Software Development
on Adrenalin

© Kenneth N, McKay

NLIC 2970670285

. g Ty %
o $ '»a[':a‘ - gt
i ‘”"‘.!iv
fae
.

@ ;t?:z:-x*"'ﬂ:)fé#

ING INSTITUTE OF TECHNOLO

Software Development
on Adrenalin

Kenneth N. McKay

/

e —
I 9 “\’v
b 128 [T e N
/'Y /5] ‘\
Fiv
-

.4 o =, .l . \,
.'&-:CQ'\ = : = / oY
VAW
{J N s
L sty
!/:’,7‘-
N LS
M"’mnms

".’U N
L L |
3 ~7%
4 ereigl
i< §
ﬁ”"{
! s

;M/

il

JIMIERONIE

NLIC 2970670

RO T I LK F 4% 42

BEIJING INSTITUTE OF TECHNOLOGY PRESS

BRER SR8R

EBEMMKE (CIP) HiE

W R FF & = Software Development on Adrenalin: #3C/ (1) Yl
(McKay, K. N.) 2. —Jbnt: Jbat3 T R2£H AR, 2011.3
ISBN 978 -7 —5640 —4228 -8

[. O 0. OF- M. O%HFk-¥x . OTP311.52
o [A 4548 CIP B+ (2011) 45 012869 =

AR E R A FRICE EF: 01 -2011 -0382 &

HR&ETT / LB TR AL

db/ AeRAERER PN R A S 5

e 4% / 100081

22} 15 /7 (010)68914775(I/A2E) 68944990 (Ht&sH.ly) 68911084 (B RSER)
o 3t / http: // www. bitpress. com. cn

2/ 2RSS

B R/ RRETHERELENRIA BRA

FFOA /78T ZHK x1092 K 1/16

EN 2 /2225

2 /439 T+

B R /2011483 A% 1R 2011 4E 3 A% 1 KEIRI

BN %/ 1~1500 RERX / JAHRL
E - M/ 68.0070 RAEENH / B8

BB HIAENKRBER, KitHFTIFHR

Acknowledgements

There are a number of people who have inspired or provided feedback on this book. I will
likely have forgotten some and wish to apologize in advance.

Some of the writing in the text has its origin in other pieces I have written or co-written with
co-authors such as Gary Black and Vincent Wiers. Some of the writing is extracted or inspired from
research work I have done with a number of undergraduate and graduate students. I worked with
Jennifer Jewer on risk management ideas for software project management. And, then there was
Louise Liu, David Tse, Sylvia Ng, and Hao Xin. They worked with me as I initially formalized my
value framework for a course I taught and by working with them, the framework benefited.

While I have re-interpreted and re-crafted previous writings, it is possible that some bits will
bear some resemblance to scattered text I have crafted or co-crafted before. Some of the Agile
Overview and Ethnographic Methods sections come to mind.

The writing of this text, at this time, can be attributed to Dr. Alan George who gave me an
opportunity to do a reasonably large project that fits the methodology described in this book. This
project in turn led to an opportunity to try to teach students and others associated with the project,
the principles and concepts behind the project itself; hence the book. Alan also provided input on
some of the content, such as the ideal characteristics of software.

Several individuals are named within the text — people who radically altered my thinking and
affected my IT skill sets: Brian Coleman, Romney White, and David Pryke.

Others who have contributed to the quality and content of the text, directly or indirectly
include: Will Gough (who has had an ongoing software engineering dialog with me lasting well
over a decade), Patrick Matlock, Jesse Rodgers, Doug Suerich, and Trevor Grove. The first set of
students exposed to the text have also contributed in a number of ways: Nick Guenther, Ivan Surya,
Ivan Salgado Patarroyo, Chris Carignan, Shanti Mailvaganam, Yatin Manerkar, Scott MacLellan,
Rajesh Swaminathan, and Jarek Piorkowski.

Thanks also go to the Department of Cultural and Educational Experts, the State Administration
of Foreign Experts Affairs, and the International Office of Beijing Institute of Technology for
giving me the financial support to publish this book.

‘Table of Contents

Part I S/W Development: a Personal View

(0775 07 (o) R PPN 2
Chapter 1 Introduction .. 3
1 1 ZenTai ... 8
1 .2 Mushing .. 9
Chapter 2 ngh Velocity Mushing ... 14
21 LOW Volume VS. ngh Volume Development ... 14
2.2 From a Toothpick to a Decorated Living Christmas Tree -« --ssseeessesssininncniinne. 16
213 Aglle&Extreme—an (01775 07 (o) AR T PP PP PRSP 17
24 Preconditions ... 20
2.5 Bite Sized 2 T 6 e TR O R 2,
Chapter 3 Experience and Expertise .. 25

Part I Understanding the Problem & Thinking Through
the Conceptual Solution

OVerVieW ... 34
Chapter 4 Understanding THE Probleqm -« -cocererererererrmnmmeriiiiiiisiss ettt rnee e 35
4.1 Understanding ... 35
4.2 Good Questions ... 39
4.3 Questioning and Understanding ... 40
4.4 Listening Is Reading .. 45
Chapter 5 Modeling ... 51
5.1 Abstract Modeling — the Art of Seeing ... 51
52 Flnlte State Automata .. 55
53 Process Mapplng ... 56
54 Ishikawa’s Fishbone Diagrams .. 64
Chapter 6 Field ANalysis -+« -+ -+ wsesserssesessssssesiesssisisiiis i 67
6_ l Ethﬂographic Methods ... 6’7

6'2 Analysis Under HOStile Fire ... 71

2 » Software Development on Adrenalin

6.3 The Quick “DIive-by’ ANalysis -« - st tsseretsresssssmtisititisitisisi s 27
Chapter 7 USEr ENGagement -+« - s tssetsssses sttt ittt s 82
7.1 Stating the ODBVIOUS «++++sseessessestestssuntiits ettt 82
7.2 Styles Of EIGAGEIMEnt -+t sesesessesesreststustitt ittt 83
7.3 Other Sources of Insight — Support and QA «+++++++ssessessetismssintisitinistisii s 89
74 Stakeholder Checklists «s--:s«ss+sssoressarssesssassasvaessssassssressssassssnssnarssansasessasassssasossassssasassos 90
7.5 Feedback and Suggestions — Caveat Emptor::-: - tssssessstusssitisiniitiniiiniiiiis 93
Chapter 8 ZenTai — the Value EQUAtion « -+ ++++:ssssessetsssittisitisiii it 97
8.1 ML —— Value -veeeerrrrereeeeennrree ettt 97
89, THe VAIIE: FrameWokts: s« «vssssssuvemssvsnsre savasnssarasssson savssnsassssnsanssesinsasss soasss ioe s s iassossssiss 100
8.3 Lifle il «++eeveerereeessemtessses ettt 104
8.4 Society or Organizational StIUCKUTE -+« +++wtsessestsssstssiittisiititisii s 108
8.5 THECTACTIONG s <wssvwvorams ssssunmasvauvaussassassassrsunssossasssssosssssnnsss sasasdessods ¥ vasuviaRevsesTResosassvssne 110
8.6 TNLOTMIAtION s+ ev swsensrssssorssnssrsavsrns ssvsnsssesonsess sossnssass sinuronsovsussosssinnessssoss sasssssTuassssasa ssvesssvs 115
8.7 TMPACE, VAIUE ++++++erereseesesesseses ettt 121
8.8 Utility OF FUtility?« s+ eeseesestsssstssssitstiititiiiti ittt 132
8.9 Value Analysis — an EXample: -+ tseseessesessssmitisiiiiiiititiniiiiiii s 134
8.10 Process Models and Value Mapping <+ +s+ssssesessessssenmstisintstiniitin e 151
8.11 Exploiting EXisting TeChNOIOy «+«+++++++++sessestsssssstisstssinistiniiistisiitisitisisisin e 153
B2 C ONCIUSION: 7 sissssssspsmsssomsarvanansnnmssssses o oss sxs woaes 08 Ao R AN S EO ST AR e o o SR AP B S95 153
Chapter 9 ZenTai — the COmEIOrt ZOMme -+ +:+ssssessestsssssstissstnsinitisistsisis e 156
9.1 ﬁ,L“\ B Ty) (o)t AL LT T U P 156
0.2 Sources OF DiSCOMEGTE 1« «ssvevassssnssssussssnansas sosissdssessnssseassassisss ssasossassio wassssiaeessaass savesssnn 156
9.3 Increasing the COmFOrt Level -+t s eetrterismsmmmntiiisisii e 160
9.4 A COmMFOIt ANALYSIS -+++v+:+esssesetststssssssmt ittt 162
Chapter 10 ZenTai — the EXPerience Factor st srsestttisiniiiiitinininiisss e, 164
10.1 #XEy — EXPEIIEIICE «+ v rveererersrssssssssnestet ittt 164
102 Prior EXPEIIENCE -+ +++tstsessssssssentstsesstsisisintt sttt s 165
103 EXPEIIEIICIIE:+++++r+eertststsssseseses s ts ettt 166
Chapter 11 ZenTai — EVOIUtiOn -+ -+ wsssessersserssssssisisisssissis e 169
111 JEAK —— EVOIULION - rrereerrrrrreeernntee ettt 169
112 Envitonmental Evolution - ss-s-sssssmsusssssieessss siassesssme 5o iesaiimssas v oo ons saves 0sss 545 169
11.3 Functional Evolutions - ««++-sssssssssssvtssrsossusasssrsonssssorsssssssssnsasssssanasossossnsssessssnassssrsansassns 170
Chapter 12 Pulling It ALl Together -+ ssesessestssssmtisinistiiititiii i 173
Chapter 13 Universal ReqUITement FACOrs «« s+ sssetsersssssmtisiitstisitinisi ittt 175
13.1 The HUman ELEment +-«««+--++sssseesseeesretesiutemnitteniieaniteanitessteesssseessiesssaeesssseesssseesnnes 176
13.2 The Synthetic Element: -« st tssestsessmstinmtstiiititiit i 178

Chapter 14 ZenTai Summary ... 181

Table of Contents <

Part Il Architecture & Design

VTN i o4 3 A R 44 A5 5 V44 S 4R S8 7 oM 4 S S S VRS S T L5084
Chapter 15 UnIversal DESigns -+ -+t testrss e ittt
Chapter 16 The Big PICIUEe «+++++++rssesesssrssessems ettt
16.1 What Is Meant by the Phrase: Big PICture? -+« +tsstsstessestsstsstississsiisiisiississinsinns.
16.2 Good ATCHItECtures:s«swsssmssussssssussassess snzesssonssns fons s13ssass ssasssssssssssts sdssstshanssse s sFFsasvazsssss
16.3 Layered ANalysis -+t wssessessessmssesses it
16.4 Interface Definitions, and Protocols - -ssssrssssusmimsiitisisisisiii s
Chapter 17 Designing for CRange <+« sessestestesstsstisiisitiiis it
17.1 TECRIOIOY ++++s e +esesseesses s tes s
170 The PrOBTEIm: 5+ 68 wsssssinsees aisssssosssssssssde ssssnssss 64 Eavassusans a9t 3o g R nains 330 4 SaRHHTsonao s sy 4153
1731 TTROES &5 t354554ms s e sa a0 a3 YR 54353 SR e H R4 R S SR o5 S5 A B m S P s i
Chapter 18 Stability & RODUSHIESS -+ tsssressrsstesstessiesstisitis ittt
18.1 Levels I through V— Infrastructure Stuffl - e,
18.2 Levels VI through VI — Your Stuffl -+ ettt
Chapter 19 TempUS/TEMIPOTLS -+t testesstsstesses sttt s
Chapter 20 Task Oriented Design -+ -+ +wsstsstestessesstrs ittt s
Chapter 21 Design SUFICIENCy -+ -+ srstessesserstessrss ittt

Part [V Level VI Rapids & Mushing

OVEEVIEW +++++ersesseseessesensentessestististessessestasaaastastassestas e e s s e s et e s s e s e st e s e s et st e st et et et e st et sut et aaaentaaees
Chapter 22 IMANAEIMIEIIE +++ s+ s tess et
22.1 The Management Challenge -+« wssessssessesssmstutinissitisis e
22.2 GOOA MANAEIMIEIIE ++r+rertertssessestssestets sttt e
22.3 Strategic, Tactical, and Operational: -+ e eessrssrustmsimssti ittt s
22.4 Management SKill & Training: -« s sssessestssestrstismtintiiiiiitiiti s
Chapter 23 Risk Management -+ ----ssseeeesssserrssssssemsmssis st
23,1 RUSK AR@LYSIS +++rerreseereessess e
23,2 DIEVELOPIMIIIL +++ e sereessesees ettt
233 Operational CONSIAEIAtIONS -+ +++srssssrsssersssesssrmsssess sttt
IZA. RAGK TACTEEGRE T <x<v--s-wnwve-swmeesvassmrasasnsmusessesamnsessaess o vossosnassontos ianssoruionss iamnnans s as s owr
Chapter 24 Project MaN@GEIMENt - -+t stestrsssres sttt
24.1 Early Phases of Project Management - st eesssesssesssississtissiissiisiniins e,
242 Detailed Functionality and Planming -« -+ essesssrsssmsssmsseisssissiiinnini e
24.3 Budgets and PLams: s wseseessessemssmssms it
244 Degrees Of COrtainty «+++++wsrssessessesstms et ess ettt e

4 I Software Development on Adrenalin

24.5 Slack and Project EIastiCity «+« -+ +s+ssssssessesssessssiisniiiniiiisi s 261
24.6 Critical Pathg seeeerrerreereeeee e 263
24.7 Resource Flex1b111ty ... 264
24,8 MUItIPIE Plams:« - e eseessesessssstsstiiit b 265
24.9 Dancing with the Devil e 267
Chapter 25 Planning vs. the Plam -+ e eeesesessimiieiiiii i 273
Chapter 26 AVErsion DYNamics -+ -+ wswrsrssrssesssesimmsssascassisissi s 281
Chapter 27 Reliance on Technology <+« +ssesssessessussusissisiisiisisiis e 284
Chapter 28 User Interface PrnCIples -+ wssesesessessumisisiiiiiii e 287
Chapter 29 The TOOthPICK «++:++++++etsesrssssesttststitisi it 290
Chapter 30 FaCtOring -+ - -+ essesesesstststs ettt 203
Chapter 31 COding « s +sssstssesesesse et 297
Chapter 32 TESHIE «+++++v+s+stetststststs ettt 302
Chapter 33 TOOI STIthing <+« ++esesesesssssssssststititi ittt 305
B8] PASEIVE THELG wersesensneimnsimnnennannsnsnsnsansnnwisionsnsinesssssss cossssess sy oo s 3o vEae d5 35S RAsPwHESSHINIEEATHHS 306
B0 ACHE TOOIG e oo rwnememns vesnsnns exvunan s savvsvesss sonsmanie sussonn s snessviss §3sss os s L BN SHSRSS RS S3 308
Chapter 34 DOCUIMENEAtION +++++++++++++ssrsssssssstsssttti et 310
Chapter 35 Client and Developer Build Cycles « s sserrsessmmiiinisiiiie, 315
Chapter 36 At the Helmmr -+ +sereeresrssssmiiiiii 321
Chapter 37 Operational Control & Tracking: -+ sssssesessssemsiiiiiiniii e, 323
370 Tasks— WG DOES W GE-«wvoreomvvvressssvorersosussvissssnssesssaues s semas sEess doass itosn v sis o ss7Ea 0464 324
378 Devallod Dl Caients —. St of T ahis s s sy s s 324
37.3 Weekly Updates and Reflection -+« -+ sssrressmsenrmmmmmsiniciiiiiiicien s 325
37.4 Monthly Level Details -+« wssesessessrsrssiimiiiiiii e 325
Chapter 38 Team DIESign «+ -+ +sssssssesesssssssseieteiti ittt 397
Chapter 39 Mission CIitical SyStemg - ++++s+sssserusmtmtmsmmmisiie s 334
Chapter 40 Final TROUGRLS ++++++++ssssesessstssssmntueiinitt s 339

B R T EIICES s Fvs 5 uas o sa £ T s S’ s s d s w5 o oA s 4948 e SRR B RS s aS 3o AR DA R s SR TR SRR R b s e 341

Part |

S/W Development:

a Personal View

2 B Software Development on Adrenalin

Overview

This text is about software development that is potentially risky, causing the release of
adrenalin and the rush that is associated. The heart beat that drives the development is speeded up,
breathing rate increases, and the blood going to the muscles has more oxygen. This means that more
can be done faster and at higher levels of achievement. It is symbolic adrenalin of course. Instead of
chemicals, it is processes and ideas that speed things up and improve the muscles being used to
develop the software. It is also about the feeling that comes from delivering software that the user
values and wants to use. Software that the user will fight to keep using! It is a great feeling when
the user actually values your code. When this has happened to me, it feels like an adrenalin rush.
When both adrenalin rushes occur, it is a really good feeling and I have been fortunate throughout
my career to experience both rushes repeatedly; the rush while creating and the later rush that
comes from usage.

I have named this process of concurrently developing high value software at breakneck speed
ZenTai Mushing:

ZENTAT MUSHING

ZenTai Mushing refers to a holistic, unified way of viewing software functionality and
usability combined with a high velocity version of Agile/Extreme. You can use the ZenTai design
method with and without Mushing, and you can mush without ZenTai. The one is a what and the
other is a how. Sometimes they are both appropriate and this book describes this situation: what
they are, and how to use them together to get the dual rushes of adrenalin. When all of the variables
align, the software form, function, and journey are unique and special. This is not a magical
incantation though and there are many risks and possible rough spots, as not all people or processes
can fit or operate in this fashion. Not all projects are suitable candidates either. It will push people’s
comfort zones and challenge assumptions. Good for some. Not so good for others.

Part | introduces you to the basics of the above and the philosophy behind the text.

Chapter 1
Introduction

This particular book is the result of approximately forty years of programming and
development that has involved a wide variety of systems. It will not tell you everything you need to
know about software development. Other software engineering books I recommend are Hunt and
Thomas (2000), Glass (1997, 2003), Brooks (1995), McConnell (1996), McCarthy (1995), Jackson
(1975), and Orlicky (1969). I suggest that you check out each of these and reflect upon what the
authors are trying to get across. They are full of good suggestions and commonsense ideas. My own
objective is to complement these other books and provide additional insights.

Who am I to write such a book in the first place? What are my credentials? I do not write witty,
sarcastic blogs, issue on-line pronouncements or write about best practice, nor do I have a vast
community of followers who hang onto every word I utter. I do not do self-promotion on the
software engineering topic, and I try to avoid extrapolating off limited experiences. All I have done
is design and code systems for close to four decades. Over the years I have quietly designed and
programmed dozens of systems and software solutions ranging from operating systems and
relational databases to accounting and veterinarian systems, and probably 150’ish end user
applications based on custom toolkits I have created; sometimes as a team member, sometimes as a
single developer. I have programmed an average of approximately 20,000 lines of code per year for
more than thirty of those years, and more than once as much as 60-70,000 lines of code over a six
month period. I am a geek, a code freak and have written lots of code. In over three decades I have
failed once to deliver a project on time, on budget. No one is perfect. I like to build systems people
fight to keep using and who find value from my designs and code. The proof is in the delivered
systems and not in speculation and wild claims. I have had extended relationships with most of the
systems I have been involved with, and I have been able to see how users have used the systems
and to also see how the designs and code fared over time. I prefer to have demonstrations of skill,
not could have, should have, would have, or will do.

I am not good at too many things. You never want to hear my attempts at music of any form.
My kindergarten teacher thought my skills were so poor that she noted “difficulty in tone matching
and in rhythms.” How bad must you be to have this explicitly noted on your report card? In
kindergarten? Nor would you like to see me dance, play sports, or attempt many other feats. And,
my backyard shed went together in a scene from a comedy skit. However, I do seem to be good at

4 B Software Development on Adrenalin

software and software related activities. In my late-forties, a company executive with a firm I was
interacting with nicknamed me Code-Boy.

During these many years I have evolved a specific style and approach. There are better
programmers and there are better designers. There is always someone better. It is also good to work
with better, smarter people, and I have been lucky to have worked with a number who have
provided many lessons. I do not know if different is better, but it seems that I think and do things
differently. I have been told this many times. Perhaps. Since I am not someone else, it is hard for
me to judge others’ thought processes. ZenTai Mushing is my attempt at describing the method
behind my madness. ZenTai Mushing appears to be a way to consistently understand what is needed,
and then craft the code that provides a unique, high value user experience that is obtained in very
short order. The resulting software has demonstrated high quality, has been used for long periods of
time with evolutionary changes, and has surpassed almost all costs and time expectations.

I am now reaching the end of my programming career and I finally feel ready to put words and
thoughts on paper. I had actually planned to retire from coding when I turned fifty, but I have
continued for various reasons. In the last two years I have done quite a bit of sustained coding, over
150k lines of code and it has allowed me to reflect once again on what I do and how I do it. The
first draft of this book was completed just as I started coding again. Instead of a book written by
someone with a few years of experience thinking that they are an expert and are capable of
providing guidance on all matters concerning software, this is written by an old guy who has
written a lot of code and who has specialized in making mistakes and learning from them.

Back in 1977 I actually had hair... really... thirty years later, I have ears. .. Beware, young
geeks turn into old geeks. ..

Although I have touched a bit on some of the ideas in my academic papers, I have not directly
approached software development as an author. I have always doubted my skill and ability, but in
reflecting back over my career, it is hard for me to say that my repeated successes were accidental.
They were not Herculean efforts with each being done via all-nighters and my face buried in the

Chapter 1 Introduction 5

keyboard. They were done time and time again using a specific style and rhythm. I had a life most
of the time. I hate egos and I hate people who go about talking about what they have done blah-blah.
Especially those people who take one or two projects and extrapolate wildly to all kinds of software
and projects. However, I also hate people who do not share with others any potential nuggets of
wisdom that will help people following along behind. So, damned if I do, damned if I don’t. I have
felt uncomfortable writing most of the sections of this book.

Perhaps a few of my ideas have value and can be leveraged by others who can deliver better
software products to the users with even more efficiency and effectiveness. I also do not expect
anyone to pick up the whole lot and be able to do what I do. I am me and you are you. And, if you
are older and have been immersed in one way for many years, it may be hard to adopt the ideas in
this book. The ideas here are strictly another set of ideas to consider and you should have many in
your arsenal. There is no single thing to do for achieving success, and you need many tools. I also
do not know all of the causal relationships between the ideas. Sorry. I have also learned that most of
the ideas in this book are not likely to be appreciated or understood by junior or inexperienced
developers, or by software developers who are more technicians or assemblers than they are
developers. Nothing I can do about that either.

I hope you are not the type that will read this book and say “that just can’t work™ or “I cannot
do that.” This type of attitude is self-defeating and sad. Over the years I have worked with positive,
open minded individuals, and others who are closed minded and who insist in a narrow view; open
to any way as long as it is their way. For effective software development in a number of areas, you
need to be open and willing to adapt and change. I often give people a chance to show me their way
first and see how it goes. Give them the benefit of doubt. If the results are close enough, we will
both be happy and I will have learned something new along the way. If there is a large gap in results
that cannot be dealt with, I will not be happy and if I am accountable for the project I will have to
do an intervention and re-anchor the project and process: my way. You start off working with
people, then go around them, and finally you might have to remove them from the project.

There is a risk with reading any book like this. You cannot be a perfectionist or be 100%
literal in interpreting the methods and ideas you read. I have never done two projects exactly the
same way. For high velocity development you need to be open and willing to experiment, lead
with your chin, and develop fast responses. You cannot be literal, pedantic, rigid, or a
perfectionist if you are going to apply the ideas you will read here. Over the years I have had
supervisors, peers, and subordinates say that these ideas do not work, cannot work, and could not
have worked. They do, can, and have. But, they have to be interpreted in the context of the
project you are doing and the team you have.

If there is one key to my whole approach, it is one underlying assumption. I try to always
remember that:

I never know the right or one-and-only way to do something.

I always doubt. I always question. What I am more confident about are wrong ways. I know
many wrong ways, some of which are less wrong than others. I am an expert on wrong. I have

6 » Software Development on Adrenalin

learned the wrong ways by making many mistakes in my career. I seem to learn best by making
mistakes, by willing to admit that I can and do make mistakes, and then by trying my hardest to
learn from the mistakes and not repeat them. Luckily, most of my mistakes do not get seen or
experienced by the users.

In a software project this means that I am willing to make mistakes with code and then
re-write the code as necessary, when necessary; you need to know when something is at the end of
its life and when it should be buried. As an undergraduate student in 1974, I wrote the worst code I
have ever seen, fragile and really ugly. It was terrible.

That piece of bad code provided me one of the best lessons in my software career. The
functionality was great and the users were very happy, but the code was horrendous in terms of
robustness, and maintainability. It was like a plate of cooked pasta. I learned a lot from that first,
major programming experience. It was my first assembler program, about 5k lines of code, and I
have tried to avoid the same mistakes ever since. I had to maintain that piece of code for over two
and a half years, and every day I checked with the operations group: “Did it run last night?” If not,
I would skip algebra, calculus or statistics to fix the software. I was not asked by my supervisor to
take such accountability. I just thought it was the professional thing to do. I built the fragile
system and I was responsible. In hindsight, I should have built better software and skipped fewer
classes. I buried the code in 1976 by replacing the code with a much better software program,
better user functionality and better robustness. Code was designed to be robust and reliable. I
learned many things because of that initial program and I used the lessons in subsequent software.
How good were the lessons? I have been told that the replacement code was still being used in
2001. Several of the other programs I worked on or created in the mid 1970s also had long
deployments. Some were running a decade or two later. I used the lessons again when working
with a team in the early to mid 1980s. I have been told that the basic ideas and architecture
developed in 1981 are still being used. I have used the same basic concepts throughout my career.
[learned how to make good code the old fashioned way, by writing lots of code, making mistakes
and learning from them.

If you only take three things away from this book, here are my three most important points to
share. They are my humility principles:

[J Assume that you really do not know the requirements and what you think you know

about the problem is partial, and possibly wrong.

[Assume that your design is faulty and that pieces will have to be ditched in a hurry

and replaced.

[Assume that your code is buggy and that you are NOT a code ninja.

Notice how these assumptions are aligned with my key underlying assumption of not knowing
what is right! If you apply these three humility assumptions, I believe that you will then do
requirements analysis in a certain way, that you will then design and build architectures in a certain
way, and that you will then code in a certain way. The end result will be resilient, flexible, and
sympathetic to the user’s changing requirements, and be very robust. If you assume and act like you

Chapter 1 Introduction < /

are an expert, your projects will likely stink and will possibly have a short shelf life. If you assume
and act like you are NOT a hotshot, the projects are probably going to be far better than you
imagined they could be.

And, be proud of your mistakes if you have learned from them and have controlled the damage
the mistakes caused. Here is a phrase from a fortune cookie:

How can you have a beautiful ending without making beautiful mistakes?

[think that this is very true for software. You can indeed have beautiful mistakes and that they
can contribute positively to a system. But not all mistakes are created equal. There are good
mistakes that help get you to the beautiful endings, and there are mistakes with zero value. I often
describe the task of management as constantly solving problems, some big, some small. This is
what an analyst also does; constantly solving problems and just like a manager, he/she must
develop good problem solving skills. A good manager will solve a problem once. If the manager
keeps solving the same problem, being a manager might not be the best career for that induhvidual.
A repeated mistake is not a good mistake. A good architect and designer should also solve a
problem once, or at least remember how to solve the problem when encountering it again, perhaps
in a different context, going by a different name.

This book is not really about the methods and ideas for software engineering. There is
probably not a new or unique idea to be found in this book. Good programming that is full of
commonsense has been done since the beginning of automation and most ideas are built on other
existing ideas. Some of the suggestions I will make about how to look at mission critical problems,
or identify what characteristics to manage via interfaces are inspired by Babbage’s 1832
masterpiece on manufacturing. Nothing is really new in terms of the individual ideas. What I am
describing is how all of the ideas in the book can be used together.

At the end of the day, it is very much about what the final software provides the users! It does
not matter to me how good the software is with respect to technical savvy and exotic features, or
whether the programmer would have fun building the software if the user cannot or will not use it.
The user’s value comes first. That is the most important part of software development. This is a
book about creating software that people want to use. I think it is about creating good software. But,
what is good software?

Here is a brief summary of what could be called good or ideal software characteristics:

1. Software should be reliable and available when a user wants to use it.

2. Software should always focus on the user’s goals and objectives.

3. Software should respect the user’s time and effort, avoiding unnecessary data entry,

unnecessary navigation, and unnecessary re-entry of data.

4. Software should recognize the user’s knowledge and experience, and adjust the level of

guidance and help accordingly.

5. Software should match the semantics of the task and problem, using the language of the

user community.

6. Software should be generally self-supportive, without the need for “outside the system”

8 B Software Development on Adrenalin

spreadsheets, documents, and databases.
7. Software should be intuitive and require minimum documentation, training, and instruction.
8. Software should naturally fit the user and not force the user to unnaturally fit the software.

1.1 ZenTai

ZENTAI (%=1K) basically means the essence of the unified whole and when I consider
software, I include the users and interacting systems as part of the whole. I also consider the whole
life cycle. The ZenTai way of design has four pillars and I will introduce them with Japanese words
and concepts since Japanese (and Chinese) do a better job than English at describing the intent and
spirit.

The first pillar is Kachi — fffifilf — meaning value. To me, a good piece of software provides
real value to the user and each step or activity must contribute to the generation of that value. No
non-value added GUI, no waste, no clutter. Features and functions exist when and where you need
them. Every screen and every feature on a screen needs to be considered in terms of the value chain
and what it contributes.

The second pillar is Anshin — %2> — comfort. This covers fear, stress, anxiety, and the
general way a user feels when using your software, either because of the software, or because of the
situation in which the software is used. The software should be designed understanding when and
where the software will be used, and what can cause the user feelings of discomfort as these
feelings can result in errors, frustration, and other user issues. A comfort analysis should be done for
each bit of the interface and functionality. How does the system improve the comfort level and how
does the system decrease the comfort level?

The third pillar is Keiken — #%%% — experience. Systems must recognize that people bring
different initial experience (as in “I have experience doing that”) to the system in the first instance,
that they will accumulate additional experience through the use of the system, and that they will
simultaneously accumulate other experience external to the system. Repeated experience with
suitable feedback leads to expertise and different skill levels — which can affect how they interact
with the system. What experience does the system recognize? What experience does the system
develop? The notion of experience means something to me when designing the user interface. What
does it mean to you?

The fourth and final pillar is Shinka — #4t, — evolution. Nothing remains as it is. Constants
are not and variables will not. Assumptions are momentary things that should not be clung to. The
software entity in its design and interface must support and accept evolution in the intended purpose,
form, and function, as well as evolution in the user and the environment around the software. It is
not likely that the users and the world will be standing still. Why do you think your software will
not change? What are the assumptions behind each major function or software bit? What if those
assumptions change?

All of these pillars will be explained in later chapters.

Chapter 1 Introduction 9

1.2 Mushing

The term Mushing is used for several reasons. I use it because it best describes what the
process looks like from a few meters away. It is like ceramic art being formed. The software
process I call Mushing looks ill-formed, chaotic and sometimes looks full of hand waving, and it
seems like nothing is firm. This is not a bad interpretation. When mushing you are working with
partial information solving partial problems arriving at partial solutions. In another sense, the high
end projects I am describing in this book feel like dog sled mushing when you are in a situation
going through the wilderness, careening around curves and over bumps without knowing exactly
what is around the curve or over the hill. You are relying on the team and the lead dog. And, when
in the wilderness, you have to be able to deal with whiteouts, wind, cold, isolation, and rely on your
own knowledge and skill. You have to be able to fix the sled and make new paths when needed. Not
only do you need to know how to careen, you need to know how to solve problems from first
principles. For the type of software addressed in this book, you cannot rely on the web, surfing for
the answer and then assembling the solution via copy and paste. You need to know how to program,
really program and not rely on assembly skills. So, I like Mushing for a few reasons. I could have
also used white water experiences for the hurtling and skills needed to survive. In fact, since there
are nice rating schemes for rapids, I will use that analogy throughout the book.

The Mushing 1 describe in this text could be considered an agile and extreme version of
Agile/Extreme; when you cannot find solutions online, find best practices, or just assemble
solutions. These types of developments are not as common as they once were, but if you are
pushing the limits, you might find yourself with one of these. I do not know of any software rating
scheme that can be used for categorizing software projects with respect to agility requirements. The
types of projects I typically do could be described using the international white water classification
scheme (American Whitewater — www.awa.org):

e Class VI: Extreme and Exploratory. These runs have almost never been attempted and

often exemplify the extremes of difficulty, .-eg

unpredictability and danger. The consequences of #
errors are very severe and rescue may be impossible.
For teams of experts only, at favorable water levels,
after close personal inspection and taking all
precautions. After a Class VI rapids has been run
many times, its rating may be changed to an
appropriate Class 5.x rating.

Although there are exceptions, most of the cases and
stories I have heard about Agile/Extreme being used in read
more like Class [or II:

e Class | : Easy. Fast moving water with riffles and

