem . . . . . .. ... ... 10
1.3. Engel's Theorem and Corollariesto It . . . . . . . . . .. 11
1.4.  An Analogue of Engel’s Theorem in Group Theory . . . . 12
§2. The Cartan Criterion . . . . . . . . . .. ... ... .. ... 13
2.1. Invariant Bilinear Forms . . . . . . .. . ... ... .. 13
2.2. Criteria of Solvability and Semisimplicity . . . . .. . .. 13
2.3. Factorization into Simple Factors . . . . . . . . . . ... 14
§3. Complete Reducibility of Representations and Triviality
of the Cohomology of Semisimple Lie Algebras . . . . . . . .. 15
3.1. Cohomological Criterion of Complete Reducibility . . . . . 15
3.2. The Casimir Operator . . . . . . . . .. ... ..... 15
3.3. Theorems on the Triviality of Cohomology . . . . . . . . 16
3.4. Complete Reducibility of Representations . . . . . . . .. 16
3.5. Reductive Lie Algebras . . . . . .. .. ... ...... 17
§4. Levi Decomposition . . . . . . . . . . ... ... ... .. 18
41. Levi'sTheorem . . . . . . ... . ... ... ...... 18
4.2. Existence of a Lie Group with a Given Tangent Algebra . . 19
4.3. Malcev’s Theorem . . . . . . . .. ... ... ..... 20
4.4. Classification of Lie Algebras with a Given Radical . .. . 20

85. Linear LieGroups . . . . . . . . . . . . .. . ... ..., 21



§6.

§7.

§8.

9.

Contents

51. BasicNotions . . . . . . . . . . ..o
52. Some Examples . . . . . . . . .. .. ...
5.3. Ado’s Theorem . . . . . . . . . . . . ... ... ...
5.4. Criteria of Linearizability for Lie Groups. Linearizer . . . .
5.5. Sufficient Linearizability Conditions . . . . . . . . . . ..
5.6. Structure of Linear Lie Groups . . . . . . . . . .. o
Lie Groups and Algebraic Groups . . . . . . . . . . . ... ..
6.1. Complex and Real Algebraic Groups . . . . . . . . . ..
6.2. Algebraic Subgroups and Subalgebras . . . . . . .. . ..
6.3. Semisimple and Reductive Algebraic Groups . . . . . . . .
6.4. Polar Decomposition . . . . . . . .. .. ...
6.5. Chevalley Decomposition . . . . . . .. ... ... ...
Complexification and Real Forms . . . . . . .. ... .. ...
7.1. Complexification and Real Forms of Lie Algebras . . . . .
7.2. Complexification and Real Forms of Lie Groups . . . . . .
7.3. Universal Complexification of a Lie Group . . . . . . . . .
Splittings of Lie Groups and Lie Algebras . . . . . . . .. . ..
8.1. Malcev Splittable Lie Groups and Lie Algebras . . . . . .
8.2. Definition of Splittings of Lie Groups and Lie Algebras
8.3. Theorem on the Existence and Uniqueness of Splittings .
Cartan Subalgebras and Subgroups. Weights and Roots . . . . .
9.1. Representations of Nilpotent Lie Algebras . . . . . . . . .
9.2. Weights and Roots with Respect to a Nilpotent Subalgebra
9.3. Cartan Subalgebras . . . . . . . .. .. o000
9.4. Cartan Subalgebras and Root Decompositions

of Semisimple Lie Algebras . . . . . . . . .. ... ...
9.5. Cartan Subgroups . . . . . . . .. . ...

Chapter 2. Solvable Lie Groups and Lie Algebras . . . . . . . . ..

§1.
§2.
§3.

§4.

§5.

Examples . . . . . . . . ..o
Triangular Lie Groups and Lie Algebras . . . . . . .. ... ..
Topology of Solvable Lie Groups and Their Subgroups . . . . . .
3.1. Canonical Coordinates . . . . . .. ... ... .. ...
3.2. Topology of Solvable Lie Groups . . . . . . .. ... ..
3.3. Aspherical Lie Groups . . . . . . . . ...
3.4. Topology of Subgroups of Solvable Lie Groups . . . . . . .
Nilpotent Lie Groups and Lie Algebras . . . . . . .. .. . ..
4.1. Definitions and Examples . . . . . . . . . . .. .. ...
4.2. Malcev Coordinates . . . . . . . . . . ... ... ...
4.3. Cohomology and Outer Automorphisms . . . . . . . . ..
Nilpotent Radicals in Lie Algebras and Lie Groups . . . . . . .
5.1. Nilradical . . . . . . . .. e e e e e e e
5.2. Nilpotent Radical . . . . . . . . . .. ... .. .....
5.3. Unipotent Radical . . . . . . . ... ... ... ....



§6.

§7.

Contents

Some Classes of Solvable Lie Groups and Lie Algebras . . . . . .
6.1. Characteristically Nilpotent Lie Algebras . . . . . . . ..
6.2. Filiform Lie Algebras . ... . . . . .. . .. e e
6.3. Nilpotent Lie Algebrasof Class 2 . . . . . . . . .. . ..
6.4. Exponential Lie Groups and Lie Algebras . . . . . . . . .
6.5. Lie Algebras and Lie Groups of Type (I) . . . . .. . ..
Linearizability Criterion for Solvable Lie Groups . . . . . . . . .

Chapter 3. Complex Semisimple Lie Groups and Lie Algebras

§1.

§2.

§3.

Root Systems . . . . . . . . . .. ...
1.1. Abstract Root Systems . . . . . . . . .. ... ...
1.2. Root Systems of Reductive Groups . . . . . . . . . . ..
1.3. Root Decompositions and Root Systems

for Classical Complex Lie Algebras . . . . . . . . . ...
1.4. Weyl Chambers and Simple Roots . . . . . . . . .. ., ..
1.5. Borel Subgroups and Subalgebras . . . . . . . . .. ...
1.6. The WeylGroup . . . . . . . . . .. .. . ... ..
1.7. The Dynkin Diagram and the Cartan Matrix . . . . . . .
1.8. Classification of Admissible Systems of Vectors

and Root Systems . . . . .. . ... .. .. ... ...
1.9. Root and Weight Lattices . . . . . . . . . ... ... ..
1.10. Chevalley Basis . . . . . . . .. ... ... ... ...,
Classification of Complex Semisimple Lie Groups
and Their Linear Representations . . . . . . . . . . . .. ...
2.1. Uniqueness Theorems for Lie Algebras . . . . . . . . ..
2.2. Uniqueness Theorem for Linear Representations . . . . . .
2.3. Existence Theorems . . . . . . . . . . . .. ... ...
2.4. Global Structure of Connected Semisimple Lie Groups
2.5. Classification of Connected Semisimple Lie Groups
2.6. Linear Representations of Connected Reductive

Algebraic Groups . . . . . . . . . ..o
2.7. Dual Representations and Bilinear Invariants . . . . . . .
2.8. The Kernel and the Image of a Locally Faithful

Linear Representation . . . . . . . . . . ... .. ...
2.9. The Casimir Operator and Dynkin Index . . . . . . . ..
2.10. Spinor Group and Spinor Representation . . . . . . . ..
Automorphisms and Gradings . . . . .. ... ... ...
3.1. Description of the Group of Automorphisms . . . . . . . .
3.2. Quasitori of Automorphisms and Gradings . . . . . . ..
3.3. Homogeneous Semisimple and Nilpotent Elements . . . . .
3.4. Fixed Points of Automorphisms . . . . . . . . . . . . ..
3.5. One-dimensional Tori of Automorphisms and Z-gradings
3.6. Canonical Form of an Inner Semisimple Automorphism

89
59
61
62
63
65

67
67

70

72
73
76
77
79

86
86
88
90
91
92



4 Contents

3.7. Inner Automorphisms of Finite Order and Z,-gradings

of Immer Type . . . . . . . . . . .. ... .. 112
3.8. Quasitorus Associated with a Component of the Group
of Automorphisms . . . . . .. ... ..o 115
3.9. Generalized Root Decomposition . . . . . . . . . . . .. 117
3.10. Canonical Form of an Outer Semisimple Automorphism . . 119
3.11. Outer Automorphisms of Finite Order and Z,-gradings
of Quter Type . . . . . . . . . . .. ... ... 121
3.12. Jordan Gradings of Classical Lie Algebras . . . . . . . .. 123
3.13. Jordan Gradings of Exceptional Lie Algebras . . . . . . . 127
Chapter 4. Real Semisimple Lie Groups and Lie Algebras . . . . . . 127
§1. Classification of Real Semisimple Lie Algebras . . . . . . . . .. 127
1.1. Real Forms of Classical Lie Groups and Lie Algebras . . . 128
1.2. Compact Real Form . . . . . . ... ... .. ..... 131
1.3. Real Forms and Involutory Automorphisms . . . . . . . . 133
1.4. Involutory Automorphisms of Complex Simple Algebras . . 134
1.5. Classification of Real Simple Lie Algebras . . . . . . . .. 135
§2. Compact Lie Groups and Complex Reductive Groups . . . . . . 137
2.1. Some Properties of Linear Representations
of Compact LieGroups . . . . . . . . . . ... .. ... 137
2.2. Self-adjointness of Reductive Algebraic Groups . . . . . . 138
2.3. Algebraicity of a Compact Lie Group . . . . . . . .. .. 139
2.4. Some Properties of Extensions of Compact Lie Groups . . . 139
2.5. Correspondence Between Real Compact
and Complex Reductive Lie Groups . . . . . . . . . . .. 141
2.6. Maximal Tori in Compact Lie Groups . . . . . . . . . .. 142
§3. Cartan Decomposition . . . . . . . . .. . .. ... 143
3.1. Cartan Decomposition of a Semisimple Lie Algebra . . . . 143
3.2. Cartan Decomposition of a Semisimple Lie Group . . . . . 145
3.3. Conjugacy of Maximal Compact Subgroups
of Semisimple Lie Groups . . . . . . . . . .. .. .. .. 147
3.4. Topological Structure of Lie Groups . . . . . . . . . . .. 148
3.5. Classification of Connected Semisimple Lie Groups . . . . 149
3.6. Linearizer of a Semisimple Lie Group . . . . . . . . . .. 151
§4. Real Root Decomposition . . . . . . . . .. ... ... .... 153
4.1. Maximal R-Diagonalizable Subalgebras . . . . . . . . .. 153
4.2. Real Root Systems . . . . . . . . . . . .. ... .... 154
4.3. Satake Diagrams . . . . . . .. . .. .. ... 156
4.4. Split Real Semisimple Lie Algebras . . . . . . . . . . .. 157
4.5, Iwasawa Decomposition . . . . . . .. .. ... ... .. 158
4.6. Maximal Connected Triangular Subgroups . . . . . . . .. 160
4.7. Cartan Subalgebras of a Real Semisimple Lie Algebra . . . 162

§5. Exponential Mapping for Semisimple Lie Groups . . . . . . . . 163



Contents

5.1. Image of the Exponential Mapping . . . . . . . ... ..
5.2. Index of an Element of a Lie Group . . . . . . . .. . ..
5.3. Indices of Simple Lie Groups . . . . . . . . . . . . . ..

Chapter 5. Models of Exceptional Lie Algebras . . . . . . . . . ..

§1. Models Associated with the Cayley Algebra . . . . . . . . . ..
1.1. Cayley Algebra . . . . . . . . . .. ...
1.2. TheAlgebraGs . . . . . . . . . . .. .. ...
1.3. Exceptional Jordan Algebra . . . . . . . . .. .. .. ..
1.4. TheAlgebra Fy . . . . . . . . . oo
1.5. TheAlgebra Es . . . . . . . . . . . . . ...
1.6. The Algebra E; . . . . . . . . . . ...
1.7. Unified Construction of Exceptional Lie Algebras . . . . .
§2. Models Associated with Gradings . . . . . . . .. . . .. ...

Chapter 6. Subgroups and Subalgebras of Semisimple Lie Groups
and Lie Algebras . . . . . . . . . . .. .o

§1. Regular Subalgebras and Subgroups . . . . . . . . . . .. ...
1.1. Regular Subalgebras of Complex Semisimple Lie Algebras
1.2. Description of Semisimple and Reductive Regular
Subalgebras . . . . . . ...
1.3. Parabolic Subalgebras and Subgroups . . . . . . . . . ..
1.4. Examples of Parabolic Subgroups and Flag Manifolds
1.5. Parabolic Subalgebras of Real Semisimple Lie Algebras
1.6. Nonsemisimple Maximal Subalgebras . . . . . . . . . ..
§2. Three-dimensional Simple Subalgebras and Nilpotent Elements
2.1. slatriples . . . . . ..o
2.2. Three-dimensional Simple Subalgebras of Classical
Simple Lie Algebras . . . . . . . . .. ...
2.3. Principal and Semiprincipal Three-dimensional
- Simple Subalgebras . . . . . .. ..o oo
2.4. Minimal Ambient Regular Subalgebras . . . . . . . . ..
2.5. Minimal Ambient Complete Regular Subalgebras . . . . .
§3. Semisimple Subalgebras and Subgroups . . . . . ... ... ..
3.1. Semisimple Subgroups of Complex Classical Groups
3.2. Maximal Connected Subgroups of Complex Classical Groups

. 203

205

3.3. Semisimple Subalgebras of Exceptional Complex Lie Algebras 206

3.4. Semisimple Subalgebras of Real Semisimple Lie Algebras . .

Chapter 7. On the Classification of Arbitrary Lie Groups

and Lie Algebras of a Given Dimension . . . . . . . .. . .. ...

§1. Classification of Lie Groups and Lie Algebras of Small Dimension
1.1. Lie Algebras of Small Dimension . . . . .. .. ... ..
1.2. Connected Lie Groups of Dimension <3 . . . . .. ...

207



6 Contents

§2. The Space of Lie Algebras. Deformations and Contractions
2.1. The Space of Lie Algebras . . . . . . . . . . . ... ..
2.2. Orbits of the Action of the Group GL, (k) on L, (k)
2.3. Deformations of Lie Algebras . . . . . . .. .. ... ..
2.4. Rigid Lie Algebras . . . . . . . . . ...
2.5. Contractions of Lie Algebras . . . . . . . . . . ... ..

2.6. Spaces Lp(k) forSmalln . . . . .. ... ... ... ..
Tables . . . . . e e e
References . . . . . . . . . . . o e e e

AuthorIndex . . . . . . . . . . . . .o

Subject Index . . . . . . ..o Lo



Introduction 7

Introduction

This article builds on Vinberg and Onishchik [1988] and is devoted to
an exposition of the main results on the structure of Lie groups and finite-
dimensional Lie algebras. The greater part of the article is concerned with
theorems on the structure and classification of semisimple Lie groups (alge-
bras) and their subgroups (subalgebras). The tables given at the end of the
article can be used as reference material in any work on Lie groups.

We consider only the results of the classical theory of Lie groups. Some
classes of infinite-dimensional Lie groups and Lie algebras, as well as Lie
supergroups and superalgebras, will be dealt with in special articles of one
of the following volumes of this series. The same applies to the theory of
Lie algebras over fields of finite characteristic. However, the results on Lie
algebras given in the present article can be extended to more general fields
of characteristic 0 {e.g., the field C of complex numbers can be replaced by
any algebraically closed field of characteristic 0).

For the theory of linear representations of Lie groups and algebras, the
reader is referred to the volumes especially devoted to this theory, although
we had to include in this article some classical theorems on finite-dimensional
representations, which form an inseparable part of the structural theory. We
also use some results from the theory of algebraic groups. Almost all of them
can be found in Springer (1989}, and some in Chap. 1, Sect. 6. On the other
hand, the results on complex and real algebraic groups contained in Springer
[1989] can be treated as results on Lie groups. Some of them (e.g. the Bruhat
decomposition) are not dealt with in this volume.

The authors have tried, whenever possible, to give the reader the ideas of
the proofs.

The terminology and notation of the article follow that of Vinberg and
Onishchik [1988]. In particular, Lie groups are denoted by upper-case Roman
letters, and their tangent algebras by lower-case Gothic.
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Chapter 1
General Theorems

All vector spaces and Lie algebras considered in this chapter are assumed
to be finite-dimensional. The ground field is denoted by K, which is either
the field C of complex numbers or the field R of real numbers.

§ 1. Lie’s and Engel’s Theorems

1.1. Lie’s Theorem. Denote by T,,(K) the subgroup of GL,(K) consisting
of all nondegenerate upper triangular matrices, and by t,(K) the subalgebra
of the Lie algebra gl (K) consisting of all triangular matrices. The group
T,.(K) (respectively, Lie algebra t,(K)) can be interpreted as a subgroup
of the full linear group GL(V) (respectively, subalgebra of the full linear
algebra gl(V'}), where V is an n-dimensional vector space over K consisting
of operators preserving some full flag, i.e. a set of subspaces V1 C Vo C
... C Vpuo1 C V, where dimV; = i. The group T,,(K) and the Lie algebra
t,(K) are solvable (see Vinberg and Onishchik [1988], Chap.2, Sect.5.5).
The following theorem, first proved by Sophus Lie, shows that the subgroup
T,.(C) (subalgebra t,(C)) is, up to conjugation, the only maximal connected
solvable Lie subgroup of GL,(C) (respectively, maximal solvable subalgebra
of gl,(C)).

Theorem 1.1 (see Bourbaki [1975], Jacobson [1962]). (1) Let R:G —
GL(V) be a complex linear representation of a connected solvable Lie group
G. Then there is a full flag in V invariant under R(G).

(2) Let g be a solvable Lie algebra, and p:g — gl(V) a compler linear
representation of it. Then there is a full flag in V' invariant under p(g).

Because of the correspondence between solvable Lie groups and Lie alge-
bras (see Vinberg and Onishchik [1988], Chap. 2, Sect.5.5), statements (1)
and (2) of the theorem are equivalent. We now give an outline of the proof
of statement (1).

‘We start with some definitions and simple auxiliary statements.

Let R:G — GL(V) be a linear representation of a group G over an ar-
bitrary field K. For any character x of the group G, i.e. a homomorphism
x: G — K*, where K* is the multiplicative group of the field K, we set

Vy = V3 (G) = {v e V|R(g)v = x(g)v forall ge G}

If V, # 0, then the character x is said to be a weight of the representation
R, the subspace V, is called the weight subspace, and its nonzero vectors
the weight vectors corresponding to the weight x. Similarly, for any linear
representation p of the Lie algebra g over the field K and any linear form
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Aeg*let
Va(g) = {v e Vl]p(z)v = A(z)v forall ze€ g}

If Va(g) # 0O, then the form A is said to be a weight of the representation
p, the subspace V)(g) is called the weight subspace, and its nonzero vectors
the weight vectors corresponding to the weight A.

Weight subspaces corresponding to different weights are linearly indepen-
dent. Thus a finite-dimensional linear representation may have only finitely
many weights.

The proof of Lie’s theorem is based on the following property of weight
subspaces.

Lemma 1.1. Let H be a normal subgroup of the group G, x the character
of H, and R:G — GL(V) a linear representation. Then for any g € G we
have

R(9)Vy(H) = Vo (H),

where x9(h) = x(g~'hg) (h € H).

Outline of the proof of Theorem 1.1. First, one shows by induction on
dim G that R has at least one weight in V. For dimG = 1 the statement
is evident. In the general case, the definition of a solvable Lie group implies
that there is a virtual normal Lie subgroup H of G of codimension 1. Clearly,
G = CH, where C is a connected virtual one-dimensional Lie subgroup. By
the inductive hypothesis, V, (H) # 0 for some character x of the group H. In
view of Lemma 1.1, the operators R(g), g € G, permute the weight subspaces
of the group H. Since G is connected, V, (H) is invariant under R(G).

The one-dimensional subgroup C has a one-dimensional invariant subspace
in V, (H), which is evidently invariant under the action of the entire group G.

Thus, there is a one-dimensional subspace in V' invariant under G. The
existence of a full flag in V invariant under G is then proved by induction on
dimV. 0O

Corollary 1. Any irreducible complex linear representation of a connected
solvable Lie group or a solvable Lie algebra is one-dimensional.

Corollary 2. Let G C GL(V) be a connected irreducible complex linear Lie
group. Then either G is semisimple, or Rad G = {cE|c € C*}.

Proof. Suppose that G is not semisimple. Consider the vector subspace
W =V, (rad G) # 0. Lemma 1.1 implies that it is invariant under G. Hence
W =V, ie. Rad G contains scalar operators only. O

Corollary 3. A Lie algebra g over K = C or R is solvable if and only if
the Lie algebra [g,g] = nn(K) is nilpotent.

Proof. If g = t,(K), then [g, g] is the nilpotent Lie algebra of all upper
diagonal matrices with zeros on the diagonal. In the general case one can
assume, using the complexification procedure if necessary, that K = C. We
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now see, by Lie’s theorem, that if g is solvable, then the Lie algebra ad [g, g] =
[ad g, ad g] is nilpotent and therefore g is also nilpotent. O

1.2. Generalizations of Lie’s Theorem. First we consider the possibilities
of generalizing Lie’s theorem to Lie algebras over an arbitrary field K. If a
representation p:g — gl(V) of a Lie algebra g over K has an invariant full
flag, then the characteristic numbers of all operators p(z), z € g, must belong
to the field K, which is far from being always true if X is not algebraically
closed. If char K = 0, then the above mentioned property of the operators
o(z), = € g, turns out to be also sufficient for the existence of an invariant
flag.

Theorem 1.2. Let g be a solvable Lie algebra over a field K of characteristic
0 and p: g — gi(V) a linear representation of it over K. If all characteristic
numbers of all operators p(z), x € g, belong to K, then there is a full flag in
V invariant under p(g).

The proof is similar to that of Theorem 1.1, and makes use of the following
" analogue of Lemma 1.1.

Lemma 1.2. Let p: g — gl(V) be a linear representation of a Lie algebra g
over a field K of characteristic 0, i an ideal in g, and V() a weight subspace
of the representation plh. Then the following two equivalent statements hold:
(1) Va(h) is invariant under p(g); (2) A(z) = 0 for any z € g, b).

Corollary 3 to Theorem 1.1 is extended to the case of an arbitrary field of
characteristic 0. If a field of characteristic 0 is algebraically closed, then the
analogues of Corollaries 1 and 2 hold.

The condition imposed by Theorem 1.2 on the characteristic is essential,
as the following example shows.

Ezample. If char K = 2, then the Lie algebra gl,(K) is solvable, but its
identity representation in K2 has no weight vectors.

Without going into details, we note that Lie’s theorem can be extended
to connected solvable linear algebraic groups over an algebraically closed
field of arbitrary characteristic. This follows from Borel’s fixed point theorem
(see Springer [1989], Chap. 1, Sect.3.5). We also state the following simple
theorem on representations of abstract solvable groups.

Theorem 1.3 (see Merzlyakov [1987]). Let G be a solvable group, and
R:G — GL(V) a complez linear representation of it. Then there is a full
flag in V invariant under a subgroup of finite index G; C G.

Proof. Consider the algebraic closure H = “R(G) of the subgroup R(G)
of GL(V). The solvable linear algebraic group H has a finite number of
connected components. According to Theorem 1.1, there is a full flag in

V invariant under HY. But then it is also invariant under the subgroup
G = R~1(H"), which is of finite index in G. m|
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In addition to the main statement of Theorem 1.3 one can also show that
the subgroup Gy can be chosen in such a way that its index does not exceed
a number depending on dimV only (see Merzlyakov [1987]).

1.3. Engel’s Theorem and Corollaries to It. The cornerstone in the theory
of nilpotent, Lie algebras and Lie groups is the following theorem first proved
by F. Engel.

Theorem 1.4 (see Bourbaki [1975], Jacobson [1955]). Let p:g — gi(V) be
a linear representation of a Lie algebra g over an arbitrary field K. Suppose
that for each x € g the linear operator p(x) is nilpotent. Then there is a basis
in V' with respect to which the operators p(x), x € g, are represented by upper
triangular matrices with zeros on the diagonal. In particular, the Lie algebra
p(@) is nilpotent.

Proof. As for Lie’s theorem, induction on dim V' reduces the theorem to
the proof of the existence of a weight vector (with the weight 0). The latter
is achieved by induction on dimg. For dimg = 1 the statement is evident.
Suppose that the statement holds for all Lie algebras of dimension less than
m, and let dim g = m. It follows from the statement of the theorem and the
inductive hypothesis that there is an ideal h of codimension 1 in g (one can
take for h any maximal subalgebra of g). Then g = § + (y), where y € g.
Consider the weight subspace Vp()) # 0. Since § is an ideal in g, Lemma
1.2 implies that Vp(h) is invariant under g. The operator p(y) is nilpotent,
whence there is a vector vy € Vy(8), vo # 0, such that p(y)vo = 0. Evidently,
vp is the desired weight vector with respect to g. a

Corollary 1. If under the conditions of Theorem 1.4 the representation p
s irreducible, then it is trivial and one-dimensional.

An application of Engel’s theorem to the adjoint representation easily
yields the following corollary.

Corollary 2. A Lie algebra g is nilpotent if and only if either of the following
two conditions is satisfied:

(1) For any z € g the operator ad x is nilpotent.
(2) There is a basis {e;} in g such that [e;, e;) is a linear combination of the
elements e, €x41,- - - ,€m, where k = max(,7) + 1.

A Lie algebra g is said to be engelian if all the operators adz, z € g,
are nilpotent. Corollary 2 implies that a finite-dimensional Lie algebra is
engelian if and only if it is nilpotent. For an infinite-dimensional Lie algebra
this statement does not hold, in general. If, however, g is finitely generated
and (ad z)* = 0 for some k € N and all z € g, then g is nilpotent.

We also note that a stronger version of Engel’s theorem is also valid,
namely its conclusion holds for linear representations p of a Lie algebra g
such that p(g) is generated (as a Lie algebra) by a set of nilpotent operators
closed under the commutator.
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The next theorem lists other important properties of nilpotent Lie algebras
proved with the use of Engel’s theorem.

Theorem 1.5 (see Bourbaki [1975], Jacobson [1955], Serre [1987]). Let g be
a nilpotent Lie algebra. Then
(i) codim[g,g] > 2.
(ii) If a is a subspace in g such that g = a + [g,g], then a generates g as a
Lie algebra.
(iif) If b is an ideal in g, then h N 3(a) # 0.
(tv) If b is a subalgebra of g, then its normalizer n(h) strictly contains b.

Finally, we note the following application of Engel’s theorem to the theory
of nilpotent Lie groups.

Theorem 1.8. A connected Lie group G is nilpotent if and only if all op-
erators Adg (g € G) are unipotent. Any compact subgroup of a connected
nilpotent Lie group G is contained in Z(G).

Proof. The first statement follows from Corollary 2 to Theorem 1.4 and the
correspondence between nilpotent Lie groups and Lie algebras (see Vinberg
and Onishchik [1988}, Chap. 2, Theorem 5.13). To prove the second statement,
consider the restriction R of the representation Ad to a compact subgroup
L C G. Since R is completely reducible (see below Chap. 4, Corollary to
Proposition 2.1), Corollary 1 to Theorem 1.4 implies that R is trivial. Hence
L c KerAd = Z(G).

1.4. An Analogue of Engel’s Theorem in Group Theory. The following the-
orem can be considered as a group-theoretical analogue of Engel’s theorem.
It is not a formal consequence of Engel’s theorem because it applies to groups
that are not necessarily Lie groups.

Theorem 1.7 (Kolchin, see Merzlyakov [1987], Serre [1987]). Let G be a
group, and R: G — GL(V) a linear representation of it over a field K. Sup-
pose that V' # 0 and all operators R(g), g € G, are unipotent. Then x =1 is
a weight of the representation R. :

Proof. Consider the system of linear equations (R(g) — E)v = 0, where g
runs over the entire group G. Since we are looking for nontrivial solutions of
the system, the field K can be assumed to be algebraically closed. Replacing
V by its minimal nonzero invariant subspace, one can also assume that R
is irreducible. The Burnside theorem (see Kirillov [1987]) implies that the
operators R(g), g € G, generate gl(V') as a vector space.

On the other hand, let Z = R(g) — E. Then tr R(g) =tr E+ trZ = dimg
does not depend on g € G. If g, ¢’ € G, then

tr (ZR(¢")) = tr (R(g) — E)R(¢")) = tr R(gg') — tr R(¢') = 0.

Hence tr (ZX) = 0 for any X € gl(V'), whence Z =0, i.e. p(g) = E. d
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§ 2. The Cartan Criterion

2.1. Invariant Bilinear Forms. Let G be a Lie group over a field K. A
bilinear form b on the tangent algebra g of the group G is said to be invariant

if

b((Adg)z, (Adg)y) = b(z,y) (1)
for all g € G, x,y € g. It follows from formula (18) in Vinberg and Onishchik
[1988], Chap. 2 that the invariant form b satisfies the relation

([z,y],2) +b(y, [z,2)) =0 . (2)

for all z,y,2z € g. Conversely, relation (2) implies (1) if G is connected. A

bilinear form b on an arbitrary Lie algebra g is said to be invariant if it
satisfies property (2).

Ezample 1. Let E be a three-dimensional Euclidean space with the scalar

product (, ). Fix an orientation in E and consider the vector product in FE.
Then E becomes a Lie algebra over R such that the form (, ) is invariant.

Ezample 2. In the Lie algebra gl(V') of linear transformations of a vector
space V over K there is an invariant bilinear form

b(X,Y) = tr (XY). (3)

Ezample 3. Let g be a Lie algebra over K, and p:g — gl(V) a linear
representation of it. Then the symmetric bilinear form

bo(z,y) = tr (p(z)p(y))
is invariant on g. In particular, there is an invariant bilinear form

kﬂ(xa y) = bad (x)y) = tr((ad:c)(ady)),
called the Killing form of the algebra g.

In what follows we always assume that an invariant bilinear form b on
a Lie algebra g is symmetric. The following assertions are proved without
difficulty.

Proposition 2.1. Let b be an invariant bilinear form on a Lie algebra g and
a an ideal in g. Then at = {z € g|b(x,y) =0 Vy € a} is also an ideal in g.
Ifa =g, g], then at D 3(g), and if b is nondegenerate, then at = 3(g).

Proposition 2.2 The Killing form k = kg of any Lie algebra g satisfies the
relation

k(a(z),a(y)) = k(z,y)
for all z,y € g and any a € Autg. If a is an ideal in g, then the restriction
of the form kg to a coincides with kg.

2.2. Criteria of Solvability and Semisimplicity. In this section we denote
by b the invariant bilinear form in gl(V') defined by formula (3).
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Theorem 2.1. A subalgebra g C gl(V) is solvable if and only if
(X, Y], Z)=0 forall XY, Z € g.

Proof. For the proof of Theorem 2.1 one can assume that K = C (the real
case is reduced to the complex one by considering the complexification, i.e.
the Lie algebra g(C) = g +1ig C gl(V(C)) (see Sect.7)). For any X € gi(V)
denote by X, and X, the semisimple and nilpotent components respectively
in the additive Jordan decomposition X = X, + X, (see Springer [1989],
Sect. 3.1.1). Denote by X, the semisimple operator having the same eigenvec-
tors as X, but with the complex conjugate eigenvalues. Let b([X,Y],Z) =0
for all X,Y, Z € g. By virtue of Engel’s theorem, it is sufficient to prove that

»
X, =0 for any X € [g,g]. Write X = }[X,,Y;], where X,,Y; € g. Then
i=1

P P
B(X, X)) =D b((X:, Vi, X) =Y b(Vi, [Xs, X))
i=1 i=1
The relation (ad X)(g) C [g, g] and the equality ad X, = (ad X); imply that
(ad X)(g) C [g9,9]. Hence b(X,X;) = tr (XX;) = 0, whence X; = 0. The
converse statement easily follows from Lie’s theorem. g

Corollary. A Lie algebra g is solvable if and only if kq([z,y],2) =0 for all
z,y,z € g or if ky(z,y) =0 for all z,y € (g, g].

Theorem 2.2. A Lie algebra g is semisimple if and only if the Killing form
ky is nondegenerate.

Proof. Let u = {z € glkg(z,y) = 0 Vy € g}. By virtue of Proposition
2.1, u is an ideal in g, while Theorem 2.1 implies that the Lie algebra adu
is solvable. Since adu =~ u, we have u = 0 if g is semisimple. Conversely, if
g is not semisimple, and a is its nonzero abelian ideal, then a C u because
((adz)(ady))? =0forallz €a,y€ g O

Remark. A similar proof yields the following assertion: if p is a faithful
linear representation of a semisimple Lie algebra g, then the form b, (see
Example 3) is nondegenerate on g.

Corollary. If g is semisimple, then g = [g, g

2.3. Factorization into Simple Factors

Proposition 2.3. If g is semisimple, and a is an ideal in g, then g = gDat.
Any ideal a C g and the quotient algebra g/a are semisimple.

Proof. As in the proof of Theorem 2.2, one can verify that an al is a
solvable ideal in g. O

The following theorem is now derived without difficulty.

Theorem 2.3. A Lie algebra g is semisimple if and only if g can be decom-
posed into the direct sum



