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Preface

This book is a collection of manuscripts from lectures given in the
French-Chinese Summer Institute on Applied Mathematics, which was
held at the School of Mathematical Sciences of Fudan University from
September 1 to September 21, 2008. This Institute was mainly sponsored
by the Centre National de Recherche Scientifique (CNRS) and the Na-
tional Natural Science Foundation of China (NSFC). The activities were
organized by the Institut Sino-Francais de Mathématiques Appliquées
(ISFMA). There were more than 70 participants, including graduate
students, postdoctors and junior faculty members from universities and
research institutions in China and France.

This volume is entitled Some Problems on Nonlinear Hyperbolic Equa-
tions and Applications. The volume is composed of two parts: Mathe-
matical and Numerical Analysis for Strongly Nonlinear Plasma Models
and Exact Controllability and Observability for Quasilinear Hyperbolic
Systems and Applications, which represent two subjects of the Institute.
These topics are important not only for industrial applications but also
for the theory of partial differential equations itself.

The main propose of the Institute was to present recent progress and
results obtained in the domains related to both subjects and to organize
discussions for studying important problems by sustainable collabora-
tions. We hope that this experience will be useful for the activities of
the French-Chinese collaboration in the future.

During the activities of the Institute, more than 30 lectures of 50
minutes each were delivered. The speakers gave their presentation with-
out attaching much importance to the details of proofs but rather to
difficulties encountered, to open problems and possible ways to be ex-
ploited. Each lecture was followed by a free discussion of 30 minutes, so
that the participants were able to clarify the situation of each problem
and to find interesting subjects to be cooperated in the future. Three
mini-courses of 3 x 1.5 hours each were given by Jean-Michel Coron {(Uni-
versité Paris 6, France), Vilmos Komornik (Université Louis Pasteur de
Strasbourg, France) on the control theory and by Thierry Goudon (IN-
RIA Lille-Nord Europe, France) on the mathematical theory for plasmas.
The mini-course notes were prepared for all the students before the ac-
tivities of the Institute. Moreover, in the middle and before the end of
the Institute, we organized two sessions of general discussion on the open
problems for future investigations by collaboration.
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The editors would like to express their sincere thanks to all the au-
thors in this volume for their contributions and to all the participants in
the Summer Institute. Ligiang Lu, Zhigiang Wang and Chunlian Zhou
deserve our special thanks for their prompt and effective assistance to
make the Institute run smoothly. The editors are grateful to the Centre
National de Recherche Scientifique (CNRS), the Consulate General of
France in Shanghai, the French Embassy in Beijing, the Institut Sino-
Francais de Mathématiques Appliquées (ISFMA), the National Natural
Science Foundation of China (NSFC) and the School of Mathematical
Sciences of Fudan University for their help and support. Finally, the edi-
tors wish to thank Tianfu Zhao (Senior Editor, Higher Education Press)
and Chunlian Zhou for their patience and professional assistance.

Tatsien Li, Yuejun Peng, Bopeng Rao
April 2010
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Open Boundary Conditions and
Computational Schemes for Schradinger
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Xavier Antoine, Pauline Klein
Institut Elie Cartan Nancy, Nancy- Université, CNRS UMR 7502
INRIA CORIDA Team
Boulevard des Aiguillettes B.P. 239
F-54506 Vandoeuvre-lés-Nancy, France
Email: Xavier.Antoine@iecn.u-nancy.fr
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Université des Sciences et Technologies de Lille
Cité Scientifique, 59655 Villeneuve d’Ascq Cedex, France
Email: Christophe. Besse@math.univ-lillel.fr

Abstract

This paper addresses the construction of absorbing boundary
conditions for the one-dimensional Schrédinger equation with a
general variable repulsive potential or with a cubic nonlinearity.
Semi-discrete time schemes, based on Crank-Nicolson approxima-
tions, are built for the associated initial boundary value problems.
Finally, some numerical simulations give a comparison of the var-
ious absorbing boundary conditions to analyse their accuracy and
efficiency.

Introduction

We consider in this paper two kinds of initial value problems. The first
one consists in a time-dependent Schridinger equation with potential V'
set in an unbounded domain

{iatu+8§u+Vu=0, (z,t) € R x [0; T}, 1)

u(z,0) = uo(z), z €R,
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where ug presents the initial data. The maximal time of computation
is denoted by T. We assume in this article that V is a real-valued
potential such that V € C®(R x R*,R). This kind of potential then
creates acceleration of the field compared to the free-potential equation
[10, 17].

Our second interest concerns the one-dimensional cubic nonlinear
Schradinger equation

{i@tu+agu+q|u|2 u=0, (z,t)eRx][0;T], (1.2)

u(m,O) = u(](x)v z € R,

where the real parameter ¢ corresponds to a focusing (¢ > 0) or de-
focusing (g < 0) eflect of the cubic nonlinearity. This equation has the
property to possess special solutions which propagate without dispersion,
the so-called solitons.

For obvious reasons linked to the numerical solution of such problems,
it is usual to truncate the spatial computational domain with a fictitious
boundary X := 8Q = {z;,z,}, where z; and z, respectively designate
the left and right endpoints introduced to have a bounded domain of
computation Q =]zi; z,{. Let us define the time domains Qr = Q x [0; T
and T = X x [0; T]. Considering the fictitious boundary 3, we are now
led to solve the problem

{zatu-f-aﬁu + 7 u=0, (.’L‘,t) € Qr, (1 3)

U(LI),O) = 'U'O("E)a T € Qa

where ¥ denotes either the real potential V(z,t) or the cubic nonlin-
earity ¢ |u|2 (z,t). In the sequel of the paper, we assume that the initial
datum wug is compactly supported in the computational domain 2.

Of course, a boundary condition set on X7 must be added to systems
(1.3). An ideal exact boundary condition tackling the problem is the so-
called Transparent Boundary Condition (TBC) which leads to a solution
of (1.3) equal to the restriction of the solution of (1.1) or (1.2) on Q7. A
first well-known case considers ¥ = 0. This situation has been treated by
many authors [2]. In this case, according to what is precisely described
in Section 2.2, we are able to build the following TBC in terms of the
Dirichlet-to-Neumann (DtN) operator

Bau + e /9?0 =0, on g, (1.4)

where n is the outwardly directed unit normal vector to £. The opera-
tor 8; /2 is known as the half-order derivative operator (see Eq. (2.7) for
its definition). Its nonlocal character related to its convolutional struc-
ture has led to many developments concerning its accurate and efficient
evaluation in the background of TBCs [2].
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A second situation which is related to the above case is when the
potential is only time varying: ¥ = V(z,t) = V(¢). In this case, the
change of unknown

v(z,t) = eV ®yu(z, 1), (1.5)

with

V() = /(; Vis)ds (1.6)

reduces the initial Schrodinger equation with potential to the free-poten-
tial Schrédinger equation [4]. Then, the TBC (1.4) can be used for v
and the resulting DtN TBC for u is

Buats(z, £) + e~ /AeV® 5)/2 (e—iV(t)u(m’t)) —0, on¥r. (L7)

This change of variables is fundamental and, coupled to a factor-
ization theorem, and allowed to derive accurate approximations of the
TBC, which are usually called artificial or Absorbing Boundary Condi-
tions (ABCs), when ¥ = V(z,t) [land ¥ = ¢ |u|? [4]. Families of ABCs
can be computed and are classified following their degree of accuracy.
Typically, for a general function ¥, the first ABC would be exactly (1.7),
where V(t) has to be replaced by V(z,t) = fot ¥ (z, s)ds. The ABC gives
quite satisfactory accurate results but its evaluation remains costly since
it involves the nonlocal time operator a} /2 In [5], another kind of ABCs
was introduced, with their numerical treatments being based on Padé
approximants. It therefore gives rise to a local approximation scheme
which is very competitive.

The aim of the present paper is to present precisely the link between
the two different types of ABCs set up in [5] and [4] and to extend the
local ABC derived for ¥ = V(z,t) to the cubic nonlinear Schrédinger
equation. Moreover, associated unconditionally stable schemes are given
and numerical results are reported.

For completeness, we must mention that recent attempts have been
directed towards the derivation of TBCs for special potentials. In [15],
the case of a linear potential is considered in the background of parabolic
equations in electromagnetism. Using the Airy functions, the TBC can
still be written and its accuracy is tested. In [27], Zheng derives the
TBC in the special case of a sinusoidal potential using Floquet’s theory.
All these solutions take care of the very special form of the potential.
Let us remark that other solutions based on PML techniques have also
been applied (see [26]). Concerning the nonlinear case, using paradiffer-
ential operators techniques, Szeftel [24] presented other kinds of ABCs.
Moreover, a recent paper (6] gives a comprehensive review of current
developments related to the derivation of artificial boundary conditions
for nonlinear partial differential equations following various approaches.
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The present paper is organized as follows. In Section 2, we recall the
derivation of open boundary conditions for linear Schrédinger equations.
Subsection 2.1 concerns the derivation of the TBC, and Subsection 2.2
gives some possible extensions and their interpretations in the context of
pseudodifferential calculus. This tool is the essential ingredient used in
Section 3 where two possible approaches for building ABCs for the ane-
dimensional Schridinger equation with a variable repulsive potential are
given. Section 4 is devoted to their numerical discretization and the un-
derlying properties of the proposed schemes. Section 5 is concerned with
the nonlinear case in which we explain the links between the different
approaches and propose a new family of ABCs for the cubic nonlinear
Schrédinger equation. Numerical schemes are also analysed. Section 6
presents some numerical computations. These simulations show the high
accuracy and efficiency of the proposed ABCs. Moreover, comparisons
are made between the different approaches. Finally, a conclusion is given
in Section 7.

2 Open boundary conditions for linear Schro-
dinger equations

2.1 The constant coefficients case: derivation of the
TBC

We recall in this Section the standard derivation of the Transparent
Boundary Condition (TBC) in the context of the following 1D Schrédin-
ger equation

iBu+ 2u+ V(z,)u=0, (z, t) € Qr,
lim wu(z,t) =0, 2.1)

|| —o00

71,(1‘, 0) = 'u,o(.’l)), z €},

where the initial datum ug is compactly supported in 2 and the given real
potential V is zero outside §. It is well known that the previous equation
(2.1) is well posed in L%(R) (see e.g. (22, 23]) and that the “density” is
time preserved, i.e., ”u(t)HL2(IR) = “uolle(R), Vt > 0. The TBC for the
Schriodinger equation (2.1) was independently derived by several authors
from various application fields (20, 21, 8, 11, 13]. Such a TBC is nonlo-
cal according to the time variable ¢ and connects the Neumann datum
Ozv(z1,r,t) to the Dirichlet one v(zi,,t). As a Dirichlet-to-Neumann
(DtN) map, it reads

—in /4 d t
Onv(z,t) =_eﬁ Et-/o vz, 7) dr on Xp, (2.2)
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where 8y, is the outwardly directed unit normal derivative to (2.

The derivation of the TBC (2.2) is performed from Equation (2.1)
and is based on the decomposition of the Hilbert space L2(R) as L%(Q) &
L2(Q, U ) where =]z, z.-[, 4 =] — 00, 2], and Q, = [z,, 00[. Equa-
tion (2.1} is equivalent to the coupled system of equations

(10 +82)w=0, z€ QU t>0,
w(z,t) =v(z,t), (2,t) € BT,
Iixn|m|_,°° w(z,t) =0,t>0,

w(z,0) =0, € Q UN,.

{ (18 + 82)v = —V(z, t)v, (z,t) € Qr,
Izv(z, t) = Bzw(z, t), (x,t) € B
v(z, 0) = uo(z), = € N,
(2.3) (2.4)

This splitting of the spatial domain R into interior and exterior prob-
lems is explained in Fig. 2.1. It shows the basic idea for constructing
the TBC. The Transparent Boundary Condition is obtained by applying
the Laplace transformation £ with respect to the time ¢ to the exterior
problems (2.4). The Laplace transform is defined through the relation
W(s) = L(w)(s) = [p+ w(t)e *tdt, where s = o + iT is the time covari-
able with ¢ > 0.

left exterior

I
i
problem 1

right exterior
interior problem problem

1
outputt  —p I input:
Neumanndata g Dirichlet data
Wa(x,, B ALY

vix,t)

A
-1

Figure 2.1 Domain decomposition for the construction of the TBC.

In the following, we focus on the derivation of the TBC at the right
endpoint z.. The Laplace transformation of (2.4) (on Q,) reads is® +
Ggfﬁ =0, z € ;. The solution to this second-order ode with constant co-
efficients can be computed as W(z, s) = A* (s)e V=% + A (s)e~ V=ise,
Z > zr, where the branch-cut of the square root Y/ is taken such that
the real part is positive. However, since the solution is an element of
L?(Q,), the coefficient A* must vanish. Using the Dirichlet data at the
artificial boundary yields w(z, s) = e~ V% (#—2r) W(z, 8)|x=x,. Deriving
w(z, s) with respect to z gives

O W (2, 8)|z—a, = — V—is(z, s)|s=z,- (2.5)

The analogous condition at the left boundary is —8,W(z,$)|s=s, =
— ¥/ —isw(x,s)|g=g,. Applying an inverse Laplace transformation £~!
is able to obtain an expression of the Neumann datum Ozw(xrr,t) as a
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function of the Dirichlet one. Since we have continuity of the traces on
Y7, the boundary condition of Eq. (2.3) is into

Bav(z,t) = L1 (— V=5 8(z, ) (t) = ] Flt— Pyo(z,7)dr, on N,
0

(2.6)
where £(f)(s) = — 3/—is. By construction we have that u coincides
with v on 0, meaning that we have an exact or a Transparent Boundary
Condition (TBC) given by the second equation of (2.6).

All this analysis could also be performed using the time Fourier trans-
form %#;

Fi(u)(z,7) = % /Ru(m, t)e ¥ dt,

which roughly speaking corresponds to letting ¢ — 0 in the expression of
the Laplace transform and induces the following definition of the square
root /7 = /7 if 7 > 0 and /7 = —iy/—7 if T < 0. The condition (2.5)
is thus replaced by

Or Frw(x, T)|g=z, = iV —7 Fw(T,T)|2=x,-

We recover the TBC on Er with Ga0v(z,t) = & (iv/— Fv(z, ) ().
This expression or its Laplace version 8nv(z,t) = L71(— /= 6(z, -))(¢)
can be simply written at points z = z;, as follows:

Onv(z,t) = —e‘i”/46t1/2v(x, t).

The term 8,/% = 1/3; has to be interpreted as a fractional half-order time
derivative. We recall that the derivative 85~ f(t) of order k — a > 0 of
a function f, with £ € N and 0 < & < 1, is defined by

w 1 d* [t .
o2 (0) = g [, (=D, 27)

where ['(z) = f0+°° e~ 't*~1dz denotes the Gamma function. In the same
spirit, one can also define the integration of real order p > 0 of a function
f, denoted by IF f(¢), by

PfE) = ﬁ /0 (¢ — 1)P=L f(r)dr. (2.8)

At this point, an interesting remark is that the Schrodinger equation
can formally be factorized into left and right traveling waves (cf. [8]):

(aw - e“i%8§/2) (Bm + e_i%atl/z)u =0, z>z,. (2.9)

This remark is crucial since it gives the idea to use a Nirenberg-like the-
orem in Section 3.2 for general variable coefficients equations (including
potentials for instance).
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2.2 Extensions and interpretations in the context of
pseudodifferential operator calculus: introduc-
tion to the derivation of ABCs

The first possible extension is to consider a given real potential ¥V which
is constant in space outside (2, i.e., V(z,t) = Vi(t) for z < z1, V(x,t) =
Vr(t) for £ > z,.. An easy computation, which consists in applying the
following gauge change in (2.1), reduces this case to the zero exterior
potential [3] for the new unknown

t
Yie = e MrOy | with V() = / Vir(s)ds, V¢>0. (2.10)
[4]

The resulting TBC is then given by
Onu + e“i"/4eivl'r(t)(?tlﬂ(e_wl'r(t))u) =0, onZXr. (2.11)

The analysis based on Laplace or Fourier transforms and performed in
the previous subsection can also be done if the potential is constant
outside 2. This would lead to

¢
Onu(z,t) = /f(t — T)u(z,7)dT,0on L, (2.12)
0

where L(f)(s) = — 3/—is — Vi,. Therefore, the Schrédinger equation
can formally and exactly be factorized into left and right traveling waves

(cf. [8]):
(B — €5 /0, —iV;)( Oz + e T /B, — iV )u=0, z>u,.

To understand and to make clearer the link between expressions (2.11)
and (2.12), we have to introduce the notion of pseudodifferential op-
erator. A pseudodifferential operator P(x,t,8;) is given by its symbol
p(z,t,7) in the Fourier space

P(z,1,8)u(, 1) = £ (p(z,t,m)i(z, 7))

" (2.13)
= /Rp(z, t,7) Fi(u)(z, 7)™ dr.

The inhomogeneous pseudodifferential operator calculus used in the pa-
per was first introduced in [14]. For self-conciseness reasons, we only
present the useful notions required here. Let a be a real number and

E an open subset of R. Then (see [19]), the symbol class S*(Z x =)
denotes the linear space of C* functions a(-, -,-) in = x Z x R such that
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for each K C E x Z and for all indices 3, §, -y, there exists a constant
Cp,5~(K) such that |020{8)a(z,t,T)| < Cg,s(K)(1 + |7]*)>~F, for all
(z,t) € K and 7 € R. A function f is said to be inhomogeneous of
degree m if: f(x,t,u?r) = u™f(z,t,7), for any u > 0. Then, a pseu-
dodifferential operator P = P(z,t, ;) is inhomogeneous and classical of
order M, M € Z/2, if its total symbol, designated by p = o(P), has an
asymptotic expansion in inhomogeneous symbols {pps_; /2};2’8 as

+oo
p(m’ta T) ~ ZpM—j/?(myt’ T)v
=0

where each function pps_j;/o is inhomogeneous of degree 2M — j, for
j € N. The meaning of ~ is that

m
Ym € N, p- ZpM_j/g S SM_(ﬁ+l)/2.
=0

A symbol p satisfying the above property is denoted by p € SY and the
associated operator P = Op(p) by inverse Fourier transform (according
to (2.13)) by P € OPSY¥. Finally, let us remark that smoothness of the
potential V is required for applying pseudodifferential operators theory.
However, this is crucial for the complementary set of 2 but a much
weaker regularity assumption could be expected for the interior problem
set in Q allowing therefore a wide class of potentials.

Let us come back to the comparison of relations (2.11) and (2.12) in
the case of a constant potential outside 2. With the previous definitions,
Egs. (2.11) and (2.12) respectively read

Onu(z,t) + 1ot 0p (—v/~7) (e"Vortu)(z,t) =0, on Tp, (2.14)
and
Onu(z,t) + iOp (—\/—'r + Vl,r) (u){z,t), on Zp. (2.15)

Actually, these two formulations are equivalent thanks to the following
Lemma (see [5] for a proof).

Lemma 2.1. If a is a t-independent symbol of S™ and V(z,t) = V (z),
then the following identity holds

Op (a(r — V(2))) u = €V ®Op (a(r)) (e_itv(”)u(x,t)) . (2.16)
In our case, since V is also z-independent, one gets

iOp (— \/TV”) (w)(z,t) = ie’"t0p (—v/=7) (e Vu)(a, t),
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which explains the close link between (2.11) and (2.12).

Lemma 2.1 has other applications when the potential V' depends on
the spatial variable . To emphasize this point, let us develop some
approximations of the TBC for the case of a linear potential V(z,t) =
z. Applying a Fourier transform in time, the Schrédinger equation:
i6u + O2u + zu = 0 sets on Qr becomes the Airy equation 02%,u +
(=7 4+ z)#u = 0. The solution to this equation which is outgoing is
given by Fu(z,7) = Ai ((z — 7)e™"/3), where Ai stands for the Airy
function [1]. Deriving this expression according to z, we obtain the exact
relation expressing the corresponding DtN map in the Fourier space

in/3 Ai ((z — 1)e"/3)
Ai ((z — T)e~m/3)

OnFru(z, T) =€ Fu(z, 7), (2.17)

giving therefore the total symbol. The numerical approximation of the
corresponding TBC is difficult to handle and approximations are needed.
For sufficiently large values of |7, one has the following approximation

2in/3 A’ ((z - T)e_iw/g')
e

~ —in/6 S .
Ai((z - T)e—im/3) € T

If we replace the total (left) symbol by its approximation, we obtain what
is usually called an artificial or Absorbing Boundary Condition (ABC)

Ontu+i0p (—V/~7+z) (u) =0, on p. (2.18)

Thanks to Lemma 2.1 and since V{(z,¢) = z, this ABC is strictly equiv-
alent to _ . _
Onu + e““'/‘le"z”(?tlﬂ(e_’t“'ru) =0, on Zp. (2.19)

Let us remark that, in the specific case of a linear potential, a change of
unknown is allowed to transform the Schrédinger equation with linear
potential into another Schrédinger equation without potential [20]. In-
deed, if v is solution to iG;v+d2v = 0, then u(z, t) = e‘i(“"‘t’”%'“'z)v(w—
t2a, t) is solution to idu + 82u + azu = 0.

At this point, some partial conclusions can be drawn:

o Formally, the operator id; + 6% + V can be (exactly or approxi-
mately) factorized as

i+ 2 +V = (az—i—i\/m)(am—im),

according to the (z,¢)-dependence of the potential. On the above
right hand side, the second term characterizes the DtN map in-
volved in the TBC or ABC.



