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1. Two-Dimensional Manifolds of Bounded Curvature 1

Preface

The book contains a survey of research on non-regular Riemannian geome-
try, carried out mainly by Soviet authors. The beginning of this direction oc-
curred in the works of A.D. Aleksandrov on the intrinsic geometry of convex
surfaces. For an arbitrary surface F, as is known, all those concepts that can be
defined and facts that can be established by measuring the lengths of curves on
the surface relate to intrinsic geometry. In the case considered in differential
geometry the intrinsic geometry of a surface is defined by specifying its first
fundamental form. If the surface F is non-regular, then instead of this form it
is convenient to use the metric pp, defined as follows. For arbitrary points
X, YeF, pe(X, Y) is the greatest lower bound of the lengths of curves on the
surface F joining the points X and Y. Specification of the metric p; uniquely
determines the lengths of curves on the surface, and hence its intrinsic geometry.
According to what we have said, the main object of research then appears as a
metric space such that any two points of it can be joined by a curve of finite
length, and the distance between them is equal to the greatest lower bound of
the lengths of such curves. Spaces satisfying this condition are called spaces with
intrinsic metric. Next we introduce metric spaces with intrinsic metric satisfying
in one form or another the condition that the curvature is bounded. This condi-
tion is introduced by comparing triangles in space with triangles on a surface of
constant curvature having the same lengths of sides.

The book contains two articles. The first is devoted to the theory of two-
dimensional manifolds of bounded curvature. This theory at present has a com-
plete character. It is a generalization of two-dimensional Riemannian geometry.
For a manifold of bounded curvature there are defined the concepts of area and
integral curvature of a set, the length and turn (integral curvature) of a curve.

One of the main results of the theory is the closure of the class of two-
dimensional manifolds with respect to the passage to the limit under certain
natural restrictions. In particular, this enables us to define two-dimensional
manifolds of bounded curvature by means of approximation by polyhedra. The
proof of the possibility of such an approximation is one of the main results of
the theory. In the account given here it is essential to use the analytic representa-
tion of two-dimensional manifolds of bounded curvature by means of a line
element of the form ds? = A(z)(dx? + dy?). The function A(z) is such that its
logarithm is the difference of two subharmonic functions. In contrast to the case
of Riemannian manifolds the function 2 here may vanish and have points of
discontinuity. Some results in the theory of manifolds of bounded curvature do
not have a complete analogue in two-dimensional Riemannian geometry. Here
we should refer to some estimates and solutions of extremal problems, the theo-
rem on pasting, and so on.

The second article is devoted to the theory of metric spaces whose curvature
is contained between certain constants K, and K,, where K, < K,. The main
result of this theory is that these spaces are actually Riemannian. In each such
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space we can locally introduce a coordinate system in which its metric is defined
by a line element ds® = g;; dx’ dx’, where the functions g;; satisfy almost the
same regularity conditions as in ordinary Riemannian geometry. (We say “al-
most the same” because the functions g;; only have second derivatives, general-
ized in the sense of Sobolev, that are summable in any degree p > 0; this implies
that the coefficients g;; are continuous.) The theory of curvature in Riemannian
geometry can be transferred to the case of such spaces. Some relations here
are satisfied only almost everywhere (for example, the formula for representing
the sectional curvature of a manifold). In this article the authors also consider
some questions of Riemannian geometry. Applications are given of the theorem
on the Riemann property of spaces of two-sided bounded curvature to global
Riemannian geometry.

In particular, an axiomatic definition of a Riemannian space is obtained here,
based on representations in the spirit of synthetic geometry. A priori it is not
required that the spaces under consideration should be manifolds. This fact
follows from other axioms.

Yu.G. Reshetnyak
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Chapter 1
Preliminary Information

§ 1. Introduction

1.1. General Information about the Subject of Research and a Survey of Results.
The theory of two-dimensional manifolds of bounded curvature is a generaliza-
tion of two-dimensional Riemannian geometry. Formally a two-dimensional
manifold of bounded curvature is a two-dimensional manifold in which there
are defined the concepts of the length of a curve, the angle between curves
starting from one point, the area of a set, and also the integral curvature of a
curve and the integral curvature of a set. For the case when the given manifold
is Riemannian, the integral curvature of a curve is equal to the integral of the
geodesic curvature along the length of the curve, and the integral curvature of a
set is equal to the integral of the Gaussian curvature of the manifold with respect
to the area. The remaining concepts in this case have the meaning that is usual
in Riemannian geometry. For an arbitrary two-dimensional manifold of bounded
curvature the integral curvature is a completely additive set function, which may
not admit representations in the form of an integral with respect to area.

Another particular case of two-dimensional manifolds of bounded curvature
consists of surfaces of polyhedra (not necessarily convex) in three-dimensional
Euclidean space. For them the integral curvature is an additive set function
concentrated on some discrete set, namely the set of vertices of the polyhedron.
If the set consists of a unique point, a vertex of the polyhedron, then its integral
curvature is equal to 2rn — 6, where 8 is the total angle of the polyhedron at this
vertex, that is, the sum of the angles of all its faces that meet at this vertex.

Three methods are known for introducing two-dimensional manifolds of
bounded curvature. The first of them is axiomatic. A two-dimensional manifold
of bounded curvature is defined as a metric space satisfying some special
axioms. The second method is based on approximation by two-dimensional
Riemannian manifolds or manifolds with polyhedral metric. It turns out that
under certain natural assumptions the limit of the sequence of two-dimensional
manifolds of bounded curvature is also a manifold of bounded curvature. Exact
formulations are given later; here we just mention that a certain condition of
boundedness of the curvature is fundamental in these assumptions. In particu-
lar, the limit of a sequence of manifolds with polyhedral metric is a manifold of
bounded curvature. This fact can be used for the definition of the class of two-
dimensional manifolds of bounded curvature.

A two-dimensional Riemannian manifold is a smooth manifold such that
for each local coordinate system there is defined in it a differential quadratic
form

ds2=z

2
i=1

2
'zl gij(xl, x2) dxl‘ de.
j=
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The main concept of two-dimensional Riemannian geometry is the Gaussian
curvature. In order that it can be defined it is necessary to require that the
coefficients g;; (i, j = 1, 2) have partial derivatives of the first and second orders.
There naturally arises the idea of considering “generalized” Riemannian geo-
metries obtainable if we weaken the requirements of regularity imposed on
the coefficients of the quadratic form ds. It turns out that two-dimensional
manifolds of bounded curvature can be defined in such a way. We shall show
later how to do this. Here we consider the case when the line element of the
manifold has a certain special structure, namely such that g,; = g,,, ¢,, = 0.
For the case of Riemannian manifolds the line element can always be reduced to
such a form by a transformation of the coordinates. The system of coordinates
for which g,, = g,,, ¢, =0 is called isothermal. Using such a form of the
coordinate system, we obtain a third analytic method of introducing two-
dimensional manifolds of bounded curvature.

The general plan of the theory of two-dimensional manifolds of bounded
curvature is due to A.D. Aleksandrov, who developed the geometrical aspects
of this theory (see Aleksandrov (1948b), (1948c), (1949b), (1950), (1954), (1957a),
(1957b), Aleksandrov and Burago (1965), Aleksandrov and Strel'tsov (1953),
(1965), Aleksandrov, Borisov and Rusieshvili (1975). An account of the theory
constructed by Aleksandrov is given in a monograph of Aleksandrov and
Zalgaller (1962). An analytic approach to the introduction and study of
two-dimensional manifolds of bounded curvature is due to Yu.G. Reshetnyak
(Reshetnyak (1954), (1959), (1960), (1961b), (1962), (1963a), (1963b)). Other au-
thors also took part in the development of individual aspects of the theory (the
corresponding references are given later in the main text).

The concept of a two-dimensional manifold of bounded curvature was in-
troduced as a development of the research of Aleksandrov on-the intrinsic
geometry of convex surfaces (Aleksandrov (1944), (1945a), (1945b), (1947),
(1948a)), and presented completely in his monograph Aleksandrov (1948a).

Chapter I of this article has an auxiliary character. Two-dimensional mani-
folds of bounded curvature are defined as metric spaces satisfying certain special
conditions. One of these conditions is that the metric of the space must be
intrinsic. In § 2 we give necessary conditions and a summary of the basic facts
relating to the theory of metric spaces with intrinsic metric. In §3 we consider
two-dimensional manifolds with intrinsic metric. Here we go into details on the
definition of the operations of cutting up and pasting such manifolds. In addi-
tion, the concept of a side of a simple arc in a two-dimensional manifold has
important significance for what follows.

In §4 we give a summary of the basic results of two-dimensional Riemannian
geometry. The main information concerning two-dimensional manifolds with
polyhedral metric is contained in § 5. In particular, for such manifolds we define
the concepts of integral curvature (or the turn) of a curve and the curvature of a
set, and we study the structure of a shortest curve on a two-dimensional poly-
hedron. Polyhedra play a special role in the theory of manifolds of bounded
curvature. By approximating an arbitrary manifold by polyhedra, in many cases
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it turns out to be possible to reduce the solution of this or that problem to the
case of polyhedra, for which it becomes a problem with respect to the formula-
tion belonging to elementary geometry. This enables us to use for the solution
of such problems arguments based on intuitive geometric representations. For
example, some extremal problems are related to a number of problems for
which such a way of action leads to success.

The definition of two-dimensional manifolds of bounded curvature is given
in §6. We regard the axiomatic definition as fundamental. The following fact
relating to classical Riemannian geometry is well known. Let T be a triangle in
a two-dimensional Riemannian manifold, that is, a domain homeomorphic to a
disc whose boundary is formed by three geodesics. We denote by «, f and y the
angles of this domain at the vertices of the triangle T and let w(T) be the integral
over T of the Gaussian curvature with respect to area. Weput 3(T)=a + § +
y — n. The quantity 6(T) is called the excess of the triangle T. As we know,
d(T) = w(T). (This statement is a special case of the Gauss-Bonnet theorem; see
§4.) If the Gaussian curvature is non-negative, then it follows that 6(T) > 0 for
any triangle.

Let U be an arbitrary domain in a two-dimensional Riemannian manifold.
For any system of pairwise non-overlapping geodesic triangles T, < U,i = 1, 2,
..., m, we have the inequality

N

o(T) < f [ (x)]* do(x),
7]

i=1

where X is the Gaussian curvature, do is the element of area, a* = max{a, 0}.
_This property is taken as the basis for constructing the axiomatics of a two-
dimensional manifold of bounded curvature. A two-dimensional manifold of
bounded curvature is defined as a certain metric space. A geodesic is a curve,
any sufficiently small arc of which is a shortest curve, that is, such that its length
is equal to the distance between the ends. The concept of a shortest curve is
naturally defined for the case of metric spaces. It is also clear what we need to
call a triangle. In order to define the concept of the excess for a triangle in an
arbitrary metric space we need to know what the angle between two curves
starting from one point is, in the given case the angle between the sides of the
triangle. The corresponding definition is given in §6. A manifold of bounded
curvature can be defined as a metric space that is a two-dimensional manifold
and is such that for any point of it there is a neighbourhood U for which the sum
of the excesses of pairwise non-overlapping geodesic triangles contained in U
does not exceed some constant C(U) < o, however these triangles are chosen.
The exact formulations are given in § 6. The final version of the axiomatics of
two-dimensional manifolds of bounded curvature is defined by the argument
that of the different equivalent forms of the axiomatics we must choose the
weakest.

One of the main results of the theory of two-dimensional manifolds of
bounded curvature is the characterization of such manifolds by means of
approximation by two-dimensional polyhedra, or, which reduces to the same
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thing, by two-dimensional Riemannian manifolds. The difficulties that must be
overcome here are connected with the fact that starting from the axioms of
a manifold of bounded curvature it is required to establish some very deep
properties of it. In § 6 of this article we give an outline of the proof of theorems
on the approximation of a two-dimensional manifold of bounded curvature
by Riemannian manifolds. The reader can find complete proofs in the mono-
graph Aleksandrov and Zalgaller (1962). The proof of the necessary conditions
is based on arguments that are a development of the ideas worked out by
Aleksandrov in the study of the intrinsic geometry of convex surfaces. The proof
of the sufficient conditions outlined in § 6 is based on arguments different from
those given in Aleksandrov and Zalgaller (1962). (For a complete account of this
proof, see Reshetnyak (1962).)

The analytic characteristic of two-dimensional manifolds of bounded curva-
ture is given in § 7. We dwell on it in more detail, bearing in mind the fact that
for specialists thinking in terms of categories of mathematical analysis it is
the shortest path towards determining what is a two-dimensional manifold of
bounded curvature.

We first consider Riemannian manifolds. In a neighbourhood of any point
of such a manifold we can introduce a coordinate system in which the line
element of the manifold is expressed by the formula

ds? = Ax, y)(dx? + dy?).

(As we said above, such a coordinate system is called isothermal.) The Gaus-
sian curvature " of a given manifold in this coordinate system admits the
representation

1
T 22(x, y)

Using known results of potential theory, we thus obtain

H(x,y) = ————41n A(x, y).

1 1
Ini(z) = - fflnl =7 H(L)A(L) dE dn + h(2).
G

Here z = (x, ), { = (&, 1), G is a domain on the plane, and h(z) is a harmonic
function. We now observe that for an arbitrary set Ec G

w(E) = JJX(C)i(C) d¢ dn
E

is the integral curvature of the corresponding set in the Riemannian manifold.
By virtue of this the integral representation for In A(z) given above can be writ-
ten in the form

InA(z) = ! ” In—dw(l) + h(z). (1)
n |z -]

G
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The last relation naturally suggests that if we wish to have generalized
Riemannian manifolds in some sense, for which the integral curvature is an
arbitrary completely additive set function, then it is sufficient in (1) to substitute
such a function for w, and then to consider the geometry defined by the cor-
responding line element ds? = A(z)(dx2 + dy?). Such a path leads to a two-
dimensional manifold of bounded curvature.

In § 7 we give only drafts of the necessary proofs. A complete account of them
can be found in Reshetnyak (1954), (1960), (1961a).

For an arbitrary two-dimensional manifold of bounded curvature there are
defined the concepts of integral curvature and area of a set, and the integral
curvature (or the turn) of a curve. In § 8 we show how all these concepts can be
defined. We rely on the analytic representation of two-dimensional manifolds of
bounded curvature described in § 7.

In § 8 we give a survey of the main results of the theory of two-dimensional
manifolds of bounded curvature. Here we are concerned first of all with a
theorem on pasting of two-dimensional manifolds of bounded curvature and
theorems on passage to the limit. The class of two-dimensional manifolds of bounded
curvature turns out to be closed with respect to passages to the limit under
significantly weaker assumptions than for the class of Riemannian manifolds.

Among the main results of the theory of manifolds of bounded curvature
there are, in particular, those that concern extremal problems for manifolds of
bounded curvature. One of the main instruments for research is the method of
cutting and pasting created by Aleksandrov. This method uses essentially the
specific character of two-dimensional manifolds of bounded curvature. The
totality of all such manifolds is invariant with respect to operations connected
with the method indicated, which we cannot say, for example, about the class of
Riemannian manifolds.

In §9 of this chapter we give a survey of further research into the theory of
two-dimensional manifolds of bounded curvature. The author has tried to ex-
press everything that is most essential in this topic.

1.2. Some Notation and Terminology. Later we assume that the concepts of
topological and metric spaces are known, like all the basic facts of general
topology. In particular, we assume that the reader knows what is a neighbour-
hood of a point in a topological space, an open or closed set, a connected
component, and so on.

Let us recall some standard notation, used in what follows.

Let A be a set in a topological space R. Then A4 denotes the closure of 4, A°
denotes the totality of all interior points of 4, and 84 = A\ A° denotes the

boundary of A.

The symbol R" denotes the n-dimensional arithmetic Euclidean space of
points x = (x,, X3, ..., X,), where x,, X, ..., X, are arbitrary real numbers. For
x = (X, X3, ---» X,) € R" we put

n
|x| = x}.
i=1
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For arbitrary points x, y € R” the distance between x and y is assumed to be
equal to |x — y|. The function p: (x, y) = |x — y| is the metric. In a well-known
way a given metric defines some topology in R". Speaking of R” as a topologlcal
space, we shall always have this topology in mind.

The space R? will be called an arithmetic Euclidean plane. The symbol C
denotes the set of complex numbers. Later we shall often identify R? and C,
regarding the point (x, y) € R? and the complex number z = x + iy as one and
the same object.

The usual Euclidean plane is denoted later by the symbol E2. As a metric
space E? is isometric to R2.

Let B(0, 1) be the open disc {(x, y)|x* + y* < 1} in the plane R?, and B(0, 1)
the closed disc {(x, y)|x* + y* < 1}.

Henceforth the statement that some set in a topological space is homeo-
morphic to a disc (a closed disc) always means that this set is homeomorphic to
the disc B(0, 1) (respectively, the disc B(0, 1).

§2. The Concept of a Space with Intrinsic Metric

2.1. The Concept of the Length of a Parametrized Curve. We assume that the
concept of a metric space and some of the simplest information relating to it are
known.

Let M be a set in which a metnc p is specified. We shall denote the metric
space obtained in this way by the symbol (M, p). This notation is appropriate in
that later there will often arise the necessity of considering different metrics on
the same set. When no misunderstanding is possible we shall simply talk about
a metric space M.

Let M be a metric space and p its metric. A parametrized curve or path in the
space M is any continuous map x: [a, b] — M of the interval [a, b] of the set of
real numbers R into M. We shall say that the path x: [a, b] - M joins the points
X, YeMif x(a) = X, x(b) =

A metric space M with metric p is called linearly connected if for any two
points X, Y of it there is a path joining these points.

A path x: [a, b] - M is called simple if it is a one-to-one map of the interval
[a, b]. A set L in the space M is called a simple arc if there is a simple path
x: [a, b] = M such that L = x([a, b]). Any simple path x: [a, b] — M satisfying
this condition is called a parametrization of the simple arc L.

A set I" in a metric space (M, p) is called a simple closed curve in M if it is a
topological image of the circle S(0, 1) on the plane R If I' is a simple closed
curve in the metric space M, then there is a path x: [a, b] - M such that x(a) =
x(b), x([a, b]) = I" and for any t,, t, € [a, b] such that ¢, # ¢, and at least one
of the points t, and ¢, is not an end of the interval [a, b] the points x(¢,) and
x(t,) are distinct.
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We shall call a set L © M a simple curve if L is closed and is either a simple
closed curve in M or a topological image of an arbitrary interval of the number
line R (which, generally speaking, may not be closed).

Suppose we are given a path x: [a, b] = M in a metric space M. We specify
arbitrarily a finite sequence o = {t,, , ..., t,,} of points of the interval [a, b]
such thatt, =a<t, <" <t,=band put

s(x,9) = 3 pLx(t-1) x(t)]

The least upper bound of s(x, «) on the totality of all sequences « satisfying
the conditions mentioned above is called the length of the path x and denoted
by the symbol s,(x; a, b) or simply s(x; a, b) when no misunderstanding is possi-
ble. (The notation s,(x; a, b) is necessary for those cases when we consider differ-
ent metrics in M and compare the lengths of the path x: [a, b] - M in these
metrics.)

We mention the following properties of length that follow immediately from
the definition.

I. Any path x: [a, b] - M in the space (M, p) satisfies the inequality

plx(a), x(b)] < s,(x; a, b).

II. Suppose we are given a path x: [a, b] - M. Then for any ¢ such that
a < ¢ < b we have

s,(x; a, b) = s5,(x; a, ¢) + 5,(x; ¢, b).

III. Suppose we are given a sequence of paths (x,: [, b] > M), v=1,2,...
and a path x,: [a, b] - M. We assume that x,(t) = lim x,(¢) for any t € [a, b].
Then =0

s,(x; a, b) < lim s,(x,; a, b).

Let L be a simple arc in the metric space (M, p). We specify arbitrarily a
parametrization x: [a, b] » M of the arc L. Then it is easy to establish that
s,(x; a, b) does not depend on the choice of parametrization x of the arc L. In
this case we shall call s,(x; a, b) the length of the simple arc L and denote it by
s,(L) or simply s(L).

Similarly, if I" is a simple closed curve and x: [a, b] - M is an arbitrary
parametrization of it, then s,(x; a, b) does not depend on the choice of this
parametrization and is denoted henceforth by s,(I") or simply s(I").

Let L be a simple arc in the metric space M, and x: [a, b] — L a parametriza-
tion of L. The points A4 = x(a) and B = x(b) are called the end-points of L. All
the remaining points of L are called interior points of it. Let X = x(t,) and
Y = x(t,), t; <t,, be two arbitrary points of the simplie arc. The set of ail points
Z = x(t), where t; <t < t,, is obviously a simple arc. We shall denote it by
[XY]. From property I of the length of a parametrized curve it follows that for
any simple arc L with end-points A and B we have

p(4, B) < s(L).
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From property II it follows that for any interior point C of the simple arc
s([4B]) = s([AC]) + s([CB])

(A and B are the end-points of L).

Let I" be a simple closed curve and A4 an arbitrary point of it. Then there is a
parametrization x: [a, b] = M of I such that x(a) = x(b) = A. Any two distinct
points X, Y of the simple closed curve I split it into two simple arcs, which we
denote by I'; and I5. From Property II of the length of a parametrized curve it
follows that

Sp(r) = sp(Fl) + sp(r2)'

In the given definitions, in principle, there can be an infinite value of the
length. If the length of the path x: [a, b] — M in the metric space (M, p) is finite,
then the given path is called rectifiable. Similarly, a simple arc (simple closed
curve) is called rectifiable if its length is finite.

Let L be a simple arc in the space (M, p). We assume that L is rectifiable.
Then it admits a parametrization x: [0, I] — M such that s is equal to the length
of the arc [x(0)x(s)] for each s € [0, [].

2.2. A Space with Intrinsic Metric. The Induced Metric. Suppose we are given
a metric space M and a set A c M. We shall say that the path x: [a, b] = M lies
in the set A (or goes into A) if x(t) € A for all ¢ € [a, b].

A set A in a metric space (M, p) is said to be metrically connected if for any
two of its points there is a rectifiable path joining these points and lying in the
set A. In particular, the space (M, p) itself is said to be metrically connected if for
any two of its points X, Y there is a rectifiable path joining these points.

A metric space (M, p) is called a space with intrinsic metric if it is linearly con-
nected and for any two of its points X, Y the quantity p(X, Y) is equal to the
greatest lower bound of lengths of arcs joining these points.

If (M, p) is a space with intrinsic metric, then M is metrically connected.

Suppose, for example, that M is the usual plane E2. For arbitrary points
X, Y € E? suppose that p(X, Y) = 0 if X = Y and that p(X, Y) is equal to the
length of the interval with end-points X and Y if X # Y. The metric defined in
this way on the plane E? is obviously intrinsic.

Similarly, if M is a sphere 2y of radius r = 1/\/K in the space E?, then taking
for p(X, Y) the length of the shortest arc of the great circle passing through the
points X and Y, we obtain an intrinsic metric on the sphere Z. At the same
time, the metric po(X, Y), where po(X, Y) is the length of the interval in E3
joining the points X and Y on the sphere 2, is not intrinsic.

The metric spaces known from analysis, namely Hilbert space and, more
generally, any normed vector space, are spaces with intrinsic metric.

Let (M, p) be a metric space and a € M an arbitrary point of M. Let us specify
arbitrarily a number r > 0. We denote the set of all points x € M such that
p(x, a) < r by the symbol B(a, r) and call it the open ball with centre a and radius
r. In certain cases considered later, instead of the word “ball” we shall say “disc”.
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The totality of all points x € M for which p(x, a) = r is denoted by the symbol

S(a, r) and called the sphere with centre a and radius . In those cases when

B(a,r) is called a disc we shall call the set S(a,r) a circle. We put B(a,r) =

B(a, r) U S(a, r). The set B(a, r) is called the closed ball with centre a and radius r.
We mention the following properties of spaces with intrinsic metric.

Theorem 2.2.1 (Aleksandrov and Zalgaller (1962)). Let (M, p) be a space with
intrinsic metric. If M is locally compact (that is, any point X € M has a neighbour-
hood whose closure is compact), then for any r > O the closed ball B(X,r) is a
compact set.

The metric space (M, p) is called complete if any sequence (x,),v = 1,2, ..., of
points of this space for which . lim  p(x,, x,) = 0 is convergent. According to
a well-known theorem of Hausdo'ruff, for any metric space (M, p) there is a com-
plete metric space (M, p) such that M = M, p(x, y) = p(x, y) for any x, y € M,
and the set M is everywhere dense in M. The space (M, p) is unique in the
following sense. If (M, p') is another metric space connected with (M, p) like
(M, p), then there is a map j: M — M’ such that j(M)= M’, j(x) = x for any
xe M, and p'[j(x), j()] = p(x, y) for any x, y e M. We shall call (M, 5) the
Hausdorff completion of the space (M, p). Henceforth the metric of the Hausdorff
completion will be denoted like the metric of the original space.

Theorem 2.2.2 (Aleksandrov and Zalgaller (1962)). The Hausdorff completion
of a metric space with intrinsic metric is also a space with intrinsic metric.

We mention here a general scheme for constructing the metric. Suppose we
are given a metric space (M, p), and let 4 be a connected set of this space. The
set A with metric p is itself a metric space — a subspace of (M, p). Even if (M, p)
is a space with intrinsic metric, the metric space (4, p) may not be of this kind.
Let us define a metric in the set 4, which we denote by p ,. Namely, for arbitrary
points X, Y € A we denote by p,(X, Y) the greatest lower bound of lengths of
paths in the space (M, p) joining the points X and Y and lying in the set 4.

Theorem 2.2.3. If A = M is a metrically connected set of the space (M, p),
then the function (X, Y) = p (X, Y) of a pair of points of A, defined in the way
indicated above, is a metric on the set A. This metric is intrinsic and for any path
x: [a, b] - M lying in the set A we have s,(x; a, b) = s, (x; a, b).

The metric p, is called the induced intrinsic metric on the set A of the metric
space (M, p).

Suppose, for example, that M is the three-dimensional Euclidean space E>,
and that the set A4 is the sphere S(a, R) in this space. It is easy to show that in
the given case the quantity p (X, Y) is equal to the length of the shortest arc of
the great circle passing through the points X and Y, that is, the induced intrinsic
metric on the sphere S(a, R) coincides with the metric defined above.

Let L be a rectifiable simple arc in the metric space (M, p). Then for arbitrary
points X, Y ¢ L the quantity p,(X, Y) is equal to the length of the arc [X Y] of
the curve L. We assume that I is a rectifiable simple closed curve in the metric



