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Preface to the Classics Edition

We are delighted that SIAM is republishing our original 1983 book after what many
in the optimization field have regarded as “premature termination” by the previous
publisher. At 12 years of age, the book may be a little young to be a “classic,” but since
its publication it has been well received in the numerical computation community. We
are very glad that it will continue to be available for use in teaching, research, and
applications. )

We set out to write this book in the late 1970s because we felt that the basic techniques
for solving small to medium sized nonlinear equations and unconstrained optimization
problems had matured and converged to the point where they would remain relatively
stable. Fortunately, the intervening years have confirmed this belief. The material that
constitutes most of this book—the discussion of Newton-based methods, globally
convergent line search and trust region methods, and secant (quasi-Newton) methods
for nonlinear equations, unconstrained optimization, and nonlinear least squares—
continues to represent the basis for algorithms and analysis in this field. On the teaching
side, a course centered around Chapters 4 to 9 forms a basic, in-depth introduction to
the solution of nonlinear equations and unconstrained optimization problems. For
researchers or users of optimization software, these chapters give the foundations of
methods and software for solving small to medium-sized problems of these types.

We have not revised the 1983 book, aside from correcting all the typographical errors
that we know of. (In this regard, we especially thank Dr. Oleg Burdakov who, in the
process of translating the book for the Russian edition published by Mir in 1988, found
numerous typographical errors.) A main reason for not revising the book at this time
is that it would have delayed its republication substantially. A second reason is that there
appear to be relatively few places where the book needs updating. But inevitably there
are some. In our opinion, the main developments in the solution of small to medium-
sized unconstrained optimization and nonlinear equations problems since the publication
of this book, which a current treatment should include, are

1. improved algorithms and analysis for trust region methods
for unconstrained optimization in the case when the Hessian
~ matrix is indefinite [1, 2] and

2. improved global convergence analysis for secant
(quasi-Newton) methods [3].

A third, more recent development is the field of automatic (or computational)
differentiation [4]. Although it is not yet fully mature, it is clear that this development
is increasing the availability of analytic gradients and Jacobians and therefore reducing the
cases where finite difference approximations to these derivatives are needed. A fourth,
more minor but still significant development is a new, more stable modified Cholesky
factorization method [5, 6). Far more progress has been made in the solution of large
nonlinear equations and unconstrained optimization problems. This includes the

xi



xii Preface to the Classics Edition

development or improvement of conjugate gradient, truncated-Newton, Krylov-subspace,
and limited-memory methods. Treating these fully would go beyond the scope of this
book even if it were revised, and fortunately some excellent new references are emerging,
including [7]. Another important topic that is related to but not within the scope of this
book is that of new derivative-free methods for unconstrained optimization [8).

The appendix of this book has had an impact on software in this field. The IMSL library
created their unconstrained optimization code from this appendix, and the UNCMIN
software [9] created in conjunction with this appendix has been and continues to be a
widely used package for solving unconstrained optimization problems. This software
also has been included in a number of software packages and other books. The UNCMIN
software continues to be available from the second author (bobby@cs.colorado.édu).

Finally, one of the most important developments in our lives since 1983 has been the
emergence of a new generation: a granddaughter for one of us, a daughter and son for
the other. This new edition is dedicated to them in recognition of the immense joy they
have brought to our lives and with all our hopes and wishes for the lives that lay ahead
for them.

[1] J. J. Moré and D. C. Sorensen, Computing a trust region step, SIAM J. Sci.
Statist. Comput., 4 (1983), pp. 553-572.

" [2] G. A. Shultz, R. B. Schnabel, and R. H. Byrd, A family of trust region based
algorithms for unconstrained minimization with strong global convergence
properties, SIAM J. Numer. Anal., 22 (1985), pp. 47-617.

(3] R. H. Byrd, J. Nocedal, and Y. Yuan, Global convergence of a class of quasi-
Newton methods on convex problems, SIAM ). Numer. Anal,, 24 (1987), pp.
1171-1189.

[4] A. Griewank and G. F. Corliss, eds., Automatic Differentiation of Algorithms:
Theory, Implementation, and Application, Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1991.

[5] R. B. Schnabel and E. Eskow, A new modified Cholesky factorization, SIAM ].
Sci. Statist. Comput., 11 (1990), pp. 1136-1158.

[6] E. Eskow and R. B. Schnabel, Software for a new modified Cholesky
factorization, ACM Trans. Math. Software, 17 (1991), pp. 306-312.

(7] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, Society for
Industrial and Applied Mathematics, Philadelphia, PA, 1995.

[8] J. E. Dennis, Jr. and V. Torczon, Direct search methods on parallel computers,
SIAM J. Optim., 1 (1991), pp. 448-474.

[9] R. B. Schnabel, J. E. Koontz, and B. E. Weiss, A modular system of algorithms
for unconstrained minimization, ACM Trans. Math. Software, 11 (1985), pp. 419-440.



Preface

This book offers a careful introduction, at a low level of mathematical and
computational sophistication, to the numerical solution of problems in un-
constrained optimization and systems of nonlinear equations. We have written
it, beginning in 1977, because we feel that the algorithms and theory for small-
to-medium-size problems in this field have reached a mature state, and that a
comprehensive reference will be useful. The book is suitable for graduate or
upper-level undergraduate courses, but also for self-study by scientists, en-
gineers, and others who have a practical interest in such problems.

The minimal background required for this book would be calculus and
linear algebra. The reader should have been at least exposed to multivariable
calculus, but the necessary information is surveyed thoroughly in Chapter 4.
Numerical linear algebra or an elementary numerical methods course would
be helpful; the material we use is covered briefly in Section 1.3 and Chapter 3.

The algorithms covered here are all based on Newton’s method. They
are often called Newton-like, but we prefer the term quasi-Newton. Unfortu-
nately, this term is used by specialists for the subclass of these methods co-
vered in our Chapters 8 and 9. Because this subclass consists of sensible
multidimensional generalizations of the secant method, we prefer to call them
secant methods. Particular secant methods are usually known by the proper
names of their discoverers, and we have included these servings of alphabet
" soup, but we have tried to suggest other descriptive names commensurate with
their place in the overall scheme of our presentation.

The heart of the book is the material on computational methods for
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multidimensional unconstrained optimization and nonlinear equation prob-
lems covered in Chapters 5 through 9. Chapter 1 is introductory and will be
more useful for students in pure mathematics and computer science than for
readers with some experience in ‘scientific applications. Chapter 2, which
covers the one-dimensional version of our problems, is an overview of our
approach to the subject and is essential motivation. Chapter 3 can be omitted
by readers who have studied numerical linear algebra, and Chapter 4 can be
omitted by those who have a good background in multivariable calculus.
Chapter 10 gives a fairly complete treatment of algorithms for nonlinear least
squares, an important type of unconstrained optimization problem that, owing
to its special structure, is solved by special methods. It draws heavily on the
chapters that precede it. Chapter 11 indicates some research directions in
which the field is headed; portions of it are more difficult than the preceding
material.

We have used the book for undergraduate and graduate courses. At the
lower level, Chapters 1 through 9 make a solid, useful course; at the graduate
level the whole book can be covered. With Chapters 1, 3, and 4 as remedial
reading, the course takes about one quarter. The remainder of a semester is
easily filled with these chapters or other material we omitted.

The most important omitted material consists of methods not related to
Newton’s method for solving unconstrained minimization and nonlinear equa-
tion problems. Most of them are important only in special cases. The Nelder-
Meade simplex algorithm [see, e.g., Avriel (1976)], an effective algorithm for
problems with less than five variables, can be covered in an hour. Conjugate
direction methods [see, e.g., Gill, Murray, and Wright (1981)] properly belong
in a numerical linear algebra course, but because of their low storage require-
ments they are useful for optimization problems with very large numbers of
variables. They can be covered usefully in two hours and completely in two
weeks.

The omission we struggled most with is that of the Brown-Brent meth-
ods. These methods are conceptually elegant and startlingly effective for partly
linear problems with good starting points. In their current form they are not
competitive for general-purpose use, but unlike the simplex or conjugate-
direction algorithms, they would not be covered elsewhere. This omission can
be remedied in one or two lectures, if proofs are left out [see, e.g., Dennis
(1977)]. The final important omission is that of the continuation or homotopy-
based methods, which enjoyed a revival during the seventies. These elegant
ideas can be effective as a last resort for the very hardest problems but are not
yet competitive for most problems. The excellent survey by Allgower and
Georg (1980) requires at least two weeks.

We have provided many exercises; many of them further develop ideas
that are alluded to briefly in the text. The large appendix (by Schnabel) is
intended to provide both a mechanism for class projects and an important
reference for readers who wish to understand the details of the algorithms and
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perhaps to develop their own versions. The reader is encouraged to read the
preface to the appendix at an early stage.

Several problems of terminology and notation were particularly trouble-
some. We have already mentioned the confusion over the terms “quasi-
Newton” and “secant methods.” In addition, we use the term “unconstrained
optimization” in the title but “unconstrained minimization” in the text, since
technically we consider only minimization. For maximization, turn the prob-
lems upside-down. The important term “global” has several interpretations,
and we try to explain ours clearly in Section 1.1. Finally, a major notational
problem was how to differentiate between the ith component of an n-vector x,
a scalar usually denoted by x;, and the ith iteration in a sequence of such x’s, a
vector also usually denoted x;. After several false starts, we decided to allow
this conflicting notation, since the intended meaning is always clear from the
context; in fact, the notation is rarely used in both ways in any single section
of the text.

We wanted to keep this book as short and inexpensive as possible with-
out slighting the exposition. Thus, we have edited some proofs and topics in a
merciless fashion. We have tried to use a notion of rigor consistent with good
taste but subservient to insight, and to include proofs that give insight while
omitting those that merely substantiate results. We expect more criticism for
omissions than for inclusions, but as every teacher knows, the most difficult
but important part in planning a course is deciding what to leave out.

We sincerely thank Idalia Cuellar, Arlene Hunter, and Dolores Pendel
for typing the numerous drafts, and our students for their specific identifi-
cation of unclear passages. David Gay, Virginia Klema, Homer Walker, Pete
Stewart, and Layne Watson used drafts of the book in courses at MIT,
Lawrence Livermore Laboratory, University of Houston, University of New
Mexico, University of Maryland, and VPI, and made helpful suggestions.
Trond Steihaug and Mike Todd read and commented helpfully on portions of
the text.

Rice University J. E. Dennis, Jr.

University of Colorado at Boulder Robert B. Schnabel
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Before we begin, a program note

The first four chapters of this book contain the background material
and motivation for the study of multivariable nonlinear problems. In
Chapter 1 we introduce the problems we will be considering. Chapter
2 then develops some algorithms for nonlinear problems in just one
variable. By developing these algorithms in a way that introduces the
basic philosophy of all the nonlinear algorithms to be considered in
this book, we hope to provide an accessible and solid foundation for
the study of multivariable nonlinear problems. Chapters 3 and 4 con-
tain the background material in numerical linear algebra and multi-
variable calculus required to extend our consideration to problems in
more than one variable.




Introduction

This book discusses the methods, algorithms, and analysis involved in the
computational solution of three important nonlinear problems: solving sys-
tems of nonlinear equations, unconstrained minimization of a nonlinear func-
tional, and parameter selection by nonlinear least squares. Section 1.1 intro-
duces these problems and the assumptions we will make about them. Section
1.2 gives some examples of nonlinear problems and discusses some typical
characteristics of problems encountered in practice; the reader already familiar
with the problem area may wish to skip it. Section 1.3 summarizes the features
of finite-precision computer arithmetic that the reader will need to know in
order to understand the computer-dependent considerations of the algorithms
in the text.

1.1 PROBLEMS TO BE CONSIDERED

This book discusses three nonlinear problems in real variables that arise often
in practice. They are mathematically equivalent under fairly reasonable hy-
potheses, but we will not treat them all with the same algorithm. Instead we
will show how the best current algorithms seek to exploit the structure of each
problem.

The simultaneous nonlinear equations problem (henceforth called “nonlin-
ear equations”) is the most basic of the three and has the least exploitable
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structure. It is
Given F: R*"—R",
find x, € R" for which F(x,)=0€¢R" (1.1.1)

where R" denotes n-dimensional Euclidean space. Of course, (1.1.1) is just the
standard way of denoting a system of n nonlinear equations in n unknowns,
with the convention that right-hand side of each equation is zero. An example

1S .
xt+x3+47
F(x,, x;) = ! 2 ’

xl+x2+l

which has F(x,) = 0 for x, = (1, —2)".
Certainly the x,, that solves (1.1.1) would be a minimizer of

S (i)
i=1

where f;(x) denotes the ith component function of F. This is a special case of
the unconstrained minimization problem

Given f: R"—R
find x, € R" for which f(x,) <f(x) for every x € R", (1.1.2)

which is the second problem we will consider. Usually (1.1.2) is abbreviated to

min f: R" —R. (1.1.3)
xeRn
An example is
min f(xy, X3, X3) = (x; — 3 + (x2 + 5)* + (x; — 8)?,
xeRn

which has the solution x, = (3, —35, 8)".
In some applications, one is interested in solving a constrained version of
(1.1.3),
min f: R"—R, (1.1.4)
‘ xe Q<R
where Q is a closed connected region. If the solution to (1.1.4) lies in the
interior of €, then (1.1.4) can still be viewed as an unconstrained minimization
problem. However, if x, is a boundary point of Q, then the minimization of f
over Q becomes a constrained minimization problem. We will not consider the
constrained problem because less is known about how it should be solved, and
there is plenty to occupy us in considering unconstrained problems. Fur-
thermore, the techniques for solving unconstrained problems are the founda-
tion for constrained-problem algorithms. In fact, many attempts to solve
constrained problems boil down to either solving a related unconstrained
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minimization problem whose solution X is at least very near the solution x, of
the constrained problem, or to finding a nonlinear system of equations whose
simultaneous solution is the same x,,. Finally, a large percentage of the prob-
lems that we have met in practice are either unconstrained or else constrained
in a very trivial way—for example, every component of x might have to be
nonnegative. :

The third problem that we consider is also a special case of un-
constrained minimization, but owing to its importance and its special structure
it is a research area all by itself. This is the nonlinear least-squares problem:

Given R: R"— R™, mZ>n,

find x, e R" for which Y (r;(x))* is minimized, (1.1.5)
i=1
where r;(x) denotes the ith component function of R. Problem (1.1.5) is most
frequently met within the context of curve fitting, but it can arise whenever a
nonlinear system has more nonlinear requirements than degrees of freedom.

We are concerned exclusively with the very common case when the
nonlinear functions F, f, or R are at least once, twice, or twice continuously
differentiable, respectively. We do not necessarily assume that the derivatives
are analytically available, only that the functions are sufficiently smooth. For
further comments on the typical size and other characteristics of nonlinear
problems being solved today, see Section 1.2.

The typical scenario in the numerical solution of a nonlinear problem is
that the user is asked to provide a subroutine to evaluate the problem func-
tion(s), and a starting point x, that is a crude approximation to the solution
x, . If they are readily available, the user is asked to provide first and perhaps
second derivatives. Our emphasis in this book is on the most common diffi-
culties encountered in solving problems in this framework: (1) what to do if
the starting guess X, is not close to the solution x,, (“global method”) and how
to combine this effectively with a method that is used in the vicinity of the
answer (“local method”); (2) what to do if analytic derivatives are not avail-
able; and (3) the construction of algorithms that will be efficient if evaluation
of the problem function(s) is expensive. (It often is, sometimes dramatically so.)
We discuss the basic methods and supply details of the algorithms that are
currently considered the best ones for solving such problems. We also give the
analysis that we believe is relevant to understanding these methods and ex-
tending or improving upon them in the future. In particular, we try to identify
and emphasize the ideas and techniques that have evolved as the central ones
in this field. We feel that the field has jelled to a point where these techniques
are identifiable, and while some improvement is still likely, one no longer
expects new algorithms to result in quantum jumps over the best being used
today.

The techniques for solving the nonlinear equations and unconstrained
minimization problems are closely related. Most of the book is concerned with
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these two problems. The nonlinear least-squares problem is just a special case
of unconstrained minimization, but one can modify unconstrained mini-
mization techniques to take special advantage of the structure of the nonlinear
least-squares problem and produce better algorithms for it. Thus Chapter 10 is
really an extensive worked-out example that illustrates how to apply and
extend the preceding portion of the book.

One problem that we do not address in this book is finding the “global
minimizer” of a nonlinear functional—that is, the absolute lowest point of
f(x) in the case when there are many distinct local minimizers, solutions to
(1.1.2) in open connected regions of R". This is a very difficult problem that is
not nearly as extensively studied or as successfully solved as the problems we
consider; two collections of papers on the subject are Dixon and Szegd (1975,
1978). Throughout this book we will use the word “global,” as in “global
method” or “globally convergent algorithm” to denote a method that is de-
signed to converge to a local minimizer of a nonlinear functional or some
solution of a system of nonlinear equations, from almost any starting point. It
might be appropriate to call such methods local or locally convergent, but
these descriptions are already reserved by tradition for another usage. Any
method that is guaranteed to converge from every starting point is probably
too inefficient for general use [see Allgower and Georg (1980)].

1.2 CHARACTERISTICS OF ““REAL-WORLD"
PROBLEMS

In this section we attempt to provide some feeling for nonlinear problems
encountered in practice. First we give three real examples of nonlinear pro-
blems and some considerations involved in setting them up as numerical prob-
lems. Then we make some remarks on the size, expense, and other character-
istics of nonlinear problems encountered in general.

One difficulty with discussing sample problems is that the background
and algebraic description of problems in this field is rarely simple. Although
this makes consulting work interesting, it is of no help in the introductory
chapter of a numerical analysis book. Therefore we will simplify our examples
when possible.

The simplest nonlinear problems are those in one variable. For example,
a scientist may wish to determine the molecular configuration of a certain
compound. The researcher derives an equation f(x) giving the potential energy
of a possible configuration as a function of the tangent x of the angle between
its two components. Then, since nature will cause the molecule to assume the
configuration with the minimum potential energy, it is desirable to find the x
for which f(x) is minimized. This is a minimization problem in the single
variable x. It is likely to be highly nonlinear, owing to the physics of the
function f. It truly is unconstrained, since x can take any real value. Since the



