

国 家 地 理 科学探索丛书

LIFE SCIENCE

生命科学

You and Your Genes 你和你的基因

REBECCA L. JOHNSON (美) 著

外语教学与研究出版社

FOREIGN LANGUAGE TEACHING AND RESEARCH PRESS

(京)新登字 155 号

京权图字: 01-2004-4814

图书在版编目(CIP)数据

生命科学 你和你的基因/(美)约翰逊(Johnson, R. L.)著;鲜瑜注.一北京:外语教学与研究出版社,2004.8

(国家地理科学探索丛书·自然科学系列:英文注释版) ISBN 7-5600-4252-X

I. 生… Ⅱ. ①约… ②鲜… Ⅲ. 英语一语言读物,基因 Ⅳ. H319.4:Q

中国版本图书馆 CIP 数据核字(2004)第 078614 号

Copyright © (2002) National Geographic Society. All rights reserved.

Copyright © (2004) (in English-Chinese bilingual) National Geographic Society. All rights reserved. 国家地理科学探索丛书(英文注释版主题合订版)由美国北极星传媒有限公司策划并授权出版。

仅限中国大陆地区销售。不得在香港、澳门、台湾地区销售,不得出口。

生命科学

你和你的基因

REBECCA L. JOHNSON (美) 著

鲜 瑜 注

责任编辑: 余 军

出版发行: 外语教学与研究出版社

社 址: 北京市西三环北路 19 号 (100089)

网址: http://www.fltrp.com 印刷: 北京画中画印刷有限公司

开 本: 740×975 1/16

印 张: 2

版 次: 2004年8月第1版 2004年8月第1次印刷

书 号: ISBN 7-5600-4252-X/G·2184

全套定价: 29.50元

如有印刷、装订质量问题出版社负责调换

制售盗版必究 举报查实奖励

版权保护办公室举报电话: (010)88817519

致读者

果你希望读到地道的英语,在享受英语阅读乐趣的同时又能增长知识、开拓视野,这套由外语教学与研究出版社与美国国家地理学会合作出版的"国家地理科学探索丛书"正是你的选择。

"国家地理科学探索丛书"分为9个系列,内容涉及自然 科学和社会研究,秉承《国家地理》杂志图文并茂的特色,书 中配有大量精彩的图片,文字通俗易懂、深入浅出,将科学 性和趣味性完美结合,称得上是一套精致的小百科。

这套丛书以英文注释形式出版,注释由国内重点中学教学经验丰富的英语教师完成。特别值得推荐的是本套丛书在提高青少年读者英语阅读能力的同时,还注重培养他们的科学探索精神、动手能力、逻辑思维能力和沟通能力。

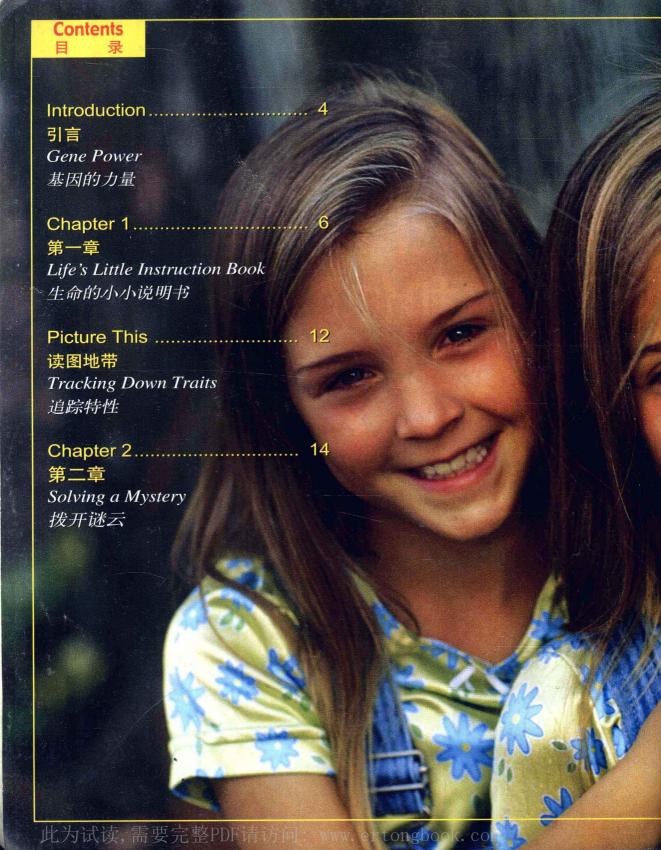
本丛书既适合学生自学,又可用于课堂教学。丛书各个系列均配有一本教师用书,内容包括背景知识介绍、技能训练提示、评估测试、多项选择题及答案等详尽的教学指导,是对课堂教学的极好补充。

本套丛书是适合中学生及英语爱好者的知识读物。

科学探索丛书

LESGIENC

生命科学


Yourand Your Genes 你和你的基因

REBECCA L. JOHNSON (美) 著 鲜瑜 注

外语教学与研究出版社

COREIGN LANGUAGE TEACHING AND RESEARCH PRESS

北京 BEIJING

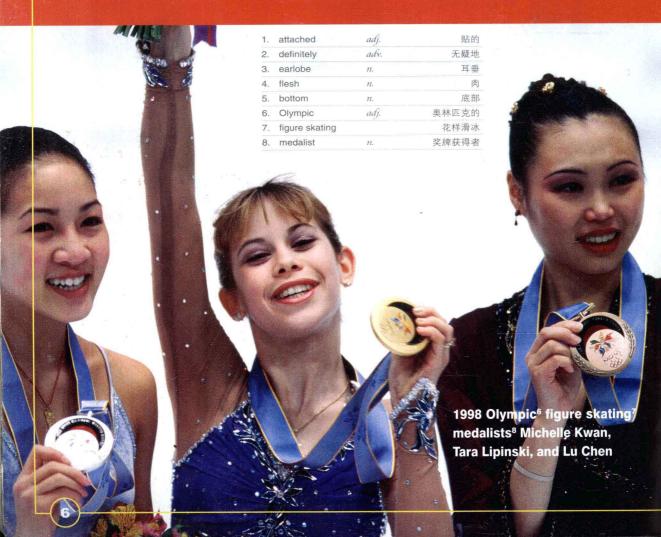
Chapter 3
Thinking Like a Scientist 26 像科学家一样思考
Hands-on Science
Science Notebook30 科学备忘录
Index31 索引

Animal watching at the zoo is a great way to spend an afternoon. There's a mother tiger and her brand new¹ cubs². Wait a minute—one of the cubs has white instead of orange fur³. How can that be?

n every other way⁴, the white tiger looks like tigers are supposed to look. It has black stripes⁵, big paws⁶ with sharp claws⁷, and a long tail⁸. So what's the secret to its snow-colored fur? Its fur is white, rather than⁹ orange, because of a difference in a single¹⁰ gene¹¹.

Genes are tiny¹² structures¹³ inside cells¹⁴ that control the way cells grow and change. Genes are like a set of instructions for building living organisms¹⁵ and keeping them functioning¹⁶ properly¹⁷. Whether it's a tiger or a toadstool¹⁸, the cells of every living thing contain¹⁹ genes. And that includes²⁰ you. Your genes are mostly responsible²¹ for how you look, from the color of your hair to the fact that you don't have a tail. It's true that your environment²² influences²³ how you look and act. But genes play a big role²⁴.

Genes are tiny. Yet they are powerful²⁵. They must be, if just one gene can make the difference between an orange tiger and a white one. In this book you'll explore²⁶ what we have learned about genes. You'll also learn what scientists are still trying to find out about these mysterious²⁷ little structures in our cells.


		脚	
	rather than		
11			基因
	tiny		
	structure		结构
			细胞

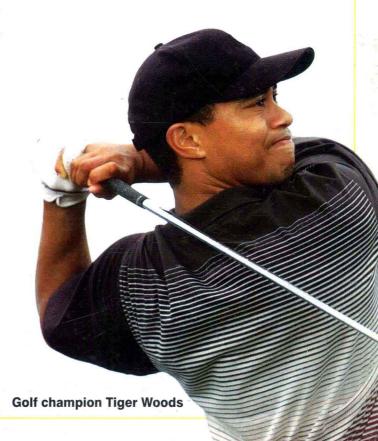
		生物、有机体
		运行。行使职责
	adv	适当地 正确地
	n	
		包含
21. responsible		有责任的 应负责的
22. environment		
		影响
		强大的一有力的

Life's Little Instruction Book

生命的小小说明书

Tiger Woods's are attached¹. Tara Lipinski's definitely² are not. What are we talking about? Earlobes³—those soft little bits of flesh⁴ at the bottom⁵ of a person's ears.

otice how Tiger's earlobes are attached to the side of his head. But Tara's are detached. Her earlobes hang free. Which type of earlobe do you have—attached or detached? Grab² a mirror and check it out³.


Like the color of a tiger's fur, the shape of your earlobes is caused by a difference in a single gene. Earlobe shape is a human characteristic⁴, or trait⁵. We each have thousands of genes that control thousands of different traits. The instructions for some traits, like earlobe shape, are found in just one gene. Other traits are the result of many genes acting together.

Has anyone ever said to you, "You have your mother's smile" or "your father's nose"? You have many traits that are very similar⁶ to your parents' traits because you inherited⁷ your genes from them. Half of your genes came from your mother, and half came from your father. Those genes all came together in the cell that eventually developed into you.

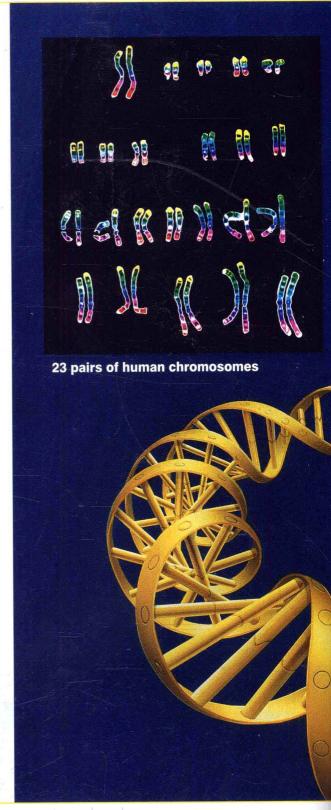
The set of genes that you inherited—your own personal⁹ set of instructions for life—are unique¹⁰. Unless you have an identical twin¹¹, there is no one else on Earth exactly¹² like you.

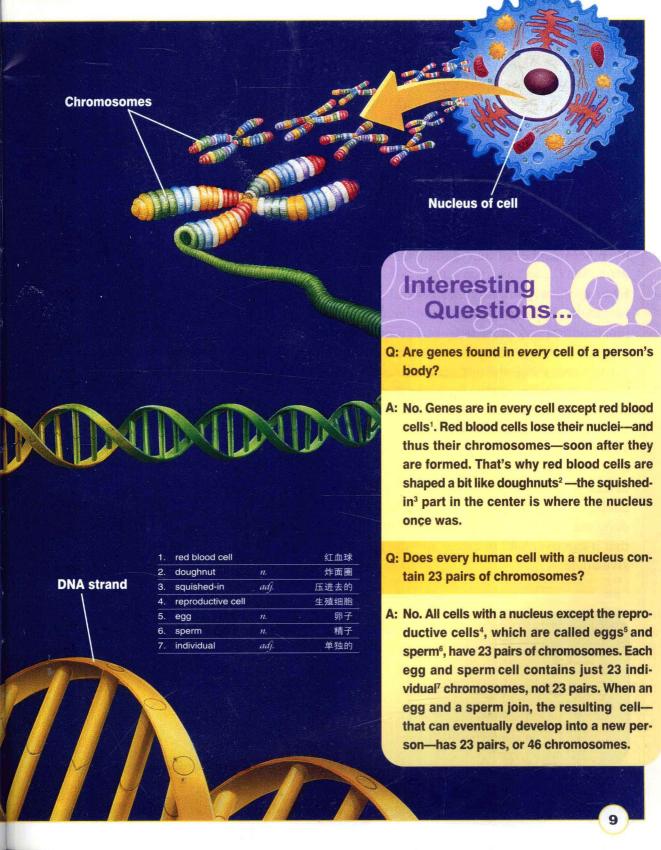
Even though identical twins are the same genetically¹³, why might they look somewhat¹¹ different from each other?

1.	detached	adj.		分开的
2.	grab	ν.		抓
3.	checkout			检查:验证
4.	characteristic	11.		特征
5.	trait	n.		特征,特性
6.	similar	adj.		相似的: 类似的
7.	inherit	ν.		继承:遗传
8.	eventually	adv.		最后
9.	personal	adj.		个人的
10.	unique	adj.		惟一的,独特的
11.	identical twin			同卵双胞胎
12.	exactly	adv.		完全地
13.	genetically	activ.		遗传地
14.	somewhat	adv.	×	稍微:有点

In Search of Genes

Where are these genes that control so much of what makes you *you*? They're inside almost every cell in your body.


If you looked at one of your cells—say, a skin² cell from the tip³ of your finger—under a microscope⁴, you'd notice a dark blob⁵ near the center. That's the cell's nucleus⁶. Inside the nucleus are long strands⁷ that are coiled⁸ up like tiny springs⁹. These strands are your chromosomes¹⁰.


There are 46 chromosomes, or 23 pairs, in each cell body. One member of each pair came from your mother. The other member of each pair came from your father.

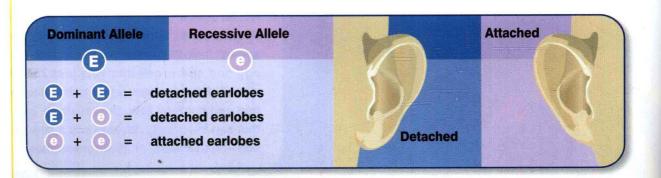
Each of your chromosomes is made up of a substance¹¹ called DNA, which stands for deoxyribonucleic acid¹². Scientists know that DNA looks a bit like a spiral staircase¹³.

Now, at last, we've found the location¹⁴ of the genes. A gene is a particular length of DNA, a specific section¹⁵ of the spiral staircase that coils into chromosomes that lie in the nucleus deep within each cell.

1.	in search of			寻找
2.	skin		11.	皮肤
3.	tip		11.	顶端: 梢
4.	microscope		11.	显微镜
5.	blob		77.	一滴:一点
6.	nucleus		-77.	(pl. nuclei)核
7.	strand		11.	线:绳
8.	coil		ν .	卷: 盘绕
9.	spring		11.	弹簧
10.	chromosome		11.	染色体
11.	substance		11.	物质
12.	deoxyribonucleic acid	(DNA)		脱氧核糖核酸
13.	spiral staircase			螺旋梯
14.	location	4	n.	位置
15.	section		17.	部分

Working in Pairs

Remember the examples of tiger fur color and earlobe shape? A single gene controls each of these traits. Actually¹, they're controlled by a single pair of genes. That's because people (and tigers) inherit pairs of chromosomes, and therefore² pairs of genes, from their parents. This means that for each gene on one member of a chromosome pair, there's a similar gene in the same place on the other member of that chromosome pair.


How do these pairs of genes control a trait like earlobe shape? Well, the two genes for this trait that you inherited—one from each of your parents—may be different. Most genes come in slightly³ different forms, called alleles⁴. Different alleles are instructions for slightly different versions⁵ of the same trait.

Two alleles are involved in⁶ earlobe shape. One is the dominant⁷ allele, and it calls for detached earlobes. The other is the recessive⁸ allele, which calls for attached earlobes. The dominant allele gets its name from the fact that it can override⁹ or cover up¹⁰ the recessive allele.

How does this work in you and other people? If you inherited two dominant alleles for earlobe shape—one from each of your parents—you have detached earlobes. If you inherited one dominant allele and one recessive allele, you still have detached earlobes because the dominant allele overrode the recessive one. However, if you inherited two copies of the recessive form of the gene for earlobe shape, your lobes¹¹ are attached.

What traits have you inherited from your parents?

actually	adv.	实际上
therefore	adv.	因此
slightly	adv.	轻微地
allele	n.	等位基因
version	n.	样式:形式
involve in		涉及
dominant	adj.	显性的
recessive	adj.	隐性的
override	ν.	使无效; 压倒
cover up		掩盖
lobe	n.	圆形突出部(尤指耳垂)
	therefore slightly allele version involve in dominant	therefore adv. slightly adv. allele n. version n. involve in dominant adj. recessive adj. override v. cover up

Complicating¹ Factors

If all traits were controlled by single pairs of genes, then genetics², the study of how traits are inherited, would be easy. However, it turns out to be very complicated.

Many traits are controlled by more than a single pair of genes. The color of your eyes, for example, is the result of many pairs of genes working together in not very clear-cut³ ways. This fact makes it more difficult to figure out⁴ the job of each gene.

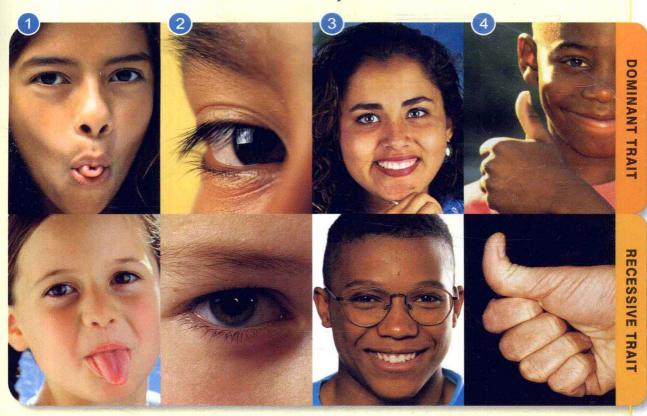
It's true that genes play a major⁵ role in determining⁶ how an organism looks and functions. However, genes aren't the only influence. Environmental factors shape living things too.

Take Siamese cats⁷ for instance⁸. Genes contain instructions for the color of their fur. Yet temperature⁹ also can affect¹⁰ their fur color. Where a Siamese cat's body is warmest, its fur is light in color. On slightly cooler parts

of the cat, like its ears, paws, nose, and tail, the fur grows in darker.

Now think about your own body. Your genes are responsible for the fact that you have muscles¹¹ in your arms and legs. However, you can make your muscles bigger and stronger by exercising. Things you do and experiences¹² you have—together with instructions given by your genes—shape you into a unique person.

1.	complicate	ν.	使复杂
2.	genetics	n.	遗传学
3.	clear-cut	adj.	明确的
4.	figure out		断定: 领会到
5.	major	adj.	主要的
6.	determine	ν.	决定
7.	Siamese cat		暹罗猫
8.	takefor instance		以为例
9.	temperature	n.	温度
10.	affect	ν.	影响
11.	muscle	n.	1 肌肉
12.	experience	17.	经历



Tracking Down Traits

These two pages show human traits that geneticists¹ know are controlled by a single pair of genes. In each set of photos below, the top photo shows the trait that results if a person inherits one or two of the dominant alleles for that trait. Which form of each of these traits do you have?

(注释见第12页)

1 Tongue-rolling²

The student above is able to roll her tongue because she inherited one or two copies of the dominant allele for this trait. If you don't have the dominant allele, you can't do the roll.

2 Long Eyelashes³

The length⁴ of your eyelashes is another gene-controlled trait. Cosmetics⁵ can make eyelashes look longer, but their effect⁶ is temporary⁷.

3 Widow's Peak®

A widow's peak or point in your hairline is another distinctive⁹ genetic trait. If you have a widow's peak, do other members of your family have one too?

4 Hitchhiker's¹⁰ Thumb¹¹

A single pair of genes controls whether or not you can bend¹² the top joint of your thumb at a backward¹³ angle¹⁴ to the bottom joint.

Solving a Mystery

拨开谜云

Sherlock Holmes¹, the famous English detective², pulled out his magnifying glass³. He peered at ⁴the wall through the glass. Aha! A single fingerprint⁵. It was the clue⁶ that would solve the case!

