/TH EORY/I»’J/PRAC‘.;
4 %

O REILLY"
¥ B RY R

MM Z E mom)

Beautiful Architecture

(&

O’REILLY"

Beijing - Cambridge - Farnham « Kdln + Sebastopol « Taipei - Tokyo

FREEKF HARA

BEHEESEE (CIP) #38

A2 3 o/ () BiKAFIET (Spinellis, D.),
(#) IBEHRHT (Gousios, G.) 2. —HEIF . —F5.
KEEA¥HKRE, 20106

BAFE L. Beantiful Architecture

ISBN 978-7-5641-2273-7

I.O% 1T .0% O I.OkHRH—%
X IV.®TP3ILS

H i A B 51 CIP $idigi (2010) %5 089206 5

{LHERAURZEERLA R
E5: 10-2010-154 5

©2009 by O'Re1lly Media, Inc

Reprint of the English Edition, jointly published by O'Reilly Media, Inc and Southeast University
Press, 2010 Authorized reprint of the oniginal English edition, 2009 O'Reilly Media, Inc , the
owner of all rights to publish and sell the same

All rights reserved including the rights of reproduction 1n whole or 1n part 1 any form
¥ < & M dy O'Reilly Media, Inc # & 2009,

ECHPBRY A K F kRt iR 2010, L PR o MR Ae 4l B 1R 2] ok BRALF 4K B A MI BT &
—— O'Reilly Media, Inc #5+ <,

WA, RBEHGAT, KBOETEHE S S FRAAETH NEH,

Zepy 2% (ZENR)

W& AT: ZRERFHRE

oo ohb. TARDUMH2S HR 4% . 210096
BB AT I’

iy hik: http://press.seu.edu.cn

H, F-#ifh:: press@seu.edu.cn

Eqt Ri: P HENTRIAR2 T

FF A 78T EH x 980Fk 16 F A

Ell k. 26.75 Ellgk

¥ . 663 TF

kR . 201046 A% 1 kR

Eft K. 20104 6 A% 1 IKENAR]

+ 2. ISBN 978-7-5641-2273-7

En ¥ . 1~1800 #t

£ fr: 62.00 T () ‘

di?iE%%%’ﬁEﬂ%ﬁﬁfﬁlﬁ, WHESSRERSIWBER. BIF ((FH). 025-83792328

All royalties from this book will be donated
to Doctors Without Borders.

Foreword

Stephen J. Mellor

THE CHALLENGES OF DEVELOPING HIGH-PERFORMANCE, HIGH~RELIABILITY, and high-quality
software systems are too much for ad hoc and informal engineering techniques that might
have worked in the past on less demanding systems. The complexity of our systems has risen
to the point where we can no longer cope without developing and maintaining a single
averarching architecture that ties the system into a coherent whole and avoids piecemeal
implementation, which causes testing and integration failures.

But building an architecture is a complex task. Examples are hard to come by, due to either
proprietary concerns or the opposite, a need to “sell” a particular architectural style into a wide
range of environments, some of which are inappropriate. And architectures are big, which
makes them difficult to capture and describe without overwhelming the reader.

Yet beautiful architectures exhibit a few universal principles, some of which I outline here:

One fact in one place
Duplication leads to error, so it should be avoided. Each fact must be a single,
nondecomposable unit, and each fact must be independent of all other facts. When change
occurs, as it inevitably does, only one place need be modified. This principle is well known
to database designers, and it has been formalized under the name of normalization. The
principle also applies less formally to behavior, under the name facroring, such that
common functionality is factored out into separate modules.

Beautiful architectures find ways to localize information and behavior. At runtime, this
manifests as Jayering, the notion that a system may be factored into layers, each
representing a Jayer of abstraction or domain.

Automatic propagation
One fact in one place sounds good, but for efficiency’s sake, some data or behavior is often

duplicated. To maintain consistency and correctness, propagation of these facts must be
carried out automatically at construction time.

Beautiful architectures are supported by construction tools that effect meta-
programming, propagating one fact in one place into many places where they may be used
efficiently.

Architecture includes construction
An architecture must include not only the runtime system, but also how it is constructed.
A focus solely on the runtime code is a recipe for deterioration of the architecture over
time.
Beautiful architectures are reflective. Not only are they beautiful at runtime, but they are
also beautiful at construction time, using the same data, functions, and techniques to build
the system as those that are used at runtime.

Minimize mechanisms
The best way to implement a given function varies case by case, but a beautiful architecture
will not strive for “the best.” There are, for example, many ways of storing data and
searching it, but if the system can meet its performance requirements using one
mechanism, there is less code to write, verify, maintain, and occupy memory.

Beautiful architectures employ a minimal set of mechanisms that satisfy the requirements
of the whole. Finding “the best” in each case leads to proliferation of error-prone
mechanisms, whereas adding mechanisms parsimoniously leads to smaller, faster, and
more robust systems.

Construct engines
If you wish to build brittle systems, follow Ivar Jacobson’s advice and base your
architecture on use cases and one function at a time (i.e., use “controller” objects).
Extensible systems, on the other hand, rely on the construction of virtual machines—
engines that are “programmed” by data provided by higher layers, and that implement
multiple application functions at a time.

This principle appears in many guises. “Layering” of virtual machines goes back to Edsger
Dijkstra. “Data-driven systems” provide engines that rely on coding invariants in the
systemn, letting the data define the specific functionality in a particular case. These engines
are highly reusable—and beautiful.

x FOREWORD

0(GJ, the order of growth
Back in the day, we thought about the “order” of algorithms, analyzing the performance
of sorting, say. in terms of the time it takes to sort a set of a certain number of elements.
Whole books have been written on the subject.

The same applies for architecture. Polling, for example, works well for a small number of
elements, but is a response-time disaster as the number of items increases. Organizing
everything around interrupts or events works well until they all go off at once. Beautiful
architectures consider the direction of likely growth and account for it.

Resist entropy
Beautiful architectures establish a path of least resistance for maintenance that preserves
the architecture over time and so slows the effects of the Law of System Entropy, which
states that systems become more disorganized over time. Maintainers must internalize the
architecture so that changes will be consistent with it and not increase system entropy.

One approach is the Agile concept of the Meraphor, which is a simple way to represent
what the architecture is “like.” Another is extensive documentation and threats of
unemployment, though that seldom works for long. Usually, however, it generally means
tools, especially for generating the system. A beautiful architecture must remain beautiful.

These principles are highly interrelated. One fact in one place can work only if you have
automatic propagation, which in turn is effective when the architecture takes construction into
account. Similarly, constructing engines and minimizing mechanisms support one fact in one
place. Resisting entropy is a requirement for maintaining an architecture over time, and it relies
on the architecture including construction and support for propagation. Moreover, a failure to
consider the way in which a system will likely grow will cause the architecture to become
unstable, and eventually fail under extreme but predictable circumstances. And combining
minimal mechanisms with the notion of constructing engines means that beautiful
architectures usually feature a limited set of patterns that enable construction of arbitrary
system extensions, a kind of “expansion by pattern.”

In short, beautiful architectures do more with less.

As you read this book, ably assembled and introduced by Diomidis Spinellis and Georgios
Gousios, you might look for these principles and consider their implications, using ihe specific
examples presented in each chapter. You might also look for violations of these principles and
ask whether the architecture is thus ugly or whether some higher principle is involved.

During the development of this Foreword, your authors asked me if I might say a few words
about how someone becomes a good architect. I laughed. If we only knew that.... But then I
recalled from my own experience that there is a powerful, if nonanalytic, way of becoming a

FOREWORD xi

beautiful architect. That way” is nevér to believe that the last system you built is the only way
to build systems, and to seek out many examples of different ways of solving the same type of

problem. The example beautiful architectures presented in this book are a step forward in
helping you meet that goal.

* Or exercise more and eat less.

xii FOREWORD

Preface

THE IDEA FOR THE BOOK YOU'RE READING WAS CONCEIVED IN 2007 as a successor to the award-
winning, best-selling Beautiful Code: a collection of essays about innovative and sometimes
surprising solutions to programming problems. In Beauriful Architecture, the scope and
purpose is different, but similarly focused: to get leading software designers and architects to
describe a software architecture of their choice, peeling back the layers of their creations to
show how they developed software that is functional, reliable, usable, efficient, maintainable,
portable, and, yes, elegant.

To put together this book, we contacted leading architects of well-known or less-well-known
but highly innovative software projects. Many of them replied promptly and came back to us
with thought-provoking ideas. Some of the contributors even caught us by surprise by
proposing not to write about a épecific system, but instead investigating the depth and the
extent of architectural aspects in software engineering.

All chapter authors were glad to hear that the work they put in their chapters is also helping
a good cause, as the rovalties of this book are donated to Medécins Sans Frontiéres (Doctors

Without Borders), an international humanitarian aid organization that provides emergency

medical assistance to suffering people.

xiil

How This Book Is Organized

We have organized the contents of this book around five thematic areas: overviews, enterprise
applications, systems, end-user applications, and programming languages. There is an obvious,
but not deliberate, lack of chapters on desktop software architectures. Having approached more
than 50 software architects, this result was another surprise for us. Are there really no shining
examples of beautiful desktop software architectures? Or are talented architects shying away
from an area often driven by a quest to continuously pile ever more features on an application?
We are really looking forward to hearing from you on these issues.

Part I: On Architecture

Part I of this book examines the breadth and scope of software architecture and its implications
for software development and evolution.

Chapter 1, What Is Architecture? by John Klein and David Weiss, defines software architecture
by examining the subject through the perspectives of quality concerns and architectural
structures.

Chapter 2, A Tale of Two Systems: A Modern-Day Software Fable, by Pete Goodlitfe, provides
an allegory on how software architectures can affect system evolution and developer
engagement with a project.

Part I1: Enterprise Application Architecture

Enterprise systems, the IT backbone of many organizations, are large and often tailor-made
conglomerates of software usually built from diverse components. They serve large,
transactional workloads and must scale along with the enterprise they support, readily
adapting to changing business realities. Scalability, correctness, stability, and extensibility are
the most important concerns when architecting such systems. Part Il of this book includes some
exemplar cases of enterprise software architectures.

Chapter 3, Architecting for Scale, by Jim Waldo, demonstrates the architectural prowess
required to build servers for massive multiplayer online games.

Chapter 4, Making Memories, by Michael Nygard, goes through the architecture of a
multistage, multisite data processing system and presents the compromises that must be made
to make it work.

Chapter 5, Resource-Oriented Architectures: Being “In the Web”, by Brian Sletten, discusses
the power of resource mapping when constructing data-driven applications and provides an
elegant example of a purely resource-oriented architecture.

xiv PREFACE

Chapter 6, Data Grows Up: The Architecture of the Facebook Platform, by Dave Fetterman,

advocates data-centric systems, explaining how a good architecture can create and support an
application ecosystem.

Part 111: Systems Architecture

Systems software is arguably the most demanding type of software to design, partly because
efficient use of hardware is a black art mastered by a selected few, and partly because many
consider systems software as infrastructure that is “simply there.” Seldom are great systems
architectures designed on a blank sheet; most systems that we use today are based on ideas
first conceived in the 1960s. The chapters in Part I walk you through four innovative systems
software architectures, discussing the complexities behind the architectural decisions that
made them beautiful.

Chapter 7, Xen and the Beauty of Virtualization, by Derek Murray and Keir Fraser, gives an
example of how a well-thought-out architecture can change the way operating systems evolve.

Chapter 8, Guardian: A Fault-Tolerant Operating System Environment, by Greg Lehey,
presents a retrospective on the architectural choices and building blocks (both software and
hardware) that made Tandem the platform of choice in high-availability environments for
nearly two decades.

Chapter 9, JPC: An x86 PC Emulator in Pure Java, by Rhys Newman and Christopher Dennis,
describes how carefully designed software and a good understanding of domain requirements
can overcome the perceived deficiencies of a programming system.

Chapter 10, The Strength of Metacircular Virtual Machines: Jikes RVM, by lan Rogers and Dave
Grove, walks us through the architectural choices required for creating a self-optimizable, self-
hosting runtime for a high-level language.

Part IV: End-User Application Architectures

End-user applications are those that we interact with in our everyday computing lives, and the
software that our CPUs burn the most cycles to execute. This kind of software normally does
not need to carefully manage resources or serve large transaction volumes. However, it does
need to be usable, secure, customizable, and extensible. These properties can lead to popularity
and widespread use and, in the case of free and open source software, to an army of volunteers
willing to improve it. In Part IV, the authors dissect the architectures and the community
processes required to evolve two very popular desktop software packages.

Chapter 11, GNU BEmacs: Creeping Featurism Is a Strength, by Jim Blandy, explains how a set
of very simple components and an extension language can turn the humble text editor into
an-operating-systern” the Swiss army knife of a programmer’s toolchest.

* As some die-hard users say, “Emacs is my operating system; Linux just provides the device drivers.”

PREFACE xv

Chapter 12, When the Bazaar Sets Out to Build Cathedrals, by Till Adam and Mirko Boehm,
demonstrates how community processes such as sprints and peer-reviews can help software
architectures evolve from rough sketches into beautiful systems.

Part V: Landuades and Architecture

As many people have pointed out in their works, the programming language we use affects
the way we solve a problem. But can a programming language also affect a system’s
architecture and, if so, how? In the architecture of buildings, new materials and the adoption
of CAD systems allowed the expression of more sophisticated and sometimes strikingly
beautiful designs; does the same also apply to computer programs? Part V, which contains the
last two chapters, investigates the relationship between the tools we use and the designs we
produce.

Chapter 13, Software Architecture: Object-Oriented Versus Functional, by Bertrand Meyer,
compares the affordances of object-oriented and functional architectural styles.

Chapter 14, Rereading the Classics, by Panagiotis Louridas, surveys the architectural choices
behind the building blocks of modern and classical object-oriented software languages.

Finally, in the thought-provoking Afterword, William J. Mitchell, an MIT Professor of
Architecture and Media Arts and Sciences, ties the concept of beauty between the building
architectures we encounter in the real world and the software architectures residing on silicon.

Principles, Properties, and Structures

Late in this book’s review process, one of the reviewers asked us to provide our personal
opinion, in the form of commentary, on what a reader could learn from each chapter. The idea
was intriguing, but we did not like the fact that we would have to second-guess the chapter
authors. Asking the authors themselves to provide a meta-analysis of their writings would lead
to a Babel tower of definitions, terms, and architectural constructs guaranteed to confuse
readers. What was needed was a common vocabulary of architectural terms; thankfully, we
realized we already had that in our hands.

1n the Foreword, Stephen Mellor discusses seven principles upon which all beautiful
architectures are based. In Chapter 1, John Klein and David Weiss present four architecture
building blocks and six properties that beautiful architectures exhibit. A careful reader will
notice that Mellor’s principles and Klein’s and Weiss's properties are not independent of each
other. In fact, they mostly coincide; this happens because great minds think alike. All three,
being very experienced architects, have seen many times in action the importance of the
concepts they describe.

xvi PREFACE

We merged Mellor's architectural principles with the definitions of Klein and Weiss into two
lists: one containing principles and properties (Table P-1), and one containing structures
(Table P-2). We then asked the chapter authors to mark the terms they thought applied to their
chapters, and produced a corresponding legend for each chapter. In these tables, you can see
the definition of each principle, property, or architectural construct that appears in the chapter
legend. We hope the legends will guide your reading of this book by giving you a clean
overview of the contents of each chapter, but we urge you to delve into a chapter’s text rather
than simply stay with the legend.

TABLE P-1. Architectural prmc:ples and propemes

Prmciple or proparty

The abillly of an archi\ecture to.,.

Versatility | ..offer “gaod enough” mechanisms to address a variety of problems with an economy of

; expressnon

Conceptual integrity ..offera single ophmal nonredundant way for expressing the solution of a set of similar

; problems e

Independently ..keep its elements isolated so as 1o minimize the number of changes required to

. changeable accommodatechanges

Aui;;a:ic propagation ..maintain consistency and correctness, by propagating changes in data or behavior across
i modules.

| VBquabllny

Growth accommodahon

; Entropy resistance

Structure A slrudure thal " L - j
. Module ...hides design or lmplementatlon declslons behlnd a §tab|e m(erffce - i
:V Dependency ...oé}nizes componen!s along the way where one usersrfunchonallrty of ?h°th?r‘ i

' Process | r:..encapsulates and |solaies the runtlme state ofa n}:fule o
" Data access - ;..compartmenta\izes data, setting access rlgﬁts t,o,',t'

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, ernail addresses, filenames, and file extensions.

PREFACE xvli

Constant width
Used for program listings, as well as within paragraphs to refer to program elements such
as variable or function names, databases, data types, environment variables, statements,
and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values determined by
context.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book
in your programs and documentation. You do not need to contact us for permission unless
you're reproducing a significant portion of the code. For example, writing a program that uses
several chunks of code from this book does not require permission. Selling or distributing a
CD-ROM of examples from O’Reilly books does require permission. Answering a question by
citing this book and quoting example code does not require permission. Incorporating a
significant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: “ Beautiful Architecture, edited by Diomidis Spinellis and
Georgios Gousios. Copyright 2009 O'Reilly Media, Inc., 978-0-596-51798-4.”

If you feel your use of code examples falls outside fair use or the permission given here, feel
free to contact us at permissions@oreilly.com.

Safari® Books Online

..» When you see a Safari® Books Online icon on the cover of your favorite
Saf@ﬂ':l technology book, that means the book is available online through the O'Reilly
Network Safari Bookshelf.

safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick
answers when you need the most accurate, current information. Try it for free at htip://satari
.oreilly.com

xviii PREFACE

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

we have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

hutp:/rwww.oreilly.com/catalog/978059651 7984
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O’Reilly
Network, see our website at:

http://www.oreilly.com

Acknowledgments

The publication of a book is a team effort, and an edited collection even more so. Many people
deserve our thanks. First of all, we thank the book’s contributors for submitting outstanding
material in a timely manner, and then putting up with our requests for various changes and
revisions. The book’s reviewers, Robert A. Maksimchuk, Gary Pollice, David West, Greg
wilson, and Bobbi Young, gave us many excellent comments for improving each chapter and
the book as a whole. At O'Reilly, our editor, Mary Treseler, helped us locate contributors,
organized the review process, and oversaw the book’s production with remarkable efficiency.
Later, Sarah Schneider worked with us as the book’s production editor, adroitly handling a
pressing schedule and often conflicting requirements. The copyeditor, Genevieve d’Entremont,
and the indexer, Fred Brown, deftly massaged material coming from authors around the world
to form a book that flows as easily as if it was written by a single pen. The illustrator, Robert
Romano, managed to convert the disparate variety of the graphics formats we submitted
(including some hand-drawn sketches) into the professional diagrams you'll find in the book.
The cover designer, Karen Montgomery, produced a beautiful and inspiring cover to match
the book’s contents, and the interior designer, David Futato, came up with a creative and
functional scheme for integrating the chapter legends into the book’s design. Finally, we wish
to thank our families and friends for standing by us while we diverted to this book attention
that should have belonged to them.

PREFACE xix

CONTENTS

FOREWORD ix
by Stephen J. Mellor

PREFACE Xiii

Part One ON ARCHITECTURE

1 WHAT IS ARCHITECTURE? 3
by John Klein and David Weiss
Introduction 3
Creating a Software Architecture 10
Architectural Structures 14
Good Architectures 19
Beautiful Architectures 20
Acknowledgments 23
References 23
2 A TALE OF TWO SYSTEMS: A MODERN-DAY SOFTWARE FABLE 25
by Pete Goodliffe
The Messy Metropolis 26
Design Town 33
So What? 41
Your Turn 41
References 42

Part Two ENTERPRISE APPLICATION ARCHITECTURE

3 ARCHITECTING FOR SCALE 45
by Jim Waldo
Introduction 45
Context 47
The Architecture 51
Thoughts on the Architecture 57
4 MAKING MEMORIES 63
by Michael Nygard
Capabilities and Constraints 64
Workflow 65
Architecture Facets 66

User Response 87

Conclusion 88

References 88
5 RESOURCE-ORIENTED ARCHITECTURES: BEING “IN THE WEB” 89
by Brian Sletten
Introduction 89
Conventional Web Services 90
The Web 92
Resource-Oriented Architectures 98
Data-Driven Applications 102
Applied Resource-Oriented Architecture 103
Conclusion 109
6 DATA GROWS UP: THE ARCHITECTURE OF THE FACEBOOK PLATFORM 111
by Dave Fetterman
Introduction 111
Creating a Social Web Service 117
Creating a Social Data Query Service 124
Creating a Social Web Portal: FBML 133
Supporting Functionality for the System 146
Summation 151

Part Three SYSTEMS ARCHITECTURE

7 XEN AND THE BEAUTY OF VIRTUALIZATION 155
by Derek Murray and Keir Fraser
Introduction 155
Xenoservers 156
The Challenges of Virtualization 159
Paravirtualization 159
The Changing Shape of Xen 163
Changing Hardware, Changing Xen 169
Lessons Learned 172
Further Reading 173
8 GUARDIAN: A FAULT-TOLERANT OPERATING SYSTEM ENVIRONMENT 175
by Greg¢ Lehey
Tandem/16: Some Day All Computers Will Be Built Like This 176
Hardware 176
Mechanical Layout 178
Processor Architecture 179
The Interprocessor Bus 184
Input/Output 184
Process Structure 185
Message System 186
File System 190
Folklore 195
The Downside 195

vi CONTENTS

