BEST PRACTICES

AGILE PROJECT
MANAGEMENT
WITH SCRUM

SCRUM B #Em B £

Ken Schwaber

China Edition
Published by Shanghai World Publishing Corporation

}?.‘f-ﬁ)t‘#.)l w 3)

Microsoft

Agile Project Management
with Scrum

Ken Schwaber

B R4 B (CIP) #i48
Scrum BIETN H & E . 30/ (E) B gMAE. — LE. DEiEREBHRAF,2007.6
ISBN 978 -7 - 5062 — 8318 -2 '

L S I 3 I SAFFR - 51 H &8 - %3 V. TP311.52
b E AR AP 431 CIP 3R B (2007) 55 083243 2

© 2007 by Microsoft Corporation. All rights reserved.
Original English language edition © 2004 by Ken Schwaber. All rights reserved.

Published by arrangement with the original publisher, Microsoft Corporation, Redmond
Washington, U. S. A.

3

Scrum SHEIR H & H
[R]E - LA #F

20y BHIRIT
AT MO 185 5 B A%
HR B 4w A 200010
(A7) 1% :021 - 63783016 3% K ATH)
EHETENR-LT B R
W R BLEN%E B R R, R S R R R
(A FL % 021 —63113060)
B HB T IELH

FA:787 x960 1/16 EI5k.12 FZ¥.360 000
2007 %26 B 1A 2007 £ 6 A5 1 ENRI
ISBN 978 -7 - 5062 — 8318 —2/T - 143
B % .09 - 2007 —443 B
EH:188.00 T
http ://www. wpcsh. com

Foreword

My new boss wasn’t being a jerk, but it seemed like it at the time. We were writ-
ing new software for use in the company’s high-volume call centers. Instead
of the 12 months I told him we’d probably need, he had agreed to give me
4 months. We wouldn’t necessarily start using the new software in 4 months,
but from that point on, all my boss could give me was 30 days’ notice of a go-live
date. After the first 4 months, I would have to keep the software within 30 days
of releasable. My boss understood that not all functionality would be there after
4 months. He just wanted as much as he could get, as fast as he could get it. I
needed to find a process that would let us do this. I scoured everything I could
find on software development processes, which led me to Scrum and to Ken
Schwaber’s early writings on it.

In the years since my first Scrum project, I have used Scrum on commercial
products, software for internal use, consulting projects, projects with ISO 9001
requirements, and others. Each of these projects was unique, but what they had
in common was urgency and criticality. Scrum excels on urgent projects that are
critical to an organization. Scrum excels when requirements are unknown,
unknowable, or changing. Scrum excels by helping teams excel.

In this book, Ken Schwaber correctly points out that Scrum is hard. It's not
hard because of the things you do; it’s hard because of the things you don’t do.
If you're a project manager, you might find some of your conventional tools
missing. There are no Gantt charts in Scrum, there’s no time reporting, and you
don’t assign tasks to programmers. Instead you’ll learn the few simple rules of
Scrum and how to use its frequent inspect-and-adapt cycles to create more
valuable software faster.

Ken was there at the beginning of Scrum. Ken, along with Jeff Sutherland,
was the original creator of Scrum and has always been its most vocal propo-
nent. In this book, we get to read about many of the Scrum projects Ken has
participated in. Ken is a frequent and popular speaker at industry conferences,
and if you've ever heard him speak, you know he doesn’t pull any punches.
This book is the same way: Ken presents both the successes and the failures of
past Scrum projects. His goal is to teach us how to make our projects successful,
and so he presents examples we can emulate and counterexamples for us
to avoid.

b 4 Foreword

This book clearly reflects Ken’s experience mentoring Scrum Teams and
teaching Certified ScrumMaster courses around the world. Through the many
stories in this book, Ken shares with us dozens of the lessons he’s learned. This
book is an excellent guide for anyone looking to improve how he or she deliv-
ers software, and I recommend it highly.

—Mike Cohn
Certified ScrumMaster
Director, Agile Alliance

Foreword: Why Scrum Works

Suppose I'm traveling from Chicago to Boston by airplane. Before and during the
flight, the pilot gets instructions from air traffic control. We take off on command and
follow the prescribed route. Once we are in the air, computers predict almost to the
minute when we will land in Boston. If things change—say the air is bumpy—
the pilot must get permission to move to a different altitude. As we approach the
airport, the pilot is told what runway to land on and what gate to go to.

If, however, I set out for Boston in a car, I can take whatever route I want,
whenever I want. I don’t know exactly when I'll get there, and I probably
haven’t planned what route T'll take or where I'll stop for the night. En route, I
follow traffic laws and conventions: I stop at red lights, merge into traffic
according to the prevailing customs, and keep my speed consistent with the
flow. In an automobile, I am an independent agent, making decisions in my
own best interests framed by the rules of the game of driving.

It’s amazing to me that thousands upon thousands of people travel by car
every day, accomplishing their goals in a framework of simple traffic rules, with
no central control or dispatching service. It also amazes me that when I want
to ship a package, I can enter a pickup request on the shipper’s Web site and
a driver will arrive at my door before the time that I specify. The driver isn’t
dispatched to each house; he or she receives a continually updated list of
addresses and deadlines. It’s the driver’s job to plot a route to get all the pack-
ages picked up on time.

As complexity increases, central control and dispatching systems break
down. Some might try valiantly to make the control system work by applying
more rigor, and indeed that works for a while. But the people who prevail are
those who figure out how to change to a system of independent agents operating
under an appropriate set of rules. It might work to provide same-day delivery
with a dispatch system that plans a driver’s route at the beginning of the day.
However, it is far more difficult to preplan a pickup route when customers can
enter pickup requests at any time. Taxi companies sort things out at a central
control center. Some shipping companies send the request to the driver respon-
sible for the area and let the driver determine the best route based on current
conditions and other demands.

The more complex the system, the more likely it is that central control
systems will break down. This is the reason companies decentralize and

Xi

xii

Foreword: Why Scrum Works

governments deregulate—relinquishing control to independent agents is a time-
honored approach to dealing with complexity. Scrum travels this well-trodden
path by moving control from a central scheduling and dispatching authority to
the individual teams doing the work. The more complex the project, the more
necessary it becomes to delegate decision making to independent agents who
are close to the work.

Another reason that Scrum works is that it dramatically shortens the feedback
loop between customer and developer, between wish list and implementation,

and between investment and return on investment. Again, complexity plays a

role here. When a system is simple, it's not so hard to know in advance what
to do. But when we are dealing with a market economy that changes all the
time and with technology that won'’t stand still, learning through short-cycles of
discovery is the tried-and-true problem-solving approach.

We already know this. We try out various marketing campaigns and dis-
cover which approach works. We simulate vehicle behavior during car design
to discover the best slope of the hood and best distribution of weight. Virtually
all process-improvement programs use some version of the Deming cycle to
study a problem, experiment with a solution, measure the results, and adopt
proven improvements. We call this fact-based decision making, and we know
that it works a lot better than front-end-loaded predictive approaches.

Scrum is built on 30-day learning cycles that prove complete business con-
cepts. If we already know everything and have nothing to discover, perhaps we
don’t need to use Scrum. If we need to learn, however, Scrum’s insistence on
delivering complete increments of business value helps us learn rapidly and
completely. One of the reasons complete increments are important is that par-
tial answers often fool us into thinking that an approach will work, when in
reality, the approach doesn’t work upon closer examination. We know that until
software is tested, integrated, and released to production, we can’t really be
sure that it will deliver the intended business value. Scrum forces us to test and
integrate qur experiments and encourages us to release them to production, so
that we have a complete learning cycle every 30 days.

Scrum doesn’t focus on delivering just any increment of business value; it
focuses on delivering the highest priority business value as defined by the cus-
tomer (Product Owner). The Product Owner and the Team confer about what
that definition is, and then the Team decides what it can do in 30 days to deliver
high-priority business value. Thus the short feedback loop becomes a business
feedback loop—Scrum tests early and often whether the system being developed
will deliver value and exactly what that value will look like. This allows the sys-
tem to be molded over time to deliver value as it is currently understood, even
as it helps to develop a better understanding of that value.

Foreword: Why Scrum Works xiii

Another reason Scrum works is that it unleashes the brainpower of
many minds on a problem. We know that when things go wrong, there are
people around who knew there was a problem, but somehow their ideas were
overlooked. For example, when the space shuttle disintegrated on reentry,
a widely reported interpretation of the causes of the disaster suggests that
there were engineers who were well aware that there could be a problem,
but they were unable to get their concerns taken seriously. What manage-
ment system can we use to leverage the experience, ideas, and concerns of the
people closest to the work to be done? :

According to Gary Convis, president of Toyota Motor Manufacturing
Kentucky, the role of managers in a healthy, thriving, work environment is “to
shape the organization not through the power of will or dictate, but rather
through example, through coaching and through understanding and helping
others to achieve their goals.”!

Scrum turns small teams into managers of their own fate. We know that
when we are responsible for choosing our own driving route to Boston, we will
find a way to get there. We will detour around construction and avoid rush hour
traffic jams, making decisions on the fly, adapting to the independent decisions of
all of the other drivers out there. Similarly, Scrum Teams accept a challenge and
then figure out how to meet that challenge, detouring around roadblocks in cre-
ative ways that could not be planned by a central control and dispatching center.

If teams are of a size that encourages every member to participate, and
team members feel like they are in control of their own destiny, the experience,
ideas, and concerns of individual members will be leveraged, not squelched.
When team members share a common purpose that everyone believes in, they will
figure out how to achieve it. When teams understand and commit to delivering
business value for their customers, when they are free to figure out how to perform
tasks, and when they are given the resources they need, they will succeed.

Gary Convis notes that Toyota’s sustainable success comes from an “inter-
locking set of three underlying elements: the philosophical underpinnings, the
managerial culture and the technical tools. The philosophical underpinnings
include a joint [worker], customer-first focus, an emphasis on people first, a
commitment to continuous improvement.... The managerial culture...is rooted
in several factors, including developing and sustaining a sense of trust, a com-
mitment to involving those affected by first, teamwork, equal and fair treatment
for all, and finally, fact-based decision making and long-term thinking.”2

1. Gary Convis, “Role of Management in a Lean Manufacturing Environment,” in “Learning to Think
Lean,”August 2001, SAE International, bttp.//www.sae.org/topics/leanjul01.bim.

2. Ibid.

xiv Foreward: Why Scrum Works

Scrum works for all the same reasons. Its philosophical underpinnings
focus on empowering the development team and satisfying customers. Its man-
agerial culture is rooted in helping others achieve their goals. Its technical tools
are focused on making fact-based decisions through a learning process. When all
of these factors are in place, it's hard for Scrum not to succeed.

—NMary Poppendieck
Poppendieck.LLC

Acknowledgments

Special thanks to my daughter, Carey Schwaber, whose editing turns words into
streams, and to Mike Cohn and Mary Poppendieck, for their fine help in keep-
ing this book focused.

xv

Introduction

I offer you Scrum, a most perplexing and paradoxical process for managing
complex projects. On one hand, Scrum is disarmingly simple. The process, its
practices, its artifacts, and its rules are few, straightforward, and easy to learn. In
2001, Mike Beedle and I wrote a short, straightforward book describing Scrum:
Agile Software Development with Scrum (Prentice Hall). On the other hand,
Scrum’s simplicity can be deceptive. Scrum is not a prescriptive process; it
doesn’t describe what to do in every circumstance. Scrum is used for complex
work in which it is impossible to predict everything that will occur. Accord-
ingly, Scrum simply offers a framework and set of practices that keep every-
thing visible. This allows Scrum’s practitioners to know exactly what's going on
and to make on-the-spot adjustments to keep the project moving toward the
desired goals.

Common sense is a combination of experience, training, humility, wit, and
intelligence. People employing Scrum apply common sense every time they
find the work is veering off the path leading to the desired results. Yet most of
us are so used to using prescriptive processes—those that say “do this, then do
that, and then do this”—that we have learned to disregard our common sense
and instead await instructions.

I wrote this book to help people understand how to use Scrum as they
work on complex problems. Instead of further describing the framework and
practices of Scrum, I offer a number of case studies in which people use Scrum
to solve complex problems and perform complex work. In some of these case
studies, people use Scrum correctly and the project in question ends up achieving
their goals. In other case studies, people struggle with Scrum and their projects
are less successful. These are people to whom Scrum is not intuitive. I've
worked to understand how this can be possible. After all, Scrum is a very simple
process for managing complex projects. Compared to many traditional appro-
aches to project management, Scrum is almost effortless. Or at least I used to
think it was.

Most people responsible for managing projects have been taught a
deterministic approach to project management that uses detailed plans, Gantt
charts, and work schedules. Scrum is the exact opposite. Unlike these tools,
which practically fight against a project’s natural momentum, Scrum shows

xvii

xviii

Introduction

management how to guide a project along its optimal course, which unfolds
as the project proceeds. I've heard that traveling along a learning curve starts
from a point where you have to think everything through step by step and
ends at a point where you can perform the work in question unconsciously.
This is particularly true of Scrum because those steeped in traditional manage-
ment practices have to unlearn many of them.

I recently helped a software development company adopt Scrum. Initially,
the company had planned for two releases over the next 12 months. Because of
its success in using Scrum, however, most of the functionality from the two
releases was ready within 5 months. But when I visited the engineering organi-
zation, the staff was working weekends and nights to put even more function-
ality into the release. Even though the engineers had been wildly successful,
marketing still was berating them for not delivering enough and living up to
“commitments.” The engineers were feeling guilty for not doing everything that
marketing said was necessary, and they were ruining their personal lives to try
to do everything marketing requested. This pathology had persisted despite the
fact that the engineers had already accomplished the work involved in two
releases in the time usually allotted for one. Old habits die hard.

Another change that Scrum engenders can best be described by thinking
of how a house is built. The buyer of the house cannot move into the house
until the entire house is completed. Suppose that there were an incremental,
iterative approach for home construction. Suppose that using this approach,
houses were built room by room. The plumbing, electrical, and infrastructure
would be built in the first room and then extended to each room as it was con-
structed. Buyers could move in as soon as they had decided that enough rooms
had been completed. Then additional rooms could be constructed depending
on the needs of the buyer. Scrum lets buyers have software built in this fashion.
While the infrastructure is deployed, pieces of functionality are delivered to
buyers so that their organizations can start using parts of the system early in the
development cycle. As the system is experienced, the buyer can determine
which parts of the system will be constructed in what order and use these parts
as they are completed. Buyers might even choose not to have the entire system
built if they are satisfied with only a subset of the total functionality they’d ini-
tially envisioned.

I used to teach people the theory, practices, and rules of Scrum. Now I
teach them what Scrum feels like as it is implemented. I teach them how to rec-
ognize when things are going right and when they are going wrong. I provide
exercises and discussions that let them experience the epiphanies so that they
know what Scrum should feel like. Just as you don’t really know what it’s like
to be someone else until you've walked however many miles in his or her

Introduction xix

shoes, you might not fully understand Scrum until you implement it yourself.
But as you read this book, you will begin to understand what Scrum feels like
and how you might feel using Scrum in your organization.

How should you read this book, which is in essence a book of case studies
about Scrum? I've provided some of the background for each story, described
how Scrum was used in that situation, and presented some of the lessons that
can be learned from the way Scrum was used. The case studies are organized
into topical chapters, through which you should feel free to browse. The chapter
topics are Chapter 1, “Backdrop: The Science of Scrum; Chapter 2, “New
Management Responsibilities”; Chapter 3, “The ScrumMaster”; Chapter 4,
“Bringing Order from Chaos”; Chapter 5, “The Product Owner”; Chapter 6,
“Planning a Scrum Project”; Chapter 7, “Project Reporting”; Chapter 8, “The
Team”; and Chapter 9, “Scaling Projects Using Scrum.” Sometimes I indicate that
the background for a story has been provided in a previous chapter.

Appendix A, “Rules,” lists the rules that are used in various Scrum prac-
tices and meetings. These rules hold Scrum together. If you are familiar with
Scrum but you come across terms that you do not fully understand, you should
look them up in Appendix B, “Definitions.” If you are unfamiliar with Scrum,
you should read Chapter 1, “Backdrop: The Science of Scrum,” for a recap of
Scrum theory, flow, practices, artifacts, roles, and meetings. Appendix C,
“Resources,” provides a list of resources that you might want to access to get a
deeper understanding of Scrum.

Appendix D, “Fixed-Price, Fixed-Date Contracts,” and Appendix E, “Capa-
bility Maturity Model,” are the odd ducks of this book. They contain material
that might help you use Scrum in rather unique circumstances that aren’t
described in the case studies that constitute the body of this book.

Contents

Foreword: Mike Cohn
Foreword: Mary Poppendieck
Acknowledgments
Introduction

1 Backdrop: The Science of Scrum

Empirical Process Control
Complex Software Development
The Skeleton and Heart of Scrum
Scrum Roles
Scrum Flow
Scrum Artifacts
Product Backlog
Sprint Backlog
Increment of Potentially Shippable Product Functionality

2 New Management Responsihilities

The ScrumMaster at MetaEco
The Situation at MetaEco
The ScrumMaster in Action
The ScrumMaster’s Value
The Product Owner at MegaEnergy
The Situation at MegaEnergy
The Product Owner in Action
The Product Owner's Value
The Team at Serviceist
The Situation at Serviceist
The Team in Action
The Team’s Value

3 The ScrumMaster

The Untrained ScrumMaster at Trey Research
What Was Wrong
Lessons Learned

vi Contents

The Untrained ScrumMaster at Litware
What Was Wrong
Lessons Learned

Overzealous at Contoso.com
Being Right Isn’t Everything
Lessons Learned

Wolves at MegaFund
The Wolves Strike
Lessons Learned

4 Bringing Order from Chaos

The Situation at Serviceist
Application of Scrum
Lessons Learned
The Situation at Tree Business Publishing
Application of Scrum
Lessons Learned
The Situation at Lapsec
Application of Scrum
Lessons Learned

5 The Product Owner

Customer and Team Collaboration

Getting Service1st’s Management Back in Action
Sprint Review Meeting
Lessons Learned

Fixing the Problem of XFlow at MegaFund
Addressing the Problem
Lessons Learned

Company Goals at TechCore
How Scrum Helped TechCore
Lessons Learned

Company Goals at MegaBank Funds Transfer System
How Scrum Helped FTS
Lessons Learned

29
29

30
31

31

32
33
34
35
37

38
39
41
42
44
45
46
48
50

53

54
55.
56
57
57
58
60
60
61
63
63
64
64

Contents vil

Planning a Scrum Project 67
Managing Cash at MegaBank 69

The Two-Day Sprint Planning Meeting 69

Lessons Learned ' 73

Certified ScrumMasters Take on Return on Investment (ROI) 74
MLBTix 74

How the Teams Respond to This Exercise 78

Lessons Learned 80
Project Reporting—Keeping Everything Visible 83
New Project Beporting at the MegaEnergy Title Project 84
Solving the Problem 86

Lessons Learned 91

Getting More Information at MegaBank 92
Solving the Problem 93

Lessons Learned 94

Not Everything Is Visible at Service1st 95

The Reality 96

Lessons Learned 98

The Team 101
Team Formation at Service1st 102
Learning Who’s the Boss: The Transition 104
Learning to Engineer Better: The Transition 105
Learning to Self-Organize: The Transition 107
Estimating Workload: The Transition 110
Learning to Have Fun While Working: The Transition 114

Giving the Team a Chance at WebNewSite 116
Background 116

Lessons Learned ‘ 117
Scaling Projects Using Scrum 119
Scaling at MegaFund 120
Approach 120

Lessons Learned 121

viii

(r/

Contents

Scrum Scaling
Scaling at Medcinsoft
Approach
Bug Fixing
Lessons Learned
Rules

Sprint Planning Meeting
Daily Scrum Meeting

Sprint

Sprint Review Meeting
Sprint Retrospective Meeting

Definitions
Resources
Fixed-Price, Fixed-Date Contracts

How to Gain Competitive Advantage
How to Ignore Competitive Advantage

Capability Maturity Model (CMM)
CMM at MegaFund
SEl, CMM, and Scrum

Index

122
124
126
130
131
133
133
135
136
137
138

141
145
147

148
149

151
151
152

165

