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Chapter 1 First-order Differen-

tial Equations!!

1.1 Introduction

Dating of art works(?
On May 29, 1945, H.A.Van Meegeren, a third rate Dutch painter3],
was arrested on the charge of collaborating with the enemy for!!

Example 1.1.1

the sale to Goering of a painting of famed 17th century Dutch
painter. Van Meegeren refused to accept the charge and an-
nounced, in his prison celll®!, that he had never sold painting
to Goering. He stated that all the questioned paintings!® were his
own works. To settle the question an international panel of dis-
tinguished chemists, physicists and art historians was appointed
to investigate the matter. The panel took X-rays of the paint-
ings to determine whether other paintings were underneath those
paintings, analyzed the pigments!” (coloring materials) used in
the paintings, and examined the paintings for certain signs of old
agel®),

The panel of experts found traces of the modern pigment
cobalt blue!® in some paintings. In addition, they also detected
phenoformaldehyde™!, which was not discovered until the turn of
the 19th century!ll, in several paintings. On the basis of these
evidences Van Meegeren was convicted, of forgery!'?l, on October
12, 1947 and sentenced to one year in prison!¥3. Two months
later, he died of a heart attack.

However, many people refused to believe that the famed “Dis-
ciples at Emmaus14” was a forgery*9). In 1967, almost twenty
years later, scientists at Carnegie Mellon University proved that
the “Disciples at Emmaus” was indeed a forgery.

The key to the dating of materials lies in the phenomenon
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of radioactivity!'® discovered at the turn of the 20th century by
the physicist Rutherford and his colleagues. They showed that
the atoms of certain “radioactive” elements are unstable!'™ and
that within a given time period a fized proportion of the atoms
spontaneously disintegrates to form atoms of a new element!*8).
Rutherford also showed that the radioactivity of a substance is
directly proportional to®! the number of atoms of the substance
present. Let N{(¢) denotes the number of atoms present at time ¢,
then dN /dt, the number of atoms that disintegrate per unit time,
is proportional to N, thus we have the following equation

dN

= = _)\N
d¢ AN,

(1.1.1)

wherel?% constant A is positive and is known as the decay con-
stant of the substance®!l. Usually, we use half-lifel??, the time
required for half of a given quantity of radioactive atoms to decay,
to measure the rate of disintegration of a substance. Assume that
N (to) = No, then we have the mathematical model for computing

half-life
dN

dt
By evaluating the present disintegration rates of the radioac-

= —AN, N(to) = No. (1.1.2)

tive pigments in Van Meegeren’s questioned paintings, the experts
conchuded that the paintings “Disciples at Emmaus”, “Woman
Reading Musicl?” and “Woman Playing Mandolin*” must be
modern forgeries. |
Example 1.1.2  Detection of diabetes!?!

Diabetes mellitus26! is a disease of metabolism which is charac-
terized by too much sugar in the blood and urinel?’l.  Glucose
tolerance test'?8 (GTT) is a commonly used method to diagnose
the disease. In this test, the patient is asked to take a large
dose of glucose after an overnight fast?®!. During the next three
to five hours, several measurements of the concentration of glu-
cose are made in the patient’s blood, and these measurements
are used in the diagnosis of diabetes. Unfortunately, there is no

universally accepted criterionl3% exist for interpreting the results
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of a GTT. Different physicians!3!l interpreting the results of a
GTT may come up with!3? different diagnoses. Here is a case.
A Rhode Island physician, after reviewing the results of a GTT,
came up with a diagnosis of diabetes. But another physician de-
clared the patient to be normal after reviewing the results of the
same GTT. To settle the question, the results of the GTT were
sent to a specialist in Boston. After examining these results, the
specialist concluded that the patient was suffering from a pituitary
tumor'33l,

In the mid-1960’s, Drs. Rosevear and Molnar of the Mayo
Clinic and Drs. Ackerman and Gatewood of the University of Min-
nesota discovered a fairly reliable criterion for interpreting the re-
sults of a GTT. They constructed a model which could accurately
describe the blood glucose regulatory system!%! during a glucose
tolerance test and in which one or two parameters!®® would yield
criteria for distinguishing normal individuals from mild diabetics
and prediabetics!38).

The basic model is described analytically37l by following sys-

tem of equations(®®!

= R(G.H) +J0) (1.1.3)
dH
- = (G- H), (1.1.4)

where G denotes the concentration of glucose in the blood and H
denotes the concentration of the net hormonal®® concentration.
The function J(t) is the external rate at which the blood glucose
concentration is being increased. | ]
Definition 1.1.1
its derivatives®® and independent variables!! is called a differ-

An equation relating an unknown function,

ential equation!*?.
Eq.(1.1.1)-Eq.(1.1.4) are all examples of differential equation.
Differential equations are frequently used to describe the
changing universe.
Example 1.1.3  According to Newton’s law of cooling!®3l:

the rate of change with respect to time t of the temperature ()
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of a body is proportional to the difference between T' and the
temperature A of the surrounding medium, then the mathematical

model*4 describing this law is

ar
Fr —k(T — A), (1.1.5)
where k is a positive constant. |

Example 1.1.4 Let P(t) denote a population[*®! with constant
birth and death rates'®!, then the rate of change of P(t) is, in
many simple cases, proportional to the size of the population,

thus we have the following differential equation

dP
T = kP(t), (1.1.6)
where k is the constant of proportionality[47]. |

If a continuous function together with its derivatives satisfy
a differential equation, then we call this function a solution of
the differential equation!*®),
Example 1.1.5 Is y(t) = c1sin2¢ + cocos2t, where ¢y and ¢ are

arbitrary constants, a solution of the differential equation y” +

4y =07
Solution  Differentiating®l y(t) with respect to ¢, we have
that

y' = 2cycos2t — 2co8in2t, y” = —4cysin2t — dep cos 2t
Hence,

y" + 4y = (—4c; sin 2t — dep cos 2t) + 4(cysin2t + cacos2t)
= (—4cy + 4c1) sin 2t + (—4cg + 4cg) cos 2t = 0.

y and its derivative satisfy the differential equation. Moreover, y
is obviously a continuous function. So y(t) = c18in2¢ + cacos2t is
a solution of the differential equation. | |

From Example 1.1.5 we see that a differential equation may
have infinite many solutions. The set of all solutions of a differen-
tial equation is called the general solution!5% of the differential
equation. For example, function y(t) = c18in2t + czcos2t, where
¢; and cg are arbitrary constants, is the general solution of equa-

tion y" +4y = 0 since every solution of the differential equation is
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of this form. Any one solution of a differential equation is called  [51] ##
a particular solution!® of the differential equation. It is not  [52] 3E9
difficult to verify(®? that (53] &
(a) y = sin2t + cos2t, [54] XA
(b) y = 4sin2t, [;f] 7B LE

(c)} y = —3cos2t, and

(d)y=0
are all solutions of the differential equation 3" + 4y = 0. So they
are all particular solutions of the differential equation.
Remark(®¥ 1.1.1 The general solution of a differential equation
cannot always be expressed by a single formula.
Example 1.1.6 We can verify that the function y = cz? is a
family of solutions of the differential equation zy’ — 4y = 0 on
the intervall¥ (—oo, +00). Moreover, we can also verify that the

piecewise-defined function!5°!

-zt x <O,

v= { zt, x>0
is a particular solution of the differential equation. Obviously, this
particular solution cannot be obtained from y = cz* by a choice
of the parameter c. We refer such extra solution as singular
solution!58 of the differential equation. So the family of solutions
y = cx* is not the general solution of the equation. [ |
A solution of a differential equation that is identically zerol]

on an interval I is called a trivial solution!>8.

A differential equation along with subsidiary conditions!>®!
on the unknown function and its derivatives, all given at the same

value of the independent variable, constitutes an initial-value

problem/5% (or Cauchy problem!®):

{ F(tayv ylvy”a" ) 1y(n)) = 07

J(to) = o, (t0) = b (t0) = ¥, -+ ¥ (to) = 5.

(1.1.7)

Eq.(1.1.2) is an initial-value problem.
If the subsidiary conditions are given at more than one value
of the independent variable, the problem is called a boundary-
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value problem!®? and the conditions are called boundary
conditions®3,

Example 1.1.7 Problem
3y +5y" -y +Ty=10; y(1)=0,4'(1)=0,y"(1) =0 (1.1.8)

is an initial-value problem. While the problem

y(0)=1,4'(1)=1

is a boundary-value problem. |

¥ +2y =e (1.1.9)

Differential equations can be classified in three ways: typel64l
order'®sl | and linearityl68,

(i) A differential equation is an ordinary differential equa-
tion!%7] if the unknown function depends on only one independent
variable, such as Eq.(1.1.1)—Eq.(1.1.9). If the unknown function

depends on two or more independent variables, then we call it a

partial differential equationfss}, For example, equation

Pf(zy) 1 (z,y)
52 Ay2

is a partial differential equation. We will be concerned solely with

=1 (1.1.10)

ordinary differential equations in this textbook.

(i) The order of the highest derivative of the unknown func-
tion that appears in a differential equation is called the order of
the differential equation!®®l. Thus Eq.(1.1.1) is a first-order dif-
ferential equation!™l, Eq.(1.1.9) and Eq.(1.1.10) are second-order
differential equations("]. The general form of an nth-order ordi-

nary differential equation(™ is
Ft,y,y, - ,y(")) =0, (1.1.11)

where F is a real-valued function!™! of (n + 2) variables, t, y, ¥/,

(n)
e s y .

(iii) nth-order ordinary differential equation (1.1.11) is said
to be linear!™ if F is linear about y, ¥, ---, y(™. Thus the
equations

(y — t)dt + 4tdy = 0,

v +y=0,
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7

dty _,dy
2
4 35, Toty=0

4t
are, in turn, linear first-, second-, and fourth-order ordinary differ-
ential equations. A nonlinear(™ ordinary differential equation

is simply one that is not linear. Therefore,
(y — t)3dy + 4tdt =0,

y' +y* =0,
d3y dy\
@ _3 (= =
3 3 < ) + 5ty =0
are examples of nonlinear first, second, and third-order ordinary

differential equations, respectively.
Exercise 1.1

In Problems 1-5 determine whether the given functions y(t) are
solutions of the differential equations on left?

1y"+2 +y=0; y(t)=2e"+te ™"

2.9 +2y +y=t; y(t)=1.

3. () +yi=-1 y=t*-1
1
A
5.y +4y=0; y(0)=0, ¥ (O0)=1

4.y +y*=0 y=3 =0

1,
y(t) =sin2t, g(t) =t,ys(t) = Esm2t.

6. Show that"™ y = Int is a solution of ty” + 7' = 0 on interval
(0, +00) but is not a solution on (—oo, +00).

7. Show that y = tz—l_—-i- is a solution of ¥’ + 2ty®> = 0 on the
interval I = (—1,1) but not on any larger interval containing I.

8. Determine the order and linearity in each of the following dif-
ferential equations.

(a) ¥ — 5ty = + 15

(b) ty" + 1%y — (sint)\ /5 =t* — 1;

d?z
(c) Vg = v +1;

(d) y(%)z =22+ 1

(e) ¥’ = (sint)y + e
(f) ¥ =tsiny + e’

[75] kLt
[76] HE®A
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1.2 First-order Linear Differential

Equations

The standard form for a first-order differential equation in the
unknown function y(t) is

dy
Y = st (2.
where f is any integrable function[™ of ¢.
Consider first the simple case where f(%, y) is only the func-

tion of one variable £,

dy

i f@@). (1.2.2)
Integrating both sides of Eq.(1.2.2) with respect to t{™® which
yields

mg:ff@m+a (1.2.3)

Here c is an arbitrary constant of integration!”. Unfortunately,
we will not be able to solve most differential equations simply
by integration8?] since, in most cases, we cannot integrate the
function f(t) directly. For example, the solution of the initial-
value problem

dy

2
a+ety=0; y(1)=2

y(t) = 2exp (— flt e‘zds) .

‘We cannot integrate the function et” directly!
We should, therefore, turn our attention to those differential

is

equations that we can solve. The “simplest” equations that we

can solve are those which are linear.

1.2.1 First-order Homogeneous!®!! Linear Differential
Equations

Definition 1.2.1 The general form of the first-order linear dif-

ferential equation is

&+ oty =be), (12.4)
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where a(t) and b(t) are continuous functions of t. If b(t) = 0, the
corresponding equation
dy
de
is called a first-order homogeneous linear differential equation.
If b(t) # O, then Eq.(1.2.4) is called a first-order nonhomoge-
neous!8? linear differential equation.

+a(t)y=0 (1.2.5)

To solve the homogeneous equation (1.2.5), we divide both
sides of the equation by y and rewrite it in the form
Y~ _a). (1.2.6)
Yy
Integrating both sides of Eq.(1.2.6) gives

In|y(?)| = — /a(t)dt +e1,

where ¢; is an arbitrary constant of integration. Taking exponen-
tials!®3] of both sides of last equation(® yields

waﬂ=mm<—fﬂﬂ&+q>=c%p(_/ﬂﬂ“>
ly(t) exp ( / a(t)dt)’ —e 127

If there exist two different t; and t2 such that

oo ()
e )

then, by the intermediate value theorem[®8), y(t) exp ( / a(t)dt)

or

= c’
t=t,

= —C,
t=tg

must achieve all values between —c and +c, this is contrary to

(1.2.7). Hence,
y(t) exp (/ a(t)dt> =c.

y(t) = cexp (—/a(t)dt) . (1.2.8)

Thus,

(82] JEFkuy
[83] B &K

84 EX

[85] Mk AR 5454~
i
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Eq.(1.2.8) is the general solution of the homogeneous equation
(1.2.5).

Example 1.2.1 Solve 3’ + yv/tsint = 0.

Solution Here a(t) = V/tsint, so

y(t) = cexp (— / \/Zsintdt) . |

Example 1.2.2 Find the general solution of differential equa-
tion 3/ (t) + ay(t) = 0, and then determine the behavior!®él of all
solutions as ¢ — 0o, where a is a constant.

Solution The general solution is

y(t) = cexp (—/adt) = ce” .

If a < 0, all solutions, with the exception of y(t) = 0, ap-
proach infinity®7 as t — co.
If @ > 0, all solutions approach zero as ¢ — oo. |

The initial-value problem corresponding to Eq.(1.2.5) is

d
L ralty =0 vlto) =10 (L.2.9)

To find the solution of Eq.(1.2.9) we integrate both sides of Eq.
(1.2.6) between to and t188],

i d t ( )
—In s)|ds = —/ a(s)ds.

Thus, \
mwm—mmmn=—[a@@
or
yo | _ [ .
ln‘m = /to a(s)ds.

Taking exponentials of both sides of last equation we obtain that

- (- o)

y(to)

’-5—(% exp (/t: a(s)ds)

or

=1




