20 LI 15 7 i

“HZ Books |

BN

i% 1

brar

PEARSON 2 Linux W i fl

=

£ i HH 1 e iny mermtin Iﬁ’,;
S *F — (YRR - 3R

St

S W

Linux Kernel Development (Third Edition)

(%) RobertLove #

LT b AR A

China Machine Press

530

Linux Kernel Development (Third Edition)

(%) Robert Love #

Pl # T v B AR #

China Machine Press

English reprint edition copyright © 2011 by Pearson Education Asia Limited and China
Machine Press.

Original English language title: Linux Kernel Development, Third Edition (ISBN 978-0-672-
32946-3) by Robert Love, Copyright © 2010.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as
Addison-Wesley.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong
Kong SAR and Macau SAR).

Z 33 308 E1 AR By Pearson Education Asia Ltd. #4UHUM Tk AR M5 AR . RBHMRE
BEFT, FEUAEMHRERMZPEEEAR.
. R THEARFMEEAN (FAEPEEER, RSN TREMFREEHBE) #HE
A 453 FNY 4 Pearson Education (35437 HAREH) BEBithinE, TAREZTHHE,
IR LB DyiRiS b B RR

A, @R
FHREWE AR HRGA RIS

AHFIBIZE . B 01-2010-7526 |
HBERRE (CIP) #ig

Linux ik iH 5% (ECK - B3MR) / (£) #K (Love, R.) ¥ —Ibm: BTk H
MRit, 20111
$54JH3C: Linux Kernel Development, Third Edition

ISBN 978-7-111-32792-9
L.L. IL - TIL Linﬁx&ﬁsgﬁ - Eﬁi&ﬁ ~#x IV.TP316.89
A E S ECIPHAR I (2010) 2462555

FLE ok B AR HE LR rmE 5 EA#228 WREAES 100037)
g BiRE

R FALENRIABR 2 R ENR

20114E 1 A B TR 1 REN R

170mm x 242mm « 29E[15%

frE$S . ISBN 978-7-111-32792-9

EYr: 69.005¢

WA+, AR, AH. KR, HEHE2T5HiER
ERR#h2k. (010) 88378991, 88361066

WgHhek. (010) 68326294, 88379649, 68995259
HeRathek . (010) 88379604

i%#1EH : hzjsj@hzbook.com

Foreword

As the Linux kernel and the applications that use it become more widely used, we are
seeing an increasing number of system software developers who wish to become involved
in the development and maintenance of Linux. Some of these engineers are motivated
purely by personal interest, some work for Linux companies, some work for hardware
manufacturers, and some are involved with in-house development projects.

But all face a common problem: The learning curve for the kernel is getting longer
and steeper. The system is becoming increasingly complex, and it is very large. And as the
years pass, the current members of the kernel development team gain deeper and broader
knowledge of the kernel’s internals, which widens the gap between them and newcomers.

I believe that this declining accessibility of the Linux source base is already a problem
for the quality of the kernel, and it will become more serious over time. Those who care
for Linux clearly have an interest in increasing the number of developers who can con-
tribute to the kernel.

One approach to this problem is to keep the code clean: sensible interfaces, consistent
layout, “do one thing, do it well,” and so on. This is Linus Torvalds’ solution.

The approach that I counsel is to liberally apply commentary to the code: words that
the reader can use to understand what the coder intended to achieve at the time. (The
process of identifying divergences between the intent and the implementation is known
as debugging. It is hard to do this if the intent is not known.)

But even code commentary does not provide the broad-sweep view of what a major
subsystem is intended to do, and of how its developers set about doing it. This, the start-
ing point of understanding, is what the written word serves best. _

Robert Love’s contribution provides a means by which experienced developers can
gain that essential view of what services the kernel subsystems are supposed to provide,
and of how they set about providing them. This will be sufficient knowledge for many
people: the curious, the application developers, those who wish to evaluate the kernel’s
design, and others.

But the book is also a stepping stone to take aspiring kernel developers to the next
stage, which is making alterations to the kernel to achieve some defined objective. [
would encourage aspiring developers to get their hands dirty: The best way to under-
stand a part of the kernel is to make changes to it. Making a change forces the developer
to a level of understanding which merely reading the code does not provide. The serious
kernel developer will join the development mailing lists and will interact with other
developers. This interaction is the primary means by which kernel contributors learn

iv. Foreword

and stay abreast. Robert covers the mechanics and culture of this important part of
kernel life well.

Please enjoy and learn from Robert’s book. And should you decide to take the next
step and become a member of the kernel development community, consider yourself
welcomed in advance. We value and measure people by the usefulness of their contribu-
tions, and when you contribute to Linux, you do so in the knowledge that your work is -
of small but immediate benefit to tens or even hundreds of millions of human beings.
This is a most enjoyable privilege and responsibility.

Andrew Morton

Preface

When I was first approached about converting my experiences with the Linux kernel
into a book, I proceeded with trepidation. What would place my book at the top of its
subject? I was not interested unless I could do something special, a best-in-class work.

I realized that I could offer a unique approach to the topic. My job is hacking the kernel.
My hobby is hacking the kernel. My love is hacking the kernel. Over the years, I have accu-
mulated interesting anecdotes and insider tips. With my experiences, I could write a book on
how to hack the kernel and—just as important—how #not to hack the kernel. First and fore-
most, this is 2 book about the design and implementation of the Linux kernel. This book’s
approach differs from would-be competitors, however, in that the information is given with
a slant to learning enough to actually get work done—and getting it done right. I am a
pragmatic engineer and this is a practical book. It should be fun, easy to read, and useful.

I hope that readers can walk away from this work with a better understanding of the
rules (written and unwritten) of the Linux kernel. I intend that you, fresh from reading
this book and the kernel source code, can jump in and start writing useful, correct, clean
kernel code. Of course, you can read this book just for fun, too.

That was the first edition. Time has passed, and now we return once more to the fray.
This third edition offers quite a bit over the first and second: intense polish and revision,
updates, and many fresh sections and all new chapters. This edition incorporates changes in
the kernel since the second edition. More important, however, is the decision made by the
Linux kernel community to not proceed with a 2.7 development kernel in the near to mid-
term.' Instead, kernel developers plan to continue developing and stabilizing the 2.6 series.
This decision has many implications, but the item of relevance to this book is that there is
quite a bit of staying power in a contemporary book on the 2.6 Linux kernel. As the Linux
kernel matures, there is a greater chance of a snapshot of the kernel remaining representative
long into the future. This book functions as the canonical documentation for the kernel,
documenting it with both an understanding of its history and an eye to the future.

Using This Book

Developing code in the kernel does not require genius, magic, or a bushy Unix-hacker
beard. The kernel, although having some interesting rules of its own, is not much differ-
ent from any other large software endeavor.You need to master many details—as with
any big project—but the differences are quantitative, not qualitative. '

1 This decision was made in the summer of 2004 at the annual Linux Kernel Developers Stummit in
Ottawa, Canada. Your author was an invited attendee.

vi

Preface

It is imperative that you utilize the source. The open availability of the source code
for the Linux system is a rare gift that you must not take for granted. It is not sufficient
only to read the source, however. You need to dig in and change some code. Find a bug
and fix it. Improve the drivers for your hardware. Add some new functionality, even if it
is trivial. Find an itch and scratch it! Only when you write code will it all come together.

Kernel Version

This book is based on the 2.6 Linux kernel series. It does not cover older kernels, except
for historical relevance. We discuss, for example, how certain subsystems are implemented
in the 2.4 Linux kernel series, as their simpler implementations are helpful teaching aids.
Specifically, this book is up to date as of Linux kernel version 2.6.34. Although the ker-
nel is a moving target and no effort can hope to capture such a dynamic beast in a time-
less manner, my intention is that this book is relevant for developers and users of both
older and newer kernels.

Although this book discusses the 2.6.34 kernel, I have made an effort to ensure the
material is factually correct with respect to the 2.6.32 kernel as well. That latter version
is sanctioned as the “enterprise” kernel by the various Linux distributions, ensuring we
will continue to see it in production systems and under active development for many
years. (2.6.9,2.6.18, and 2.6.27 were similar “long-term” releases.)

Audience

This book targets Linux developers and users who are interested in understanding the
Linux kernel. It is not a line-by-line commentary of the kernel source. Nor is it a guide
to developing drivers or a reference on the kernel API. Instead, the goal of this book is
to provide enough information on the design and implementation of the Linux kernel
that a sufficiently accomplished programmer can begin developing code in the kernel.
Kernel development can be fun and rewarding, and I want to introduce the reader to
that world as readily as possible. This book, however, in discussing both theory and appli-
cation, should appeal to readers of both academic and practical persuasions. I have always
been of the mind that one needs to understand the theory to understand the application,
but I try to balance the two in this work. I hope that whatever your motivations for
understanding the Linux kernel, this book explains the design and ‘implementation suffi-
ciently for your needs.

Thus, this book covers both the usage of core kernel systems and their design and
implementation. I think this is important and deserves a moment’s discussion. A good
example is Chapter 8,“Bottom Halves and Deferring Work,” which covers a component
of device drivers called bottom halves. In that chapter, I discuss both the design and
implementation of the kernel’s bottom-half mechanisms (which a core kernel developer
or academic might find interesting) and how to actually use the exported interfaces to
implement your own bottom half (which a device driver developer or casual hacker can
find pertinent). I believe all groups can find both discussions relevant. The core kernel

Preface

developer, who certainly needs to understand the inner workings of the kernel, should
have a good understanding of how the interfaces are actually used. At the same time, a
device driver writer can benefit from a good understanding of the implementation
behind the interface.

This is akin to learning some library’s API versus. studying the actual implementation
of the library. At first glance, an application programmer needs to understand only the
API—it is often taught to treat interfaces as a black box. Likewise, a library developer is
concerned only with the library’s design and implementation. I believe, however, both
parties should invest time in learning the other half. An application programmer who
better understands the underlying operating system can make much greater use of it.
Similarly, the library developer should not grow out of touch with the reality and practi-
cality of the applications that use the library. Consequently, I discuss both the design and
usage of kernel subsystems, not only in hopes that this book will be useful to either
party, but also in hopes that the whole book is useful to both parties.

I assume that the reader knows the C programming language and is familiar with
Linux systems. Sotne experience with operating system design and related computer sci-
ence topics is beneficial, but I try to explain concepts as much as possible—if not, the
Bibliography includes some excellent books on operating system design.

This book is appropriate for an undergraduate course introducing operating system
design as the applied text if accompanied by an introductory book on theory. This book
should fare well either in an advanced undergraduate course or in a graduate-level
course without ancillary material.

Third Edition Acknowledgments

Like most authors, [did not write this book in a cave, which is a good thing, because
there are bears in caves. Consequently many hearts and minds contributed to the com-
pletion of this manuscript. Although no list could be complete, it is my sincere pleasure
to acknowledge the assistance of many friends and colleagues who provided encourage-
ment, knowledge, and constructive criticism.

First, I would like to thank my team at Addlson—Wesley and Pearson who worked
long and hard to make this a better book, particularly Mark Taber for spearheading this
third edition from conception to final product; Michael Thurston, development editor;
and Tonya Simpson, project editor.

A special thanks to my technical editor on this. edition, Robert P. J. Day. His insight,
experience, and corrections improved this book immeasurably. Despite his sterling effort,
however, any remaining mistakes remain my own. I have the same gratitude to Adam
Belay, Zack Brown, Martin Pool, and Chris Rivera, whose excellent technical editing
efforts on the first and second editions still shine through.

Many fellow kernel developers answered questions, provided support, or simply wrote
code interesting enough on which to write a book. They include Andrea Arcangeli, Alan
Cox, Greg Kroah-Hartman, Dave Miller, Patrick Mochel, Andrew Morton, Nick Piggin,
and Linus Torvalds.

vii

viii

Preface

A big thank you to my colleagues at Google, the most creative and intelligent group
with which I have ever had the pleasure to work. Too many names would fill these pages
if I listed them all, but I will single out Alan Blount, Jay Crim, Chris Danis, Chris
DiBona, Eric Flatt, Mike Lockwood, San Mehat, Brian Rogan, Brian Swetland, Jon
Trowbridge, and Steve Vinter for their friendship, knowledge, and support.

Respect and love to Paul Amici, Mikey Babbitt, Keith Barbag, Jacob Berkman, Nat
Friedman, Dustin Hall, Joyce Hawkins, Miguel de Icaza, Jimmy Krehl, Doris Love, Linda
Love, Brette Luck, Randy O’Dowd, Sal Ribaudo and mother, Chris Rivera, Carolyn
Rodon, Joey Shaw, Sarah Stewart, Jeremy VanDoren and family, Luis Villa, Steve Weisberg
and family, and Helen Whisnant.

Finally, thank you to my parents for so much, particularly my well-proportioned ears.
Happy Hacking!

Robert Love
Boston

About the Author

Robert Love is an open source programmer, speaker, and author who has been using
and contributing to Linux for more than 15 years. Robert is currently senior software
engineer at Google, where he was a member of the team that developed the Android
mobile platform’s kernel. Prior to Google, he was Chief Architect, Linux Desktop, at
Novell. Before Novell, he was a kernel engineer at MontaVista Software and Ximian.

Robert’s kernel projects include the preemptive kernel, the process scheduler, the
kernel events layer, inotify, VM enhancements, and several device drivers.

Robert has given numerous talks on and has written multiple articles about the Linux
kernel. He is a contributing editor for Linux Journal. His other books include Linux
System Programming and Linux in a Nutshell.)

Robert received a B.A. degree in mathematics and a B.S. degree in computer science
from the University of Florida. He lives in Boston.

Table of Contents

1 Introduction to the Linux Kemel 1
History of Unix 1
Along Came Linus: Introduction to Linux 3
Overview of Operating Systems and Kernels 4
Linux Versus Classic Unix Kernels 6
Linux Kernel Versions 8
The Linux Kernel Development Community 10
Before We Begin 10

2 Getting Started with the Kermel 11
Obtaining the Kernel Source 11
Using Git 11
Installing the Kernel Source 12
Using Patches 12
The Kernel Source Tree 12
Building the Kernel 13
Configuring the Kernel 14
Minimizing Build Noise 15
Spawning Multiple Build Jobs 16 -
Installing the New Kernel 16
A Beast of a Different Nature 16
No libc or Standard Headers 17
GNUC 18
Inline Functions 18
Inline Assembly 19
Branch Annotation 18
No Memory Protection 20
No (Easy) Use of Floating Point 20
Smali, Fixed-Size Stack 20
Synchronization and Concurrency 21
importance of Portability 21
Conclusion 21

x Contents

3 Process Management 23

The Process 23

Process Descriptor and the Task Structure 24
Allocating the Process Descriptor 25
Storing the Process Descriptor 26
Process State 27
Manipulating the Current Procass State 29
Process Context 29
The Process Family Tree 29

Process Creation 31
Copy-onWrite 31
Forking 32
vfork() 33

The Linux implementation of Threads 33
Creatihg Threads 34
Kernel Threads 35

Process Termination 36
Removing the Process Descriptor 37
The Dilemma of the Parentless Task 38
Conclusion 40

4 Process Scheduling 41
Multitasking 41
Linux’'s Process Scheduler 42
Policy 43 _
I/0-Bound Versus Processor-Bound Processes 43
. Process Priority 44
Timeslice 45
The Scheduling Policy in Action 45
The Linux Scheduling Algorithm 46
Scheduler Classes 46
Process Scheduling in Unix Systems 47
Fair Scheduling 48
The Linux Scheduling Implementation 50
Time Accounting 50
The Scheduler Entity Structure 50
The Virtual Runtime 51

Process Selection 52
Picking the Next Task 53
Adding Processes to the Tree 54
Removing Processes from the Tree - 56
The Scheduler Entry Point - 57
Sleeping and Waking Up 58
Wait Queues 58
Waking Up 61
Preemption and Context Switching 62
User Preemption 62
Kernel Preemption 63
Real-Time Scheduling Policies 64
Scheduler-Related System Calls 65

Scheduling Policy and Priority-Related
System Calls 66 ' '

Processor Affinity System Calls 66
Yielding Processor Time 66
Conclusion 67 '

System Calls 69

Communicating with the Kernel 69

APIs, POSIX, and the C Library 70

Syscalls 71
System Call Numbersv 72
System Call Performance 72

System Call Handlér 73.
Denoting the Correct System Call 73
Parameter Passing 74

System Call Implementation 74
Implementing System Calls - 74
Verifying the Parameters 75

System Call Context 78 ,
Final Steps in Binding a System Call 79
Accessing the System Call from User-Space 81
Why Not to Implement a System Call 82

Conclusion 83 T

Contents xi

xii Contents

6 Kemel Data Structures 85
Linked Lists 85
Singly and Doubly Linked Lists 85
Circular Linked Lists 86
Moving Through a Linked List 87
The Linux Kernel's Implementation 88
The Linked List Structure 88
Defining a Linked List 89
List Heads 90
Manipulating Linked Lists 90
Adding a Node to a Linked List 90
Deleting a Node from a Linked List 91
Moving and Splicing Linked List Nodes 92
Traversing Linked Lists 93 '
The Basic Approach 93 '
The Usable Approach 93
Iterating Through a List Backward 94
lterating While Removing 95
Other Linked List Methods 96
Queues 96
kfifo 97
Creating a Queue 97
Enqueuing Data 98
Dequeuing Data 98 ,
Obtaining the Size of a Queue 98
Resetting and Destroying the Queue 99
Example Queue Usage 99 B
Maps 100 R
Initializing an idr 101
Allocating a New UID 101
Looking Upa UID 102
Removing a UID 103
Destroying an idr 103
Binary Trees 103 *
Binary Search Trees 104
‘Self-Balancing Binary Search Trees 105
Red-Black Trees 105
rbtrees 106

Contents

What Data Structure to Use, When 108
Algorithmic Complexity 109
Algorithms 109_
Big-O Notation 109
Big Theta Notation 109
Time Complexity 110
Conclusion 111

interrupts and Interrupt Handlers 113
Interrupts 113
Interrupt Handlers 114
Top Halves Versus Bottom Halves 115
Registering an Interrupt Handler 116
interrupt Handler Flags 116
An Interrupt Exarhple 117
Freeing an Interrupt Handler 118
writing an Interrupt Handler 118
Shared Handlers 119
A Real-Life Interrupt Handler 120
Interrupt Context 122 '
Implementing Interrupt Handlers 123
/proc/interrupts 126
Interrupt Control 127 .
Disabling and Enabling Interrupts 127
Disabling a Specific Interrupt Line 129
Status of the Interrupt System 130
Conclusion 131 |

Bottom Halves and Deferring Work 133
Bottom Halves 134 ‘
Why Bottom Halves? 134
A World of Bottom Halves 135
The Original “Bottom Half” 135
Task Queues 135
Softirgs and Tasklets 136
Dispelling the Confusion 137

xii

xiv Contents

Softirgs 137
Implementing Softirgs 137
The Softirqg Handler 138
Executing Softirgs 138
Using Softirgs 140
Assigning an Index 140
Registering Your Handler 141
Raising Your Softirq 141
Tasklets 142
implementing Tasklets 142
The Tasklet Structure 142
Scheduling Tasklets 143
Using Tasklets 144
Declaring Your Tasklet 144
Writing Your Tasklet Handler 145
Scheduling Your Taskiet 145
ksoftirgd 146 -
The Old BH Mechanism 148
Work Queues 149
Implementing Work Queues 149
Data Structures Representing the Threads 149
Data Structures Representing the Work 150
Work Queue Implementation Summary 152
Using Work Queues 153
Creating Work 153
“Your Work Queue Handler - 153
Scheduling Work 153
Flushing Work 154
Creating New Work Queues 154 -
The Old Task Queue Mechanism 155
Which Bottom Half Should | Use? 156
Locking Between the Bottom Halves ~ 157
Disabling Bottom Halves 157
Conclusion 159

9 An Introduction to Kernel Synchronlzation 161
Critical Regions and Race Conditions 162
Why Do We:Need Protection? 162
The Single Variable 163

10

 Contents

Locking 165
Causes of Concurrency 167
Knowing What to Protect 168
Deadlocks 169
Contention and Scalability 171
Conciusion 172

Kernel Synchronlzation Methods 175
Atomic Operations 175
Atomic Integer Operations 176
64-Bit Atomic Operations 180
Atomic Bitwise Operations 181
Spin Locks 183
Spin Lock Methods 184
Other Spin Lock Methods 186
Spin Locks and Bottom Halves 187
Reader-Writer Spin Locks 188
Semaphores 190
Counting and Binary Semaphores 191
Creating and Initializing Semaphores 192
Using Semaphores 193
Reader-Writer Semaphores 194
Mutexes 195
Semaphores Versus Mutexes 197
Spin Locks Versus Mutexes 197
Completion Variables 197
BKL: The Big Kernel Lock 198
Sequential Locks 200
Preemption Disabling 201
Ordering and Barriers 203
Conclusion 206

Timers and Time Management 207
Kernel Notion of Time 208
The Tick Rate: HZ 208
The ideal HZ Value 210
Advantages with a Larger HZ 210
Disadvantages with a Larger HZ 211

Xv

xvi Contents

Jiffies 212
Internal Representation of Jiffies 213
Jiffies Wraparound 214
User-Space and HZ 216
Hardware Clocks and Timers 216
Real-Time Clock 217
System Timer 217
The Timer Interrupt Handler 217
The Time of Day 220
Timers 222
Using Timers 222
Timer Race Conditions 224
Timer Implementation 224
Delaying Execution 225
Busy Looping 225
Small Delays 226
schedule_timeout() 227
schedule_timeout() Implementation 228
Sleeping on a Wait Queue, with a Timeout 229
Conclusion 230

12 Memory Management 231
Pages 231
Zones 233
Getting Pages 235
Getting Zeroed Pages 236
Freeing Pages 237
kmalloc() 238
gfp_mask Flags 238
Action Modifiers 239
Zone Modifiers 240
Type Flags 241
kfree() 243
vmalloc() 244
Slab Layer 245
Design of the Slab Layer 246

