Ty

(SR3ZhR - SB2hR)

Agile Software
Development :ion

The Cooperative Game

Agile Software Development Series

BN R

(SR3hR - SB2hiR)

1
il
\d

English reprint edition copyright © 2007 by Pearson Education Asia Limited and
China Machine Press.

Original English language title: Agile Software Development ; The Cooperative Game,
Second Edition (ISBN 0-321-48275-1) by Alistair Cockburn, Copyright © 2007 by Pearson
Education, Inc.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc.,
publishing as Addison-Wesley.

For sale and distribution in the People’s Republic of China exclusively (except
Taiwan, Hong Kong SAR and Macau SAR).

A5 BLEN AR By Pearson Education Asia Ltd. &ﬁﬂbﬁlﬂﬂi#ﬁﬁ:ﬁitﬂﬂﬁ *
SHIREBEET, FELULERAFREHRDEFBRE.

R TFHEARLIMESAN (FEEFEFE,. RNUFITRENPES EHX)
HERST

ZS%itﬁﬂE’ﬁPearson Education (¥fAFHHRER) BB HRE, THREER
B,

KRR, Bk,
FHm@mE LR RARNE SR

FHIFRIZE. B=$. 01-2007-2431
BHERSB (CIP) ¥iE

BHERMEF R (FIRR - B20R) / (E) FHMAR (Cockbumn, A.) #F. —Jbm: PR
TokHihist, 2007.6

(BUFIRASHE)

HHE . Agile Software Development; The Cooperative Game, Second Edition

ISBN 978-7-111-21457-1

L& 0L fb I SAFER-FL IV. TP31L.52
T ERA BHIECIPRIEET (2007) 550646625

PLBE Tl RS (bt mRE &5 EA#225 4RBAF 100037)
RitHE: Bins

AL ECALHUR BRI - FreBEILR R R T
20074:6 A 55 11K 58 1 R ENRY

170mm x 242mm -+ 31.25E[13

EHr: 59.007C

a4, mAEAEE, KR, 6H, aFtET5RESR
A 4. (010) 68326294

BIREBNS

XEENLURE, FREKNBEEMTIERE D R ERITE, ﬁﬁ?‘i‘?ﬁﬁ?&?ﬂ
ZHAANGIRRE T 2N, hERXENES, EEXEEREBBERRRENAT
LAERAKEH., MEARE, ERLLAERP, XENF LR SEFTFERBETD
&4, HWENERR TSR LA RS ORI BRI B Rrg:, Bk ENLHK
BER, NMUBENTHIRATER, TRETEROES, REBEERRE, X8aEE
A, KOMEHRAKEEANKATER.

T4, F2RERRENHzIT, REMTENLSLERRJE, FELAFBT
kAZEY, XA HENLHERMHBRAMERIE, LAk, T LEMORR
FHERERMLEAZXERE, EREGLERRERMAZEE. MEARBRPHIART,
XEZRFEREHHENRZZERILTEEREHLSHBEMNETFLEGELEZ
b, Bk, SIE—#EIMEF T EILEMM B RETEILETEF LN ERERRAE
FHEM, e SHFER. BIEEENHRE—RAENLHZE,

PR T iRt ERE X EEARARRFAE IR “HWREAKTRS”. H1998
£, FEATRBLEESARET#EE. BFEEIMBEEM L. 23 JLENTH
¥, #fi15Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan KaufmannZ{H5§
FABRATIRNT REFMAERXRR, WEMBLHE NS EF#Ebf 8% HTanenbaum,
Stroustrup, Kernighan, Jim GrayZ kiR H—HLHES, L “HHEVFZENAS”
AR, #ikEFE], HRARERE. KEALENHE, WEARE TXEMNSH
S PLFOAE A .

“CREALEHENS" BHRTESE TEMIMERNR SRR, BERNRERA R
HT P ENESES, BAFEFEHBAE T BIEMERN I, fESNESBEYSX
BHESETENSGE, ANTERAXPINPEREF. €4, “HELFZENS
BB TEEA S, XSREEREPHITRIFVOR, FRFEERZIAIE
REMMSHBE, PR BERRITT T RRAER.

R E LB RTINS EENEH A ENRHERL, HEFFHEIMELBHER
FOR AR A— A BTHIBT B, bk, EASLREMASEBEMO IE, £ “REHF”
MR Z FTHREA RN TTELEM . B “UREIBEAE 25, SHRER
bt, MR “SEFRBE" R, 532X EFHBFHMSIE “Schaum’s
Outlines” RFIA “LXL2HFEINFRIRI". ATRIEX=ZENBHNEE, Rt
WA T B AEBRMEMTIRS, FEARRIETHERER. bk, HEX
%, EFRHEA%E. REXY, LBREKRE. FRA%., LK%, hEREAE,

RET k%, BEREEAE. PEARKSE, AREMRKE, LRaBERE,
Mk, MEEETRE. FMAE, BdI¥k. FEERELZLMTFNES
OEENEAKRENFTHMET BN SRNELRELR “FXBIFIERR",
A BAR AL R I AR R

3X =28 D\ A5 R W B A F DR Y O RSN Bk B B, AR R BRI T RNL B R
LIS ESITEN. HbhiFLE8MHE4M. 1. T., Stanford, U.C. Berkeley, C. M.
U SR LM AEFHFRA. FMUEETERAERT. B850, RIERE. HBALGRE
B, BEE. SFRER. RGEIR. BERE. E3E5M%E. BEBEEFENRETRL
T EEFREORE, TELAARA—FNHAEERTEZE. FNH2=1
ETWATE. FHCHL2HRNLERERA. XS R E N LMAENESIZT,
R LRETENEENERTHBREMAZ.

BENES . 280V, —RAEE. PHRHOER. Rafngs, xSeRRER
fIMNEEAETREHRII, ERMNBERERERE, IRRHERLERBRIEEX
—ZBRERNBERE, EHOHRRRBMNWEERFNER. LEATRAER
Mg EXN RN TR BB IS FHRIE, BRIMMYBRATZMT:

B, F#pfE: hzjsj@hzbook.com
BEFEBIE: (010) 68995264

BeARibh: R HRERX AL EEELS
HRBCZES: 100037

ERESERS

(e R E B P)
W OLWE L4 LEK
£ BEF R#E RHE

FHE FFR F2Y A F
i B9 F &34 Rm#E Aai
B#E HoE EWE e B
(IS GES N S)| FE X

XA AEEE A
%

PREFACE

Is software development an art, a craft, science, engineering, or some-
thing else entirely? Does it even matter?

Yes, it does matter, and it matters to you. Your actions and their results
will differ depending on which of those is more correct.

The main thing is this: You want your software out soon and defect
free, but more than that, you need a way to examine how your team is
doing along the way.

viii

PURPOSE

It is time to reexamine the notions
underlying software development.

The trouble is that as we look at
projects, what we notice is constrained by
what we know to notice. We learn to dis-
tinguish distinct and separable things in
the extremely rich stream of experience
flowing over us, and we pull those things
out of the stream for examination. To the
extent that we lack various key distinc-
tions, we overlook things that are right in
front of us.

We anchor the distinctions in our mem-
ories with words and use those words to
reflect on our experiences. To the extent
that we lack words to anchor the distinc-
tions, we lack the ability to pull our
memories into our conversations and the
ability to construct meaningful strategies
for dealing with the future.

In other words, to reexamine the notions
that underlie software development, we
have to reconsider the distinctions that we
use to slice up our experience and the
words we use to anchor our memories.

This is, of course, a tall order for any
book. It means that some of the earlier
parts of this book will be rather abstract. I
see no way around it, though.

The last time people constructed a
vocabulary for software development
was in the late 1960s, when they coined
the phrase software engineering, as both a
wish and a direction for the future.

It is significant that at the same time the
programming-should-be-engineering pro-
nouncement was made, Gerald Weinberg
was writing The Psychology of Computer
Programming. In that book, software

development doesn't look very much like
an engineering discipline at all. It appears
to be something very human-centric and
communication-centric. Of the two, Wein-
berg's observations match what people
have reported in the succeeding 30 years,
and software engineering remains a wishful
term.
In this book, I will

* Build distinctions and vocabulary for
talking about software development

* Use that vocabulary to examine and
anchor critical aspects of software
projects that have been pushed to the
sidelines too often :

« Work through the ideas and principles
of methodologies as “rules of
behavior”

* Merge our need for these rules of
behavior with the idea that each
project is unique, and derive effective
and self-evolving rules

I hope that after reading this book, you
will be able to use the new vocabulary to
look around at your project, notice things
you didn't notice before, and express
those observations. As you gain facility,
you should be able to

* Discuss Extreme Programming, the
Capability Maturity Model, the
Personal Software Process, or your
favorite process

¢ Determine when each process is more
or less applicable

* Understand people who have differing
opinions, abilities, and experience

AUDIENCE

Each person coming to this book does so
with a different experience level, reading
style, and role. Here’s how you might
read the book to use it to your greatest
advantage: by experience, by reading
style, or by role.

BY EXPERIENCE

This book is written for the more experi-
enced audience. The book does not con-
tain procedures to follow to develop
software; in fact, core to the book is the
concept that every technique has limita-
tions. Therefore, it is impossible to name
one best and correct way to develop soft-
ware. Ideally, the book helps you reach
that understanding and then leads you to
constructive ideas about how to deal with
this real-world situation.

If you are an intermediate practitioner
who has experience with software-devel-
opment projects, and if you are now look-
ing for the boundaries for the rules you
have learned, you will find the following
topics most helpful:

« What sorts of methodologies fit what
sorts of projects

» Indices for selecting the appropriate
methodology category for a project

* The principles behind agile methodol-
ogies

Being an intermediate practitioner, you
will recognize that you must add your
own judgement when applying these
ideas.

If you are an advanced practitioner,
you already know that all recommenda-
tions vary in applicability. You may be
looking for words to help you express
that. You will find those words where the
following topics are presented:

*» Managing the incompleteness of com-
munication

+ Continuous methodology reinvention

« The manifesto for agile software
development

A few topics should be new even to
advanced software developers: the vocab-
ulary for describing methodologies and
the technique for just-in-time methodol-
ogy tuning.

BY READING STYLE

The earlier chapters are more abstract
than the later chapters.

If you enjoy abstract material, read the
book from beginning to end, watching the
play of abstract topics to see the resolu-
tion of the impossible questions through
the course of the book.

If you want concrete materials in your
hands as quickly as possible, you may
want to skip over the early chapters on
the first read and start with Chapter 4,
“Methodologies.” Return to the sections
about “Cooperative Games” and “Con-
vection Currents of Information” to get
the key parts of the new vocabulary. Dip
into the introduction and the chapters
about individuals and teams to fill in the

gaps.

By RoLE

People who sponsor software develop-
ment can get from this book an under-
standing of how various organizational,
behavioral, and funding structures affect
the rate at which they receive value from
their development teams. Project spon-
sors may pay less attention to the details
of methodology construction than people
who are directly involved in the projects.
They should still understand the conse-
quences of certain sorts of methodology
decisions.

Team leads and project managers can
see how seating, teaming, and individual-
ity affect their project's outcome. They can
also learn what sorts of interventions are
more likely to have better or worse conse-
quences. They will need to understand
the construction and consequences of
their methodology and how to evolve

ORGANIZATION OF THE Book

their methodology—making it as light as
possible, but still sufficient.

Process and methodology designers
can examine and argue with my choice of
terms and principles for methodology
design. The ensuing discussions should
prove useful for the field.

Software developers should come to
know this material simply as part of being
in the profession. In the normal progres-
sion from newcomers to leaders, they will
have to notice what works and doesn't
work on their projects. They will also
have to learn how to adjust their environ-
ment to become more effective. “Our
methodology” really means “the conven-
tions we follow around here,” and so it
becomes every professional's responsibil-
ity to understand the basics of methodol-
ogy construction.

The book is designed to set up two nearly
impossible questions at the beginning and
derive answers for those questions by the
end of the book:

« If communication is fundamentally
impossible, how can people on a
project manage to do it?

+ If all people and all projects are differ-
ent, how can we create any rules for
productive projects?

To achieve that design, I wrote the book
a bit in the “whodunit” style of a mys-
tery. I start with the broadest and most
philosophical discussions: “What is

communication?” and “What is software
development?”

The discussion moves through still
fairly abstract topics such as “What are
the characteristics of a human?” and
“What affects the movement of ideas
within a team?”

Eventually, it gets into more concrete
territory with “What are the elements and
principles of methodologies?” This is a
good place for you to start if you are after
concrete material early on.

Finally, the discussion gets to the most
concrete matter: “What does a light, suffi-
cient, self-evolving methodology look
like?” and “How does a group create a

custom and agile methodology in time to
do the project any good?”

The two appendixes contain supporting
material. The first contains the “Agile Soft-
ware Development Manifesto,” signed by
17 very experienced software developers
and methodologists. '

Xi

The second appendix contains extracts
from three pieces of writing that are not as
widely read as they should be. I include
them because they are core to the topics
described in the book.

HERITAGE OF THE IDEAS IN THiIs Book

The ideas in this book are based on
25 years of development experience and
10 years of investigating projects directly.

The IBM Consulting Group asked me
to design its first object-oriented method-
ology in 1991. I looked rather helplessly at
the conflicting “methodology” books at
the time. My boss, Kathy Ulisse, and I
decided that 1 should debrief project
teams to better understand how they
really worked. What an eye-opener! The
words they used had almost no overlap
with the words in the books.

The interviews keep being so valuable
that I still visit projects with sufficiently
interesting success stories to find out
what they encountered, learned, and
recommend. The crucial question I ask
before the interview is, “And would you
like to work the same way again?” When
people describe their experiences in
words that don't fit my vocabulary, it
indicates new areas in which I lack
distinctions and words.

The reason for writing this book now
is that the words and distinctions finally
are correlating with descriptions of
project life and project results. They are
proving more valuable for diagnosis and

intervention than any of the tools that I
used previously.

The ideas in this book have been
through dozens of development teams,
eight methodology designs, and a num-
ber of successful projects on which I
participated. '

AGILITY

I am not the only person who is using
these ideas:

* Kent Beck and Ward Cunningham
worked through the late 1980s on
what became called Extreme Program-
ming (XP) in the late 1990s.

* Jim Highsmith studied the language
and business use of complex adaptive
systems in the mid-1990s and wrote
about the application of that language
to software development in his
Adaptive Software Development.

» Ken Schwaber and Jeff Sutherland
were constructing the Scrum method
of development at about the same
time, and many project leaders made
similar attempts to describe similar
ideas through the same years.

Xii

When a group of us met in February 2001
to discuss our differences and similarities,
we found we had a surprising number of
things in common. We selected the word
agile to describe our intent and wrote the
Agile Software Development Manifesto
(Appendix A).

We are still formulating the principles
that we share and are finding many other
people who could have been at that meet-
ing if they had known about it or if their
schedules had permitted their presence.

Core to agile software development is
the use of light-but-sufficient rules of
project behavior and the use of human-
and communication-oriented rules.

Agility implies maneuverability, a
characteristic that is more important now
than ever. Deploying software to the Web
has intensified software competition fur-
ther than before. Staying in business
involves not only getting software out
and reducing defects but tracking contin-

ually moving user and marketplace
demands. Winning in business increas-
ingly involves winning at the software-
development game. Winning at the game
depends on understanding the game
being played.

The best description I have found for
agility in business comes from Goldman
(1997):

“Agility is dynamic, context-spe-
cific, aggressively change-embrac-
ing, and growth-oriented. It is not
about improving efficiency, cutting
costs, or battening down the busi-
ness hatches to ride out fearsome
competitive ‘storms.’ It is about suc-
ceeding and about winning: about .
succeeding in emerging competitive
arenas, and about winning profits,
market share, and customers in the
very center of the competitive storms
many companies now fear.”

THE AGILE SOFTWARE DEVELOPMENT SERIES

Among the people concerned with agility
in software development over the last
decade, Jim Highsmith and I found so
much in common that we joined efforts to
bring to press an Agile Software Develop-
ment Series based around relatively light,
effective, human-powered software-
development techniques.

We base the series on these two core
ideas:

» Different projects need different
processes or methodologies. ‘

» Focusing on skills, communication,
and community allows the project to
be more effective and more agile than
focusing on processes.

The series has these three main tracks:

* Techniques to improve the effective-
ness of a person who is doing a partic-
ular sort of job. This might be a person
who is designing a user interface,
gathering requirements, planning a
project, designing, or testing. Who-
ever is performing such a job will

want to know how the best people in
the world do their jobs. Writing Effec-
tive Use Cases (Cockburn 2001c) and
GUIs with Glue (Hohmann, forthcom-

ing) are two individual technique

books.

Techniques to improve the effective-
ness of a group of people. These
might include techniques for team

building, project retrospectives, deci- -

sion making, and the like. Improving
Software Organizations (Mathiassen
2002) and Surviving Object-Oriented
Projects (Cockburn 1998) are two
group technique books.

Examples of particular, successful
agile methodologies. Whoever is
selecting a base methodology to tailor
will want to find one that has already
been used successfully in a similar sit-
uation. Modifying an existing meth-
odology is easier than creating a new
one and is more effective than using
one that was designed for a different
situation. Crystal Clear (Cockburn,
forthcoming) is a sample methodol-
ogy book. We look forward to identi-
fying other examples to publish.

Xiii

Two books anchor the Agile Software
Development Series:

« This one expresses the thoughts about
agile software development using
my favorite vocabulary: that of soft-
ware development as a cooperative
game, methodology as conventions
about coordination, and families of
methodologies.

* The second book is Highsmith's forth-
coming one, Agile Softuare Develop-
ment Ecosystems. It extends the
discussion about problems in software
development, common principles in
the diverse recommendations of the
people who signed the Agile Software
Development Manifesto, and common
agile practices. Highsmith's previous
book, Adaptive Software Development,
expresses his thoughts about software
development using his favorite vocab-
ulary, that of complex adaptive
systems.

You can find more about Crystal, Adap-
tive, and other agile methodologies on the
Web. Specific sites and topics are included
in the References at the back. A starter set
includes these sites:

» www.CrystalMethodologies.org

» www.AdaptiveSD.com

» www.AgileAlliance.org

* My home site, members.aol.com/
acockburn

xXiv

THANKS TO SPECIFIC PEOPLE

Ralph Hodgson has this amazing library
of obscure and interesting books. More
astounding, though, is how he manages
to have in his briefcase just that obscure
book I happen to need to read next:
Vinoed's Sketches of Thought and Wenger
and Lave’s Situated Learning, among oth-
ers, The interesting and obscure books
you find in the References chapter proba-
bly came from Ralph'’s library.

Luke Hohmann tutored me about Karl
Weick and Elliot Soloway. Jim Highsmith
taught me that “emergent behavior” is a
characteristic of the rules and not just
“lucky.” Each spent a disproportionate
amount of time influencing the sequenc-
ing of topics and accuracy of references,
commenting on nearly every page.

Jason Yip beautifully skewered my first
attempt to describe information dissemi-
nation as gas dispersion. He wrote, “Kim
is passing information. Information is
green gas. Kim is passing green gas .. ."
Yikes! You can guess that those sentences
changed!

Bo Leuf came up with the wonderful
wordplay of argh-minutes (in lieu of erg-
seconds) as the unit of measure for
frustrating communications sessions. He
also was kind enough to double-check
some of my assertions. For example, he
wrote to some Israelis to check my conten-
tion that in Israel, “politeness in conversa-
tion is considered more of an insult than a
compliment.” That produced an exciting
e-mail exchange, which included (from
Israelis): “Definitely wrong on this one,
your author. ... We always say hello and
shake hands after not seeing for a few

days. . . . I think your author is mistaking a
very little tolerance for mistakes at work

for a lack of politeness.” Another wrote,

“Regarding your being flamed. There is no
way out of it, no matter what you say.
According to me, Israelis would demand
of you to have your own opinion and to

-stand behind it. And of course they have

their own (at least one :-).” Benny Sadeh
offered the word I finally used,
“frankness.”

Martin Fowler contributed the handy
concept of “visibility” to the methodology
discussion, in addition to helping with
constructive comments and being very
gentle where he thought something was
terrible.

Other energetic reviewers I would like
to recognize and thank (in first-name
alphabetical order) are Alan Harriman,
Allen Galleman, Andrea Branca, Andy
Sen, Bill Caputo, Charles Herbaut, Char-
lie Toland, Chris Lopez, Debbie Utley,
Glenn Vanderburg, James Hanrahan, Jeff
Miller, Jeff Patton, Jesper Kornerup, Jim
Sawyer, John Brewer, John Cook, Keith
Damon, Laurence Archer, Michael Van
Hilst, Nick Fortescue, Patrick Manion,
Phil Goodwin, Richard Pfeiffer, Ron Holi-
day, Scott Jackson, Ted Young, Tom
DeMarco, and Tracy Bialik.

The Silicon Valley Patterns Group took
the trouble to dissect the draft as a group,
for which I doubly thank them.

The Salt Lake production team of Eliza-
beth Wilcox, Cathy Gilmore, John Rob-
erts, and Malia Howland did a fantastic
job of turning the manuscript into a final

book in an unreasonably short period of
time.

All these people did their best to see
that I fixed the weak parts and kept the
good parts. If I had another few years to
keep reworking the book, I might even
have been able to get it to the point that
they would have accepted it.

In the absence of those extra years, I
thank them for their efforts and apologize
for not being able to fix all the awkward
spots.

Thank goodness the Beans & Brews
coffee shop finally started playing jazz
and rock again. I lost several months of
writing to heavy metal and country
music. Thanks to the Salt Lake Roasting
Company for staying open until mid-
night.

To save us some future embarrassment,
my name is pronounced “C6-burn,” with
alongo.

ADDITIONAL COPYRIGHT INFORMATION

“Scandinavian Design” by Pelle Ehn,
from Usability: Turning Technology into
Tools, Paul S. Adler and Terry A. Wino-
grad (Eds.), Copyright © 1992 by Oxford
University Press, Inc. Used with permis-
sion, Oxford University Press, Inc.

“Programming as Theory Building” by
Peter Naur, from Computing: A Human
Activity, ACM Press, 1992. Used with per-
mission, Peter Naur.

From The Book of Five Rings by Miya-
moto Musashi, translated by Thomas
Cleary, © 1993, 1994. Reprinted by
arrangement with Shambhala Publica-
tions, Inc., 300 Massachusetts Avenue,
Boston, www.shambhala.com.

“Shu Ha Ri” by Ron Fox, from The Iaido
Newsletter, Volume 7 number 2 #54,
February, 1995. Used with permission,
Ron Fox, MSU Kendo Club for Shu Ha Ri.

References to eBucks.com and the
description of Crystal Orange Web used
with permission, Michael Jordaan,
eBucks.com.

References to a discussion of communi-
cation patterns in open source projects
used with permission, Mike Nygard.

Figure 3-10 used with permission,
Joshua Kerievsky, Industrial Logic, Inc.,
www.industriallogic.com, Copyright ©
2001.

Figure 3-11 used with permission, Ron
Jeffries, Ann Anderson, & Chet Hendrick-
son, Extreme Programming Installed, Addi-
son-Wesley, 2001.

Figures 3-1, 3-9, 3-15, and 3-16 used
with permission, Evant Solutions Corpo-
ration, www.evantsolutions.com, Copy-
right © 2001.

Figures 3-2, 3-3, 3-6, 3-7, and 3-8 used
with permission, ThoughtWorks, Inc.,
www.thoughtworks.com, Copyright ©
2001.

Figures 3-12 and 3-13 used with per-
mission Ken Auer, RoleModel Software,
Inc., www.rolemodelsoft.com, Copyright
© 2001.

PREFACE TO THE SECOND EDITION

The agile model of software development took the world by storm in
2001. Within a year there were books and conferences on it around the
world. Within five years, it had influenced everything from project man-
agement and how corporate executives write contracts with their clients,
to military procurement procedures, and even to college curricula. '

It is time to look at the changes and see what we can learn about the
agile model, and more generally, the cooperative game.

At the time that the Manifesto for Agile
Software Development was written—
February 2001—I was already deep into
writing about software development as a
cooperative game and the tailoring of
methodologies to individual projects.
The manifesto merely echoed what I and
others were already doing.

The agile model took the world by
storm. Hundreds of developers signed
the online signing board (the original,
informal Agile Alliance, not to be con-
fused with the AgileAlliance corporation
that was formed later and runs the Agile
conferences in the US.) to show their
alignment with its values and principles.

After the initial questions around
“What does this mean?,” people asked:

* “Where does it fit in.the total set of
development situations?”

* “How do we blend these ideas with
others?”

* “How do we extend these ideas to
other fields?”

These are the questions picked up by the
additional text in this second edition.

The cooperative game model grew along-
side the agile model. Originally con-
structed to explain software develop-
ment, it struck a chord with business
people, who rightly saw that business is
also predominantly a cooperative (and
competitive!) game of invention and com-
munication.

You would imagine that during the
past five years, something should have
come as a surprise to me. I highlight four:

* Engineering is also a cooperative game
of invention and communication.
With a bit of reframing, we can now
place software engineering as a
proper member of the engineering
fields.

I leave intact in the second edition the fairly
strong words I wrote originally against the
idea that software development should be
treated as engineering. I do so because
those words still apply to the way in which
most people still incorrectly view engineer-
ing and draw from it correspondingly
incorrect ways of how to manage software
development. In this second edition text, I
turn the investigation back to the question,
“What is engineering?” ,
After the second world war, discipline
envy of applied physics caused wishful
thinking in engineering academia, and
popular understanding of engineering got
off track. Looking afresh at engineering
practices, we notice that it is itself a cooper-
ative game of invention and communica-
tion. From this, we can create an updated
notion of software engineering that makes
sense both practically and pedagogically.

» The specialty area of user experience
design has made strong inroads in
the last five years. It was ignored by
the authors of the manifesto, and
deserves serious attention.

All of the early agile methodologies skipped
completely over this issue, probably because
none of the manifesto authors had strong
expertise in that area. That area has been and
still is an area of hot debate, with few solid

