新型金属一有机超分子配合物的研究

(1994-2009)

郑岳贵

宁波大学应用固体化学研究中心 2009年6月 《新型金属-有机超分子配合物的研究》收集了本人于 1994—2009 年间发表在下列国际、国内刊物上的学术论文,其中 SCI 收录论文 100 余篇:

Inorg. Chem. (I.F. 4.123)

Crystal Growth & Design (I.F. 4.046)

Tetrahedron Letters (I.F. 2.615)

Eur. J. Inorg. Chem. (I.F. 2.579)

J. Solid State Chem. (I.F. 2.149)

Inorg. Chem. Comm. (I.F. 1.850)

Polyhedron (I.F. 1.756)

Solid State Science (I.F. 1.698)

- J. Molecular Structure (I.F. 1.486)
- Z. Kristallogr. (I.F. 1.338)
- Z. Anorg. allg. Chem. (I.F. 1.260)
- J. Coord. Chem. (I.F. 0.867)
- Z. Naturforsch.B (I.F. 0.770)
- J. Chem. Crystallogr. (I.F. 0.597)

化学学报

高等学校化学研究(Chem. Research in Chinese Universities)

无机化学学报

人工晶体学报

复旦学报 (自然科学版)

宁波大字字报》(周然科学版)

研究工作得到国家科技部、国家自然科学基金、国家教育部、浙江省自然科学基金、浙江省人事厅、浙江省教育厅、宁波市科技局、宁波市教育局和宁波大学的大力支持,对此表示衷心感谢。与此同时,向所有给予我们无私帮助和支持的人们表示诚挚的感谢。

1 *	Xing Li, Dan-Yi Wei, Shi-Jie Huang, Yue-Qing Zheng*	1-7
	Synthesesandcharacterization of novel lanthanide	
	adamantine-dicarboxylatecoordinationcomplexes	
•	J. Solid State Chem. 182 (2009) 95-101	
2 *	Yue-Qing Zheng*, Jian-Li Lin, Wei Xu, Hong-Zhen Xie, Jie Sun, Xian-Wen Wang	8-15
	A family of new glutarate compounds: Synthesis, crystal structures of: $Co(H_2O)_5L$ 1, $Na_2[CoL_2]$ 2, $Na_2[L(H_2L)_{4/2}]$ 3, $\{[Co_3(H_2O)_6L_2](HL)_2\}\cdot 4H_2O$ 4, $\{[Co_3(H_2O)_6L_2](HL)_2\}\cdot 10H_2O$ 5, $\{[Co_3(H_2O)_6L_2]L_{2/2}\}\cdot 4H_2O$ 6 and $Na_2\{[Co_3(H_2O)_2]L_{8/2}]\cdot 6H_2O$ 7 and magnetic properties of 1 and 2 with $H_2L = HOOC-(CH_2)_3-COOH$	
	Inorg. Chem. 47(22) (2008) 10280–10287	
3 *	Xing Li, De-Yi Cheng, Jian-Li Lin, Zhi-Feng Li, Yue-Qing Zheng*	16-24
	Di-, Tetra-, and Hexanuclear Hydroxy-Bridged Copper(II) Cluster Compounds:	
	Syntheses, Structures, and Properties	
	Crystal Growth & Design <u>8(8)</u> (2008) 2853–2861	
4 *	Yue-Qing Zheng*, De-Yi Cheng, Jian-Li Lin, Zhi-Feng Li, Xian-Wen Wang	25-33
	Adipato-Bridged Copper(II) Complexes	
	European Journal of Inorganic Chemistry (2008) 4453-4461	
5 *	Yue-Qing Zheng* Jian-Li Lin	34-51
	New 1D and 2D metal oxygen connectivities in Cu(II) succinato and glutarato	
	coordination polymers: $[Cu_3(H_2O)_2(OH)_2(C_4H_4O_4)_2] \cdot 4H_2O$, $[Cu_4(H_2O)_2(OH)_4(C_4H_4O_4)_2] \cdot 5H_2O$ and $[Cu_5(OH)_6(C_5H_6O_4)_2] \cdot 4H_2O$	
	J. Coord. Chem. <u>61(21)</u> (2008) 3420–3437	
6 *	Xian-Wen Wang, You-Ren Dong, Yue-Qing Zheng*, Jing-Zhong Chen	52-54
	A Novel Five-Connected BN Topological Network Metal-Organic Framework	
	Mn(II) Cluster Complex	
	Crystal Growth & Design 7(4) (2007) 613–615	
7 *	Xian-Wen Wang, Lei Han, Tie-Jun Cai, Yue-Qing Zheng*, Jing-Zhong Chen,	55-58
	Qian Deng	
	A Novel Chiral Doubly Folded Interpenetrating 3D Metal-Organic Framework	
	Based on the Flexible Zwitterionic Ligand	
	Crystal Growth & Design 7(6) (2007) 1027–1030	
8 *	Xian-Wen Wang, Yue-Qing Zheng*	59-62
	A dinuclear copper(II) complex and a zigzag chain iron(II) polymer based on	
	the 4-antipyrine derived Schiff base ligands: The hydroxylation and redox	
	occurred under the solvothermal conditions	
	Inorg. Chem. Commun. <u>10</u> (2007) 709–712	
9 *	Xian-Wen Wang, Yue-Qing Zheng*	63-69
	Synthesis, structure and magnetic properties of Ni ₂ (NO ₃) ₄ (APTY) ₄	
	$(APTY = 1,5-dimethyl-2-phenyl-4-\{[(1E)-pyridine-4-ylmethylene]amino\}-1,2-dimethylene]amino}$	
	ihydro-3 <i>H</i> -pyrazol-3-one)	

	J. Coord. Chem. <u>60</u> (2007) 763–769	70.70
10 *	Yue-Qing Zheng*, Wei Xu, Fu Lin, Guo-Su Fang	70-79
	Syntheses and crystal structures of copper(II) complexes derived from 2,4,6-tris(2-pyridyl)-1,3,5-triazine	
	J. Coord. Chem. <u>59</u> (2006) 1825–1834	
11 *	Yue-Qing Zheng*, Er-Bo Ying	80-92
1 1	Ternary copper(II) malonato complexes with alkali metals: K ₂ Cu(mal) ₂ ·3H ₂ O,	
	$Rb_2Cu(mal)_2 \cdot H2O, Cs_2[Cu(H_2O)_2(mal)_2] \cdot 2H_2O$	
	J. Coord. Chem. <u>59</u> (2006) 1281–1293	
12 *	Yue-Qing Zheng*, Er-Bo Ying	93-102
	New α,ω-Dicarboxylate Coordination Polymers with 4,4'-Bipyridine:	
	$Cu(bpy)(C_5H_6O_4)$, $Zn(bpy)(C_5H_6O_4)$, $Zn(bpy)(C_6H_8O_4)$ and	
	$Mn(bpy)(C_8H_{12}O_4)\cdot H_2O$	
	Polyhedron, <u>24</u> (2005) 397–406	
13 *	Yue-Qing Zheng*, Jie Sun, Yun-Feng Wang	103-111
	The first Suberato bridged Lanthanide Coordination Polymer: Hydrothermal	
	Synthesis, Crystal Structure and Thermal Characterization of La ₂ (H ₂ O) ₂ L ₃ with	
	$H_2L = HOOC(CH_2)_6COOH$	
	J. Coord. Chem., <u>58</u> (2005) 1551–1559	
14 *	Cong-Xin Ge, Yue-Qing Zheng*	112-121
	Three pimelato bridged Cu(II) phenanthroline complexes:	
	$[Cu_2(phen)_2(H_2O)_2L_2]$ · $4H_2O$, α – and β – $[Cu_2(phen)_2L_2]$ · $4H_2O$ with	
	$H_2L = HOOC(CH_2)_5COOH$	
	J. Coord. Chem., <u>58</u> (2005) 1199–1208	
15 *	Zhi-Feng Li, Yue-Qing Zheng*	122-129
	Synthesis and crystal structure of [Fe(phen) ₃]L _{1.5} · 1.5H ₂ L· 4H ₂ O with	
	H_2L = fumaric acid	
	J. Coord. Chem., <u>58</u> (2005) 883–890	
16 *	Yue-Qing Zheng*, Hong-Zhen Xie	130-139
	Fumarato bridged Open Layers: Syntheses and Crystal Structures of M(H ₂ O) ₂ L	
	with $M = Cu$, Cd and $H_2L = Fumaric Acid$	
	J. Coord. Chem., <u>58</u> (2005) 539–548	
17 *	Yue-Qing Zheng*, Er-Bo Ying	140-147
	Malonato-bridged hexamethylenetetramine coordination polymers containing	
	Mn(II) and Cu(II)	
	J. Coord. Chem., <u>58</u> (2005) 453–460	
18 *	Yue-Qing Zheng*, Jian-Li Lin, Zu-Ping Kong	148-154
	Coordination Polymers based on Co-bridging of Rigid and Flexible Spacer	
	Ligands: Syntheses, Crystal Structures and Properties of	
	$[Mn(bpy)(H_2O)(C_4H_4O_4)]$ · 0.5bpy, $Mn(bpy)(C_5H_6O_4)$ and $Mn(bpy)(C_6H_8O_4)$	
	Inorg. Chem., <u>43</u> (2004) 2590–2596	
19 *	Yue-Qing Zheng*, Hong-Zhen Xie	155-161
	Two Fumarato-bridged Co(II) Coordination Polymers: Syntheses, Crystal	

	Structures and Properties of $Co(H_2O)_4L$ and $[Co_3(H_2O)_4(OH)_2L_2] \cdot 2H_2O$ with $H_2L = HOOCCH = CHCOOH$	
	J. Solid State Chem., <u>177</u> (2004) 1352–1358	
20 *	Er-Bo Ying, Yue-Qing Zheng*, Hong-Jie Zhang	162-169
	Syntheses, crystal structures and properties of two Cu(II) coordination	
	polymers: $Cu(C_3N_2H_4)_2(HL)_2$ and $Cu(C_3N_2H_4)_2L$ with $C_3N_2H_4$ = imidazole,	
	H_2L = adipic acid	
	J. Molecular Structure, <u>693</u> (2004) 73–80	
21 *	Yue-Qing Zheng*, Hong-Zhen Xie	170-176
	Two Malonato Coordination Polymers: Syntheses and Crystal Structures of	
	$M(H_2O)_2(C_3H_2O_4)$ with $M = Co$ and Ni , $C_3H_4O_4 =$ malonic acid	
	J. Coord. Chem., <u>57</u> (2004) 1537–1543	
22 *	Er-Bo Ying, Yue-Qing Zheng*, Hong-Jie Zhang	177-185
	Syntheses, crystal structures of $[Mn(H_2O)_4(bpy)]L \cdot 4H_2O$,	
	$[Mn(H_2O)_4(bpy)]L \cdot 4H_2O$ and $[Zn(H_2O)_4(bpy)]L \cdot 4H_2O$ ($H_2L =$ Succinic acid,	
	$H_2L = Fumaric acid$	
	J. Coord. Chem., <u>57</u> (2004) 459–467	
23 *		186-191
	Wen-Xia Tang, Norikazu Ueyama	
	Novel Metal-Organic Frameworks with Specific Topology Formed through	
	Noncovalent BrBr Interactions in the Solid State	
	Crystal Growth & Design, <u>4(3)</u> (2004) 579–584	100 001
24 *	Yue-Qing Zheng*, Jian-Li Lin, Zu-Ping Kong	192-201
	Syntheses and crystal structures of new thermal characterizations of suberato	
	bridged Mn(II) phen complexes {[Mn(phen) ₂]L _{2/2} } ₂ · H ₂ L· 8H ₂ O,	
	$\{[Mn(phen)(H_2O)_3]_2L\}L\cdot 2H_2L\cdot 4H_2O \text{ and } \{[Mn(phen)_2(HL)]_2L\}\cdot H_2L$	
	$(H_2L = HOO(CH_2)_6COOH)$	
	Polyhedron, <u>22</u> (2003) 2699–2708	
25 *	Yue-Qing Zheng*, Jie Sun	202-209
	Two Succinato-pillared Coordination Polymer: Hydrothermal Syntheses,	
	Crystal Structures and Properties of Mn ₅ (OH) ₂ L ₄ and Cd ₃ (OH) ₂ L ₂ with	
	$H_2L = HOOC(CH_2)_2COOH$	
	J. Solid State Chem., <u>172</u> (2003) 288-295	
26 *	Yue-Qing Zheng*, Jie Sun, Jian-Li Lin	210-217
	Hydrogenmaleato bridged supramolecular double chains $via \pi - \pi$ stacking	
	interactions: Syntheses, crystal structures and magnetic properties of	
	$_{\infty}^{1}$ [Cu(phen)X(HL) _{2/2}] with X = Cl (1), NO ₃ (2) and H ₂ L = maleic acid	
	J. Molecular Structure, <u>650</u> (2003) 49–56	
27 *	Ping Wang, Wei Xu, Yue-Qing Zheng*	218-223
	New catenary octahedro-hexamolybdenum cluster bromides: crystal structures	
	of AMo_6Br_{13} with $A = Na$, Ag	
	Solid State Sciences, <u>5</u> (2003) 573–578	
28 *	Yue-Qing Zheng*, Zu-Ping Kong	224-231

	Di– and trinuclear Co(II) phenanthroline complexes of suberic acid (H_2L):	
	$[Co_2(phen)_2(H_2O)_2L_2]$ · $5H_2O$ and $\{Co[Co(phen)(H_2O)_4]_2L_{4/2}\}L$ · $4H_2O$	
	Inorg. Chem. Comm., <u>6</u> (2003) 478–485	
29 *	Yue-Qing Zheng*, Jian-Li Lin, Bao-Ya Chen	232-240
	New catenary coordination polymers using fumarato ligand as bridging spacer:	
	crystal structures of [Mn(phen) ₂ (H ₂ O) ₂]L· 4H ₂ O, Mn(phen)(H ₂ O) ₂ L and	
	$Zn(phen)L \cdot H_2L$ with H_2L = fumaric acid	
	J. Molecular Structure, <u>646</u> (2003) 151–159	
30 *	Hong-Zhen Xie, Yue-Qing Zheng*, Ke-Qin Shou	241-247
	Synthesis and crystal structure of [Zn(H ₂ O) ₄ (C ₄ H ₂ O ₄)]·H ₂ O	
	J. Coord. Chem., <u>56</u> (2003) 1291–1297	
31	孔祖萍,郑岳青,张飚,金松林,岳斌	248-255
	新型 Cu(II)-邻菲咯啉-丁二酸三元配合物: [Cu(phen) ₂ L](H ₂ L)·5H ₂ O(1) 和	
	[(phen) ₂ CuLCu(phen) ₂]L·10H ₂ O(2)的合成及晶体结构 (H ₂ L = 丁二	
	酸 (C ₄ H ₆ O ₄))	
	<i>复旦学报 (自然科学版</i>), <u>42</u> (2003) 917–924	
32 *	Xiang-Jun Zheng, Lin-Pei Jin, Shao-Zhe Lu, Yue-Qing Zheng	256-263
	Syntheses, Structures, and Properties of Lanthanide Supramolecular Complexes	
	with 1,10-Phenanthroline and Terminal Amino Acids with Different Chain	
	Lengths	
	Z. Anorg. allg. Chem., <u>629</u> (2003) 2577–2584	
33 *	Yue-Qing Zheng*, Zu-Ping Kong	264-270
	Synthesis and crystal structure of [Ni(H ₂ O) ₆][Ni(H ₂ O) ₂ (C ₄ H ₂ O ₄)]· 4H ₂ O	
	J. Coord. Chem., <u>56</u> (2003) 967–973	
34 *	Yue-Qing Zheng*, Zu-Ping Kong	271-273
	A novel 3D framework coordination polymer based on succinato bridged	
	helical chains connected by 4,4'-bipyridine: [Cu(bpy)(H ₂ O) ₂ (C ₄ H ₄ O ₄)]· 2H ₂ O	
	Z. Anorg. allg. Chem., <u>629</u> (2003) 1469–1471	
35 *	Yue-Qing Zheng*, Jian-Li Lin	274-278
	Crystal structures of [Cu ₂ (bpy) ₂ (H ₂ O)(OH) ₂ (SO ₄)]· 4H ₂ O and	
	$Cu(bpy)(H_2O)_2SO_4$ with bpy = 2,2'-bipyridine	
	Z. Anorg. allg. Chem., <u>629</u> (2003) 1622–1626	
36 *	Yue-Qing Zheng*, Hans Georg von Schnering*, Jen-Hui Chang, Yuri Grin,	279-287
	Günther Engelhardt, Gernot Heckmann	
	The carbon–centered <i>triprismo</i> –hexatungsten chlorides C@W ₆ Cl ₁₆ and	
	$C@W_6Cl_{18}$	
	Z. Anorg. allg. Chem., <u>629</u> (2003) 1256–1264	
37 *	Yue-Qing Zheng*, Jian-Li Lin	288-292
	Two heteroleptic Zn(II) complexes: Zn(phen)(C ₉ H ₁₅ O ₆) ₂ and	
	$[Zn_2(phen)_2(H_2O)_2(C_{10}H_{16}O_4)_2] \cdot 3H_2O$	
	Z. Anorg. allg. Chem., <u>629</u> (2003) 1007–1011	
38 *	Jie Sun, Yue-Qing Zheng*	293-298
	One-dimensional Cd(II) coordination polymers: syntheses and crystal	

	structures of $[Cd(H_2O)_3(C_5H_6O_4)] \cdot 2H_2O$, $Cd(H_2O)_2(C_6H_8O_4)$ and	
	$Cd(H_2O)_2(C_8H_{12}O_4)$	
	Z. Anorg. allg. Chem., <u>629</u> (2003) 1001–1006	
39 *	Yue-Qing Zheng*, Ming-Fang Zheng	299-303
	New Dinuclear Mn(II) Phenanthroline Adipato Complex: Synthesis and	
	Structural and Thermal Characterizations of Mn ₂ (phen) ₂ (H ₂ O) ₂ (C ₆ H ₈ O ₄) ₂	
	Z. Naturforsch., <u>58b</u> (2003) 266–270	
40 *	Yue-Qing Zheng*, Jian-Li Lin, Er-Bo Ying	304-307
	New mixed ligand Cu(II) complexes: syntheses and crystal structures of	
	$Cu(Imid)_2(H_2O)L$ with $Imid = imidazole$, $H_2L = succinic$ and fumaric acid	
	Z. Anorg. allg. Chem., <u>628</u> (2003) 673-676	
41 *	Yue-Qing Zheng*, Jian-Li Lin	308-310
	A hydrogen adipato bridged Cu(II) coordination polymer:	
	$[Cu(bpy)(HL)]_2L \cdot 6H_2O$ (bpy = 2,2'-bipyridine, H_2L = adipic acid)	
	Z. Anorg. allg. Chem., 629 (2003) 578-580	
42 *	Yue-Qing Zheng*, Jian-Li Lin, Zu-Ping Kong	311-315
	Syntheses, crystal structures and thermal behaviors of Co(phen)(HL) ₂ and	
	$[\text{Co}_2(\text{phen})_2(\text{H}_2\text{O})_4\text{L}_2]$ · H_2O with $\text{H}_2\text{L} = \text{pimelic}$ acid	
	Z. Anorg. allg. Chem., <u>629</u> (2003) 357–361	
43 *	Yue-Qing Zheng*, Jian-Li Lin	316-318
	A new sulfato bridged catenary Mn(II) phenanthroline polymeric complex:	
	$Mn(phen)(H_2O)_2(SO_4)$	
	Z. Anorg. allg. Chem., <u>629</u> (2003) 185–187	
44 *	Yue-Qing Zheng*, Lin-Xia Zhou, Jian-Li Lin, Dan-Yi Wei	319-325
	Magnetic exchange based on π - π stacking interactions: synthesis, crystal	
	structure, thermal decomposition and magnetic properties of	
	$[Ce(phen)_2(H_2O)_2(NO_3)_2](NO_3)(phen)_2(H_2O)$	
	Z. Naturforsch., <u>57b</u> (2002) 1244–1250	
45	孙杰,林建利,郑岳青*,王继扬	326-330
	一氯桥双核铜配合物: Cu2(phen)2Cl4 的合成、晶体结构及性质研究	
	人工晶体学报, <u>31(4)</u> (2002) 365–369	
46 *	Yue-Qing Zheng*, Zu-Ping Kong, Jian-Li Lin	331-339
	Supramolecular assemblies <i>via</i> hydrogen bonding and π - π stacking	
	interactions: crystal structures of [Co(phen)(H ₂ O) ₄]L· 0.5H ₂ O (1) and	
	$[Co_2(phen)_2(H_2O)_2L_2]$ (2) with H_2L = adipic acid	
	J. Coord. Chem., <u>55</u> (2002) 1249–1257	
47 *	Yue-Qing Zheng*, Zu-Ping Kong	340-346
	A new maleato-bridged Mn(II) phen complex: Structure and magnetic property	
	of Mn(phen)(C ₄ H ₂ O ₄)	
	J. Coord. Chem., <u>55</u> (2002) 1241–1247	
48 *	Yue-Qing Zheng*, Zu-Ping Kong, Jian-Li Lin	347-354
	synthesis, crystal structure and magnetic property of	
	diaqua(1,10-phenanthroline-N,N')hydrogenmaleatocopper(II)	

	hydrogenmaleate monohydrate, $[Cu(phen)(H_2O)_2(C_4H_3O_4)](C_4H_3O_4)(H_2O)$ J. Coord. Chem., <u>55</u> (2002) 1233–1240	
49 *	Dan-Yi Wei, Jian-Li Lin, Yue-Qing Zheng*	355-358
	The crystal structure of	
	tris(nitrato-O,O')bis-(1,10-phenanthroline-N,N')terbium(III),	
	$Tb(phen)_2(NO_3)_3$	
	J. Coord. Chem., <u>55</u> (2002) 1259–1262	
50 *	Yue-Qing Zheng*, Jian-Li Lin, Zu-Ping Kong, Bao-Ya Chen	359-368
	Self-assemblies of Ni(II) with phenanthroline and maleate anions:	
	$[Ni(H_2O)_3(phen)-L] \cdot H_2O$ (1) and $[Ni(H_2O)_2(phen)L_{2/2}] \cdot 2H_2O$ (2) with	
	H_2L = maleic acid	
	J. Chem. Crystallogr., <u>32</u> (2002) 399–408	
51 *	Dan-Yi Wei, Yue-Qing Zheng*, Jian-Li Lin	369-376
	Self-assembly of Zinc Ions with Suberic Acid and Phenanthroline Crystal	
	Structures of five New Zinc Phenanthroline Suberato Complexes	
	Z. Anorg. allg. Chem., <u>628</u> (2002) 2005–2012	
52 *	Yue-Qing Zheng*, Jian-Li Lin	377-379
	A novel trinuclear Ni(II) phen suberato complex:	
	${Ni[Ni(phen)(H_2O)_4]_2L_{4/2}}L\cdot 4H_2O (H_2L = suberic acid)$	
	Z. Anorg. allg. Chem., <u>628</u> (2002) 1724–1726	
53 *	Yue-Qing Zheng*, Zu-Ping Kong	380-385
	A Suberato-pillared Mn(II) Coordination polymer: Hydrothermal Synthesis,	
	Crystal Structure and Magnetic Property of Mn ₂ (H ₂ O)[O ₂ C(CH ₂) ₆ CO ₂] ₂	
	J. Solid State Chem., <u>166</u> (2002) 279–284	
54 *	Dan-Yi Wei, Zu-Ping Kong, Yue-Qing Zheng*	386-393
	Sebacato-bridged Cu(II) phen complexes: syntheses and crystal structures of	
	${}_{\infty}^{2} [Cu_{2}(phen)_{2}L_{4/2}](H_{2}O)_{6} \text{ and } [(phen)_{2}Cu(\mu-L)Cu(phen)_{2}](HL)_{2}(H_{2}L)(H_{2}O)_{4}$	
	(H ₂ L = sebacic acid; phen = 1,10-phenanthroline)	
4	Polyhedron, <u>21(16)</u> (2002) 1621–1628	
55 *	魏丹毅,郑岳青*,林建利	394-398
	[Ho ₂ (phen) ₄ (H ₂ O) ₄ (OH) ₂](phen) ₂ (NO ₃) ₄ 的合成、晶体结构及磁性	
~ ~ +	化学学报 (Acta Chimica Sinica), <u>60(7)</u> (2002) 1248–1252	
56 *	Yue-Qing Zheng*, Wen-Han Liu, Jian-Li Lin	399-403
	Crystal structures of ${}^{1}_{\infty}$ {[Cd(phen)](C ₆ H ₈ O ₄) _{3/3} } (1) and	
	$\int_{0}^{1} \{ [Cd(phen)](C_7H_{10}O_4)_{3/3} \} \cdot 2H_2O (2) \text{ with } C_6H_{10}O_4 = \text{adipic acid and}$	
	$C_7H_{12}O_4 = \text{pimelic acid}$	
57 *	Z. Anorg. allg. Chem., <u>628</u> (2002) 1401–1405	404 407
37.	Yue-Qing Zheng*, Jie Sun, Jian-Li Lin	404-407
	Syntheses, Crystal structure and Magnetic Property of	
	$\{[Cu(phen)]_2(C_4H_2O_4)_2\} \cdot 4.5H_2O \text{ with } C_4H_4O_4 = \text{maleic acid}$	
50 ±	Z. Anorg. allg. Chem., <u>628</u> (2002) 1397–1400	400 410
58 *	Dan—Yi Wei, Yue—Qing Zheng*, Jian—Li Lin	408-413
	Two hydroxo bridged dinuclear lanthanide phen complexes:	

	$[Ln_2(pnen)_4(H_2O)_4(OH)_2](pnen)_2(NO_3)_4$ with $Ln = Im(1)$, Yb(2)	
	Z. Naturforsch., <u>57b(6)</u> , (2002) 625–630	
59 *	Yue-Qing Zheng*, Wen-Han Liu, Jian-Li Lin, Ling-Yun Gu	414-417
	Adipato bridged catena mixed ligand complexes: $\frac{1}{\infty} \{ [M(phen)(H_2O)]L_{2/2} \}$ with	
	$M = Ni(II)$ 1, $Cu(II)$ 2, $Zn(II)$ 3; $H_2L = adipic acid$	
	Z. Anorg. allg. Chem., <u>628</u> (2002) 829–832	
60 *	Yue-Qing Zheng*, Wen-Han Liu, Jian-Li Lin	418-422
	Two glutarato bridged coordination polymers: ${1 \atop \infty} \{[Mn(phen)]_2L_{4/2}\}$ (1) and	
	$\int_{\infty}^{1} \{ [Zn(phen)(H_2O)] L_{2/2} \} \cdot H_2O(2) \text{ with } H_2L = \text{glutaric acid}$	
	Z. Anorg. allg. Chem., <u>628</u> (2002) 824–828	
61 *	Fang-Long Yang, Gang Zhao, Yu Ding, Zong-Bao Zhao, Yue-Qing Zheng	423-427
	A new coupling reaction of propargyl carbonates mediated by Ti(OiPr)2Cl2/Mg	
	Tetrahedron Letters, <u>43</u> (2002) 1289–1293	
62 *	Yue-Qing Zheng*, Wen-Han Liu, Jian-Li Lin	428-432
	Two succinato bridged Zn(II) phenanthroline complexes: [Zn(phen)L _{2/2}](H ₂ L)	
	(1) and $[(phen)_2Zn(\mu-L)Zn(phen)_2]L \cdot 11H_2O$ (2) with H_2L = succinic acid	
	Z. Anorg. allg. Chem. , <u>628</u> (2002) 620–624	
63 *	Yue-Qing Zheng*, Zu-Ping Kong	433-439
	Sythesis, crystal structure and thermal analyses of	
	triaqua(1,10-phenanthroline-N,N')succinatomanganese(II) dihydrate,	
	$[Mn(H_2O)_3(phen)(C_4H_4O_4)] \cdot 2H_2O$	
	J. Chem. Crystallogr., <u>32</u> (2002) 119–125	
64 *	Yue-Qing Zheng*, Jian-Li Lin	440-445
	Hydroxo-bridged tetranuclear Cu ^{II} complexes: {[Cu(bpy)(OH)] ₄ Cl ₂ }Cl ₂ · 6H ₂ O	
	and $\{[Cu(phen)(OH)_4](H_2O)_2\}Cl_4\cdot 4H_2O$	
	Z. Anorg. allg. Chem., <u>628</u> (2002) 203–208	
65 *	Yue-Qing Zheng*, Lin-Xia Zhou, Jian-Li Lin, Sun-Wei Zhang	446-450
	Hydroxo bridged dinuclear rare earth complexes: Syntheses and crystal	
	structures of $[Ln_2(phen)_4(H_2O)_4(OH)_2](NO_3)_4(phen)_2$ with $Ln = Er(1)$, $Lu(2)$	
	Z. Anorg. allg. Chem., <u>627</u> (2001) 2425–2429	
66	孙杰,林建利,郑岳青*	451-455
	[Cu(phen) ₂ Cl](OH)· 5.5H ₂ O 的合成和晶体结构 (phen = 1,10-phenanthroline)	
	<i>宁波大学学报(理工版</i>), <u>14(2)</u> (2001) 13–17	
67	林建利,孙杰,郑岳青*	456-463
	基于芳环堆积和氢键作用的新型双核铜配合物的超分子组装:	
	[Cu ₂ (phen) ₂ (OH)Cl(C ₄ H ₄ O ₄)]· 8H ₂ O 的合成和晶体结构	
	(phen = 1,10-phenanthroline)	
	<i>宁波大学学报(理工版)</i> , <u>14(2)</u> (2001) 5–12	
68 *	Yue-Qing Zheng*, Jian-Li Lin	464-469
	Crystal Structures of $[Mn_2(H_2O)_4(bpy)_2(C_8H_{12}O_4)_2] \cdot 2H_2O$ (1) and	
	$[Mn(H_2O)_2(bpy)(C_8H_{12}O_4)_{2/2}] \cdot H_2O(2)$ with bpy = 2,2'-bipyridine	
	Z. Anorg. allg. Chem., <u>627</u> (2001) 2201–2206	
69 *	Yue-Qing Zheng*, Jian-Li Lin, Jie Sun	470-474

	Syntheses and crystal structures of $[M_2(H_2O)_2(phen)_2(C_7H_{10}O_4)_2] \cdot 4H_2O$ with	
	M = Mn(II) (1), $Cu(II)$ (2) and phen = 1,10-phenanthroline	
	Z. Anorg. allg. Chem., <u>627</u> (2001) 1997–2001	
70 *	Yue-Qing Zheng*, Jie Sun, Jian-Li Lin	475-478
	Novel Suberato-bridged Supramolecular Layers: Crystal Structure of	
	$[Cu_2(phen)_2(C_8-H_{12}O_4)_2]$: $3H_2O$ with phen = 1, 10-phenanthroline	
	Z. Anorg. allg. Chem., <u>627</u> (2001) 1993–1996	
71 *	Yue-Qing Zheng*, Jian-Li Lin	479-481
	A new succinato-bridged supramolecular helix chain: Crystal Structure of	
	$[Mn(H_2O)_2(bpy)(C_4H_4O_4)] \cdot H_2O$ with bpy = 2,2'-bipyridine	
	Z. Anorg. allg. Chem., <u>627</u> (2001) 1990–1992	
72 *	Yue-Qing Zheng*, Jian-Li Lin, Jie Sun	482-486
	Synthesis and Crystal Structure of	
	$[Cu_2(H_2O)_2(phen)_2(OH)_2][Cu_2(phen)_2(OH)_2(CO_3)_2] \cdot 10H_2O$ with	
	phen = 1,10-phenanthroline	
	Z. Anorg. allg. Chem., 627 (2001) 1647–1651	
73 *	Yue-Qing Zheng*, Lin-Xia Zhou, Jian-Li Lin	487-490
	Syntheses and Crystal Structures of $Ln(phen)_2(NO_3)_3$ with $Ln = Pr(1)$, Nd(2),	
	Sm (3), Eu (4), Dy (5) and phen = 1,10-phenanthroline	
	Z. Anorg. allg. Chem., <u>627</u> (2001) 1643–1646	
74 *	Jian-Li Lin, Yue-Qing Zheng*, Zu-Ping Kong, Hong-Liang Zhang	491-495
	Supramolecular assemblies of mononuclear and polymeric nickel(II) glutarato	
	complexes $via \pi - \pi$ stacking interactions and hydrogen bondings:	
	$[Ni(H_2O)_3(phen)(C_5H_6O_4)] \cdot H_2O$ (1) and $[Ni(H_2O)_2(phen)(C_5H_6O_4)]$ (2)	
	Z. Anorg. allg. Chem., 627 (2001) 1066–1070	
75 *	Yue-Qing Zheng*, Jian-Li Lin, Jie Sun	496-502
	Crystal structures of $[Mn_2(H_2O)_4(phen)_2(C_4H_4O_4)_2] \cdot 2H_2O$ (1) and	
	$[Mn(phen)_2(H_2O)_2][Mn(phen)_2(C_4H_4O_4)](C_4H_4O_4) \cdot 7H_2O$ (2)	
	Z. Anorg. allg. Chem., <u>627</u> (2001) 1059–1065	
76 *	Yue-Qing Zheng*, Karl Peters, Hans Georg von Schnering	503-508
, 0	Synthesis and characterization of Zinc Succinate, $Zn(C_4H_4O_4)$	505 500
	Chem. Research in Chinese Universities (高等学校化学研究), 17(1) (2001)	
	20–25	
77 *	Yue-Qing Zheng*, Jie Sun, Jian-Li Lin	509-513
• •	Two novel Cu(II) phenanthroline adipato complexes with π - π stacking	507 515
	interactions: $[Cu(phen)_2(C_6H_8O_4)]$ · 4.5H ₂ O and	
	$[(Cu_2(phen)_2Cl_2)(C_6H_8O_4)] \cdot 4H_2O$	
	Z. Anorg. allg. Chem., <u>627</u> (2001) 90–94	
78 *	De-Ping Cheng*, Chang-Jian Feng, Mao-Lin Hu, Yue-Qing Zheng,	514-520
70		314-320
	Duan-Jun Xu, Yuan-Zhi Xu Synthesis and Crystal Structure of a nalymeric 1.2.4.5. Representative contesting and	
	Synthesis and Crystal Structure of a polymeric 1,2,4,5—Benzenetetracarboxylato	ı
	Complex of Cu(II) with Imidazole, $Cu_2(C_{10}H_2O_8)(C_3H_4N_2)_6(H_2O)_4$. $4H_2O$	
	J. Coord. Chem., <u>52</u> (2001) 245–251	

79 *	郑岳青*, 孙杰, 林建利	521-525
	[Cu(phen)(H ₂ O)(C ₄ H ₄ O ₄)]· 2H ₂ O 的合成和晶体结构	321 323
	化学学报 (Acta Chimica Sinica), 58(9) (2000) 1131-1135	
80 *	陶朱*, 祝黔江, 郑岳青, 徐元植	526-531
	[Co(N-(2-Aminoethyl)-1,3-propanediamine)(2-(Aminomethyl)pyridine)Cl][Z	J20-JJ1
	nCl ₄]配合物的合成及一种异构体的晶体结构	
	无机化学学报 (Chinese Journal of Inorganic Chemistry), 16(4) (2000)	
	631–636	
8 1 *	Yue-Qing Zheng*, Jian-Li Lin, Ai-Ya Pan	532-534
	A novel adipate bridged supramolecular layer: crystal structure of the cobalt(II)	
	complex $[(\mu - C_6H_8O_4)_{4/2}Co(\mu - H_2O)_2Co(H_2O)_4] \cdot 4H_2O$	
	Z. Anorg. allg. Chem., <u>626</u> (2000) 1718–1720	
82 *	Yue-Qing Zheng*, Lin-Xia Zhou, Jian-Li Lin, Sun-Wei Zhang	535-537
	Synthesis and crystal structure of [La(phen) ₂ (H ₂ O) ₂ (NO ₃) ₂]NO ₃ · 2(phen) (H ₂ O)	
	with phen = 1,10-phenanthroline	
	Z. Anorg. allg. Chem., <u>626</u> (2000) 1715–1717	
83 *	Yue-Qing Zheng*, Jian-Li Lin, Jie Sun, Wan-Jie Chen	538-540
	Synthesis and Crystal Structure of the Tris-bidentate	
	Carbonato-bis(1,10-phenanthroline-N,N')nickel(II), [Ni(C ₁₂ H ₈ N ₂) ₂ (CO ₃)]	
	Z. Anorg. allg. Chem., <u>626</u> (2000) 1505–1507	
84 *	Yue-Qing Zheng*, Jie Sun, Jian-Li Lin	541-544
	A zipper–like supramolecular double–chains based on 1D π – π stacking	
	interactions: synthesis and crystal structure of	
	$[Cu(phen)(C_4H_4O_4)(H_2O)]_2 \cdot C_4H_6O_4 \text{ (phen = 1,10-phenanthroline)}$	
	Z. Anorg. allg. Chem., <u>626</u> (2000) 1501–1504	
85 *	Chang-Jian Feng*, De-Ping Cheng, Duan-Jun Xu, Yue-Qing Zheng, Jian-Li	546-550
	Lin, Yuan–Zhi Xu	
	Synthesis, Characterization and Crystal Structure of a Binuclear Copper(II)	
	Diethylene-triamine Complex Bridged through a Centrosymmetric	
	1,3-μ-Thiocyanto Group	
	J. Coord. Chem., <u>51</u> (2000) 67–72	
86 *	Yue-Qing Zheng*, Jie Sun, Jian-Li Lin	551-553
	1D supramolecular double-chains based on π - π stacking interactions:	
	Synthesis and crystal structure of [Cu(phen)(C ₁₀ H ₁₆ O ₄)]· 3H ₂ O with	
	phen = 1,10-phenanthroline	
a= 1:	Z. Anorg. allg. Chem., <u>626</u> (2000) 1274–1276	
87 *	Yue-Qing Zheng*, Jie Sun, Jian-Li Lin	554-556
	An azelaato-bridged dinuclear copper(II) molecular complex,	
	$[Cu2(phen)2(C9H14O4)2] \cdot 6H2O (phen = 1,10-phenanthroline)$	
0.0	Z. Anorg. allg. Chem., <u>626</u> (2000) 1271–1273	
88	Jian-Li Lin, Yue-Qing Zheng*	557-564
	A novel basic copper succinate: crystal structure of diaqua-tetracopper	
	tetrahydroxyl disuccinate trihydrate, [Cu ₄ (H ₂ O) ₂ (OH) ₄ (C ₄ H ₄ O ₄) ₂]· 3H ₂ O	

	宁波大学学报 (理工版), 13(1) (2000) 31-38	
89 *	Yue-Qing Zheng*, Jie Sun, Jian-Li Lin	565-567
0)	A novel dinuclear copper(II) complex molecule: synthesis and crystal structure	303-307
	of $Cu_2(phen)_2(H_2O)_2(C_5H_6O_4)_2$ with phen = 1,10-phenanthroline	
	Z. Anorg. allg. Chem., <u>626</u> (2000) 816–818	
90 *	Yue-Qing Zheng*, Jie Sun, Jian-Li Lin	5/0 570
70	Synthesis and crystal structure of a novel dinuclear copper(II) complex,	568-570
	[Cu ₂ (phen) ₂ (H ₂ O) ₂ (OH) ₂](HCO ₃) ₂ · 6H ₂ O with phen = 1,10-phenanthroline	
91 *	Z. Anorg. allg. Chem., <u>626</u> (2000) 613–615 Yue-Qing Zheng*, Yu-Han Ye, Fu-Tao Hu, Karl Peters, Hans Georg von	571 576
<i>)</i> 1	Schnering	571-576
	Synthesis, crystal structure and magnetic properties of disodium	
	dicarbonatocobaltate(II) tetrahydrate, Na ₂ Co(CO ₃) ₂ · 4H ₂ O	
	* * * * * * * * * * * * * * * * * * * *	
	Chem. Research in Chinese Universities (高等学校化学研究), <u>15(4)</u> (1999) 311–316	
92 *		
92 "	Yue-Qing Zheng*, Adam Arnold	577-583
	Synthesis and crystal structure of dicaesium tetraaquadicarbonatomagnesate(II),	
	$Cs_2[Mg(CO_3)_2(H_2O)_4]$	
	Chem. Research in Chinese Universities (高等学校化学研究), <u>15(3)</u> (1999)	
02 *	211–217	
93 *	Yue-Qing Zheng*, Horst Bormann, Yuri Grin, Karl Peters and Hans Georg	584-588
	von Schnering*	
	Two cluster compounds: $Ag[W_6Br_{14}]$ and $Ag_2[W_6Br_{14}]$	
94 *	Z. Anorg. allg. Chem., <u>625</u> (1999) 2115–2119	
94 "	Yue-Qing Zheng*, Karl Peters and Hans Georg von Schnering	589-592
	The mixed valence tungsten(IV,V) compound Na[W ₂ O ₂ Br ₆]	
05 4	Z. Anorg. allg. Chem., <u>624</u> (1998) 1415–1418	
95 *	Yue-Qing Zheng*, Ekaterina Jonas, Juergen Nuss and Hans Georg von	593-597
	Schnering The Date of the state	
	The DMSO solvated octahedro–[W ₆ Cl ₁₂ ⁱ]Cl ₆ ^a cluster molecule	
	Z. Anorg. allg. Chem., <u>624</u> (1998) 1400–1404	
96 *	Yue-Qing Zheng*, Yuri Grin, Karl Peters and Hans Georg von Schnering	598-603
	Two Modifications of Copper(I) Octahedro-Hexatungsten(II)	
	Tetradecabromide,Cu ₂ [W ₆ Br ₁₄]	
	Z. Anorg. allg. Chem., <u>624</u> (1998) 959–964	
97 *	Yue-Qing Zheng*, Karl Peters, Yuri Grin and Hans Georg von Schnering	604-610
	Syntheses and crystal structures of the cluster compounds $A_2[(W_6Br_8^i)Br_6^a]$ with	
	A = K, Rb, Cs	
	Z. Anorg. allg. Chem., <u>624</u> (1998) 506–512	
98 *	Yue-Qing Zheng*, Karl Peters, Wolfgang Hoenle, Yuri Grin, Hans Georg von	611-615
	Schnering	
	The crystal structure of tungsten(II) bromide, W ₆ Br ₁₂	
	Z. Kristallogr., <u>212</u> (1997) 453–457	

99 * Yue-Qing Zheng*, Arnold Adam Complex alkalimetal -carbonates-hydrogencarbonates with penta-coordinated zinc: NaA₂{Zn₂[H(CO₃)₂](CO₃)₂(H₂O)₂} with A = K, Rb Z. Naturforsch., 50b (1995) 1185-1194 100 * Yue-Qing Zheng, Arnold Adam* Ein neues Carbonat mit Baylissit-Struktur: Rb₂[Mg(CO₃)₂(H₂O)₄] Z. Naturforsch., 49b (1994) 1368-1372 101 * Arnold Adam*, Yue-Qing Zheng TlCu(OH)CO₃-Ein neues basisches Thallium-Kupfer-Carbonat Z. Anorg. allg. Chem., 620 (1994) 1707-1713

注: 标有符号 "*" 为 SCI 收录论文

Contents lists available at ScienceDirect

Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

Syntheses and characterization of novel lanthanide adamantine–dicarboxylate coordination complexes

Xing Li, Dan-Yi Wei, Shi-Jie Huang, Yue-Qing Zheng*

Institute of Solid Materials Chemistry, State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, PR China

ARTICLE INFO

Article history:
Received 12 June 2008
Received in revised form
7 September 2008
Accepted 22 September 2008
Available online 9 October 2008

Keywords: Adamantanedicarboxylate Hydrothermal reaction Lanthanide complexes

ABSTRACT

Hydrothermal reactions of 1,10-phenanthroline (phen), 1,3-adamantanedicarboxylic acid (H_2L) and lanthanide chlorides yielded six compounds: [Ln(L)(HL)(phen)] (Ln = Pr, 1; Nd, 2), [Ln(L)(HL)(phen)] (H_2O)] (Sm, 3; Eu, 4), $[Tb(L)(HL)(phen)(H_2O)]_2 \cdot 2H_2O$ (5), $[Er_3(L)_4(OH)(phen)]_2$ (6). Compounds 1-4 are structurally featured by one-dimensional polymeric chains; 5 hold binuclear structure constructed from eight-coordinated lanthanide center LnN_2O_6 of distorted bicapped trigonal prism bridged by dicarboxylate ligands; 6 shows that erbium ions are in mono and bicapped trigonal prismatic geometries, respectively, which are further connected by μ_3 -OH to give rise to trinuclear structure. Thermogravimetric analyses of 1, 3 and 5 were performed. Fluorescent measurements of 4 and 5 were carried out, respectively.

© 2008 Published by Elsevier Inc.

1. Introduction

Design and syntheses of lanthanide complexes are of great interest due to their various topological networks and crystal packing motifs as well as potential applications in fluorescent probes, magnetic materials, catalysts, molecular sensors [1–13]. In virtue of the large radii and high coordination number of lanthanide metals, the assembly of lanthanide complexes may encounter many difficulties and great challenges in terms of controlling their shapes and dimensions. However, the fascinating structures and special properties of lanthanide complexes have attracted increasing attention of scientists, and extensive investigation has been reported in the recent years [14–26].

It has been documented that the geometries and properties of organic ligands exert great effect on structural frameworks of lanthanide complexes, thus much effort has been devoted to modify the building blocks and to control the assembled motifs for desired products through the selection of different organic ligands. Previous studies have shown that rigid bridging ligands containing multicarboxylate groups are versatile ones for constructions of the robust networks or other porous coordination polymers [27–35]. As known, lanthanide ions have high affinity for hard donor atoms, and ligands with oxygen or hybrid oxygen–nitrogen atoms, especially multicarboxylate ligands are usually employed in construction for lanthanide complexes. 1,3-

2. Experimental section

2.1. Materials and methods

Except LnCl₃ nH₂O, which was prepared in our laboratory, all chemicals of reagent grade were commercially available and used without further purification. Elemental analyses(C, H and N) were performed using a Perkin-Elmer 2400 CHNS/O analyzer. The infrared spectrum of KBr pellets in the range 4000–400 cm⁻¹ was recorded on a Shimadzu FTIR-8900 spectrometer.

0022-4596/\$-see front matter © 2008 Published by Elsevier Inc. doi:10.1016/j.jssc.2008.09.018

adamantanedicarboxylic acid possesses intriguing coordination behaviors and potential hydrogen-bond interactions, such as asymmetric geometry and multiple coordination sites. However, former studies on the coordination chemistry of 1,3-adamantanedicarboxylic acid are mainly focused on transition metals [36-38], and those on lanthanide matals were very limited [39]. Recently we began to use adamantanedicarboxylic acid as organic ligand to synthesize lanthanide complexes, aiming at studying the coordination chemistry of lanthanide adamantanedicarboxylic acid as well as at obtaining some novel structures. By means of hydrothermal technique, six new lanthanide complexes have successfully prepared with 1,3-adamantanedicarboxylic acid. This paper will report about the syntheses and characterizations of a series of lanthanide adamantine-dicarboxylate complexes, [Ln(L)(HL)(phen)] (Ln = Pr, 1; Nd, 2), [Ln(L)(HL)(phen)(H₂O)](Sm, 3; Eu, 4), $[Tb(L)(HL)(phen)(H_2O)]_2 \cdot 2H_2O$ (5), $[Er_3(L)_4(OH)]_2$ (phen)]2 (6).

^{*}Corresponding author. Fax: +8657487600734.

E-mail address: zhengyueqing@nbu.edu.cn (Y.-Q. Zheng).

Thermogravimetric measurements were carried out from room temperature to 1000 °C for 1, to 800 °C for 3 and 5 on preweighed samples in nitrogen stream using a Seiko Exstar6000 TG/DTA6300 apparatus with a heating rate of 10 °C/min. All the excitation and emission spectra were measured with an Aminco Bowman Series 2 instrument with a xenon arc lamp as the excitation light source for the solid-state samples at room temperature.

2.2. Preparation of complexes

2.2.1. Synthesis of [Pr(L)(HL)(phen)] (1)

Pale green powder of $PrCl_3 \cdot nH_2O$ was obtained by slow evaporation of a solution of Pr_2O_3 dissolved in HCl (10 mL) under water boiling condition. A mixture of 1,3-adamantanedicarboxylic acid (H_2L , 0.30 mmol, 0.0673 g), the above-prepared $PrCl_3 \cdot nH_2O$ (0.106 g) and 1,10-phenanthroline (phen, 0.30 mmol, 0.0595 g) in water (10 mL) was stirred for 1.0 h, and then sealed in a 23 mL Teflon-lined stainless autoclave, which was heated at 170 °C for six days and thereafter cooled slowly at 10 °C/h to room temperature, and pale green crystals were seperated by filtering and washing with absolute ethanol (Yield 40%, based on Pr_2O_3). Anal. Cacd (%) for $C_{36}H_{37}N_2O_8Pr$ (766.61): C 56.40, H 4.86, N 3.65. Found (%): C 56.85, H 4.97, N 3.59. IR(v cm⁻¹): 3396ms, 3055vw, 2903s, 2849s, 1684vs, 1608vs, 1518vs, 1408vs, 847s, 731s.

2.2.2. Synthesis of [Nd(L)(HL)(phen)] (2)

Pale red crystal were prepared analogously to **1** except using Nd_2O_3 instead of Pr_2O_3 (Yield 35%). Anal. Cacd (%) for $C_{36}H_{37}N_2O_8Nd$ (769.94): C 56.16, H 4.84, N 3.64. Found (%): C56.19, H 4.71, N 3.58. IR (v cm⁻¹): 3422ms, 3080vw, 2883s, 2847s, 1697vs, 1589vs, 1518vs, 1408vs, 851s, 731s.

2.2.3. Synthesis of $[Sm(L)(HL)(phen)(H_2O)]$ (3)

Yellow powder of SmCl₃ · nH₂O was obtained by slow evaporation of a solution of Sm₂O₃ (0.150 mmol, 0.0525 g) dissolved in HCl (10 mL) under water boiling condition. A mixture of 1,3-adamantanedicarboxylic acid (0.30 mmol, 0.0673 g), the above-prepared SmCl₃ · nH₂O and 1,10-phenanthroline (0.30 mmol, 0.0595 g) in water (10 mL) was stirred for 30 min, and then sealed in a 23 mL Teflon-lined stainless autoclave, which was heated at 160 °C for three days and thereafter cooled slowly to room temperature, and pale yellow crystals were seperated by filtering and washing (Yield 30%, based on Sm₂O₃). Anal. Cacd (%) for C₃₆H₃₉N₂O₉Sm (794.07): C 54.45, H 4.95, N 3.53. Found (%): C 55.01, H 4.81, N 3.64. IR(ν cm⁻¹): 3402ms, 3080w, 2902s, 1685vs, 1610vs, 1514vs, 1408vs, 848s, 729s.

2.2.4. Synthesis of $[Eu(L)(HL)(phen)(H_2O)]$ (4)

Colorless crystals were prepared analogously to **3** except using Eu₂O₃ instead of Sm₂O₃ (Yield 45%). Anal. Cacd (%) for C₃₆H₃₉N₂O₉Eu (796.67): C 54.34, H 4.94, N 3.52. Found (%): C54.57, H 4.82, N 3.48. IR (ν cm⁻¹): 3410ms, 3059 ν w, 2902s, 2849s, 1684vs, 1612vs, 1522vs, 1418vs, 847s, 730s.

2.2.5. Synthesis of $[Tb(L)(HL)(phen)(H_2O)]_2 \cdots 2H_2O$ (5)

Pale green powder of TbCl $_3\cdot nH_2O$ was obtained by slow evaporation of a solution of Tb $_4O_7$ (0.07 mmol, 0.0549 g) dissolved in HCl (5 mL) under water boiling condition. A mixture of 1,3-adamantanedicarboxylate (0.30 mmol, 0.0672 g), TbCl $_3\cdot nH_2O$ nd 1,10-phenanthroline (0.30 mmol, 0.0595 g) in water (10 mL) was stirred for 30 min, and sealed in a 23 mL Teflon-lined stainless autoclave, which was heated at 170 °C for three days and thereafter cooled slowly to room temperature, and Pale green crystals were seperated by filtering and washing (Yield 30%).

Anal. Cacd (%) for $C_{36}H_{41}N_2O_{10}Tb$ (820.65): C 52.69, H 5.04, N 3.41. Found (%): C 52.78, H 5.13, N 3.36. IR (v cm⁻¹): 3410ms, 3059vw, 2902s, 2849s, 1684vs, 1612vs, 1522vs, 1418vs, 847s, 729s.

2.2.6. Synthesis of [Er₃(L)₄(OH)(phen)]2 (6)

Pale red crystals were prepared similarly to **5** except using Er_2O_3 instead of Y_2O_3 (Yield 15%). Anal. Cacd (%) for $C_{120}H_{130}N_4O_{34}Er_6$ (3175.92): C 45.38, H 4.13, N 1.76; Found: C 45.51, H 4.06, N 1.79; IR (ν cm⁻¹): 3410ms, 3059vw, 2902s, 2849s, 1684vs, 1612vs, 1522vs, 1418vs, 847s, 731s.

2.3. X-ray crystallography

Suitable crystals of 1-6 were selected under a polarizing microscope and fixed with epoxy cement on respective fine glass fibers which were then mounted on a RIGAKU RAXIS-RAPID diffractometer with graphite monochromated Mo K\approx radiation $(\lambda = 0.71073 \, \text{Å})$ for cell determination and subsequent data collection for in the range of $3.22 \le \theta \le 27.48^{\circ}$. Empirical absorption corrections were applied using the SADABS program. SHELXS-97 and SHELXL-97 programs were used for structure solution and refinement [40,41]. The structures were solved by using direct methods and followed by successive Fourier and difference Fourier syntheses. All non-hydrogen atoms were refined with anisotropic displacement parameters by full-matrix least-squares technique and all hydrogen atoms with isotropic displacement parameters. Detailed information about the crystal data and structure determination is summarized in Table 1. Selected interatomic distances and bond angles are given in Tables 2-7 (See in Supporting Materials). Crystallographic data (excluding structure factors) for complexes 1-6 in this paper have been deposited with Cambridge Crystallographic Data Centre as supplementary publications.

3. Results and discussion

3.1. Syntheses of the complexes

Owing the hydrophobility of the adamantane framework, 1,3adamantanedicarboxylic acid was found to be uneasily dissolved in common solvents such as H2O, MeOH, EtOH, THF, etc. under ambient condition, therefore, the reactions of the dicarboxylatic acid with lanthanide chlorides were carried out under the similar hydrothermal conditions in order to obtain new complexes with novel networks. Six lanthanide metal-organic complexes suitable for single crystal X-ray diffraction were obtained. 1,3adamantanedicarboxylates function as linkers in various fashions (monodentate, bidente bridging, bidentate chelate, bidente chelating-bridging etc.) through its carboxylate groups in these complexes (Scheme 1), demonstrating its versatility in construction of the robust network or porous functional materials [36-39]. The structural analyses show that Ln(III) ions are the ninecoordinated modes in 1 and 2, the eight-coordinated modes in 3, 4 and 5, the 8/7-coordinated fashions in 6, respectively. On the other hand, complexes 1, 2, 3 and 4 possess one-dimensional chain frameworks, however, complex 5 is binuclear structure, and complex 6 has double chains extended by two inequivalved structural units. The different geometries and structures may result from the effects of the lanthanide contraction on crystal structural formation, which would offer a helpful route to design and synthesize lanthanide compounds with the special structural networks.

Table 1 Crystallographic data for 1-6

	1	2	3	4	5	6
Empirical formula	C ₃₆ H ₃₇ N ₂ O ₈ Pr	C ₃₆ H ₃₇ NdN ₂ O ₈	C ₃₆ H ₃₉ N ₂ O ₉ Sm	C ₃₆ H ₃₉ EuN ₂ O ₉	C ₃₆ H ₄₁ N ₂ O ₁₀ Tb	C ₁₂₀ H ₁₃₀ Er ₆ N ₄ O ₃ ,
Formula mass	766.59	769.92	794.04	795.65	820.63	3175.84
Crystal system	Triclinic	Triclinic	Triclinic	Triclinic	Triclinic	Triclinic
Space group	ΡĨ	ΡĪ	ΡĨ	ΡĪ	ΡŤ	ΡĪ
α	11.167(2)	11.141(2)	11.153(2)	11.133(2)	8.636(2)	12.805(3)
b	12.407(3)	12.403(3)	12.329(3)	12,312(3)	13.573(3)	18.094(4)
c	13.292(3)	13,302(3)	12.651(3)	12.681(3)	14.579(3)	26,128(5)
α (deg)	109.38(3)	109,36(3)	109.04(3)	109.13(3)	94.59(3)	80.69(3)
β (deg)	98.54(3)	98.57(3)	97.19(3)	97.31(3)	96.33(3)	86.39(3)
y (deg)	110.16(3)	110,20(3)	99.83(3)	99.72(3)	92.30(3)	84.09(3)
$V(\hat{A}^3)$	1557.4(5)	1553.7(5)	1589.5(5)	1587.2(5)	1691.0(6)	5936.2(2)
Z	2	2	2	2	2	2
$\rho (Mg/m^3)$	1.635	1.646	1.659	1.665	1.612	1,777
u (mm ⁻¹)	1.623	1.730	1,909	2.038	2.513	4.274
F(000)	780	782	806	808	832	3116
9 range (deg)	3.02-27.48	3.02-27.48	3.04-27.48	3.04-27.48	3.02-27.48	3.04-27.48
Refins collected	15337	15251	15768	15453	16764	54559
Refins independent	7068	7009	7237	7168	7671	25969
Refins observed	6789	6423	6872	6663	6824	18087
R1 [<i>I</i> ≥2σ(<i>I</i>)]	0.0188	0.0427	0.0300	0.0320	0.0276	0.0611
R1 (all data)	0.0202	0.0468	0.0318	0.0357	0.0344	0.0940
GOF	1,190	1.095	1.192	1.161	1.074	1.002

(a) $wR_2 = [\Sigma w(F_0^2 - F_c^2)^2 / \Sigma w(F_0^2)^2]^{1/2}$.

Scheme 1. Linking fashions of the adamantanedicarboxylate groups,

3.2. Description of the crystal structures

X-ray diffraction studies reveal that the asymmetric unit of complex 1 contains one Pr(III) ion, one phen ligand and two kinds of coordiantion styles of 1,3-adamantanedicarboxylate ligand ($\rm HL^{1-}$, $\rm L^{2-}$). As shown in Fig. 1a, the nine-coordinated Pr(III) ion is in a tricapped trigonal antiprism $\rm LnN_2O_7$ defined by seven oxygen atoms of the different 1,3-adamantanedicarboxylate and two N atoms of one phen ligand with Pr-O distances ranging from 2.408 to 2.742 Å (average 2.512 Å), Pr-N distances of 2.674 and

2.700 Å (average 2.687 Å). For adamantane–dicarboxylate ligand of each structural unit, L^{2-} acts as a μ_3 -bridge to link three Pr(III) ion with one carboxylate group adopting a bidentate chelate mode coordinating to one praseodymium ion and the other adopting a bidente chelating–bridging mode connecting two praseodymium ion (Scheme 1b) [42,43]; HL^{1-} , the monoprotonated adamantanedicarboxylate, links two praseodymium ions through the carboxylate group acting as a bidentate bridge mode and the protonated end remains uncoordinated (Scheme 1f). Two adjacent praseodymium ions are held together to form a dimeric subunit

Fig. 1. (a) ORTEP view of coordination environments of Ln(III) ion with 30% displacement ellipsoids and (b) two dimensional layer structure projected along b axis in 1 and 2

Fig. 2. (a) ORTEP view of coordination environments of Ln(III) ion with 30% displacement ellipsoids and (b) a fragment of a double chain along c axis in 3 and 4.

 $[Pr_2(L)_2(HL)_2(phen)_2]$ by the carboxylates with Pr-Pr distance of 3.96 Å, implying no significant direct interaction between metal ions.

 $[\Pr_2(L)_2(\operatorname{HL})_2(\operatorname{phen})_2]$ can be viewed as the basic building block for the whole structure of **1**. Each pair of such blocks are bridged by adamantanedicarboxylate bridging, giving rise to a double chain. The chains are further connected through strong offset face-to-face $\pi\cdots\pi$ stacking interaction with a mean interplanar distance of 3.25 Å between the adjacent aromatic rings to generate two-dimensional network (Fig. 1b). Complex **1** finally forms three-dimensional packing structure by hydrogen bond of the carboxylate oxygen atoms with $O\cdots O$ distance 2.658 Å and $\triangle(O-H\cdots O)=161^\circ$, as well as weak $C-H\cdots O$ and $C-H\cdots N$ interactions with $C\cdots O=3.385$ Å and $\triangle(C-H\cdots O)=149^\circ$; $C\cdots N=3.349$ Å, and $\triangle(C-H\cdots N)=155^\circ$, respectively (Fig. S10).

Complex 2, being isomorphous to 1, possesses one-dimensional network by covalent bonding. The Nd-O distances fall in a range from 2.393-2.742 Å (average 2.509 Å), and Nd-N from 2.660 to 2.685 Å (average 2.673 Å), which slightly shorter than oens in 1, resulting from the effect of lanthanide contraction.

Complexes **3** and **4** are allomers with one-dimensional chain structure by covalent bonding. Two kinds of coordination modes of adamantanedicarboxylate (HL^{1-} , L^{2-}) are present in the structre: L^{2-} acts as μ_3 -bridge to link three Ln(III) ion, in which one carboxylate group adopts a bidentate chelate mode coordinating to one lanthanide ion while the other adopts a bidente bridging mode connecting two lanthanide ion (Scheme 1c) [42–45]; and HL^{1-} , the protonated adamantanedicarboxylate, links only one lanthanide ion through the carboxylate group acting as a monodentate mode while the protonated one remains uncoordinated to metal ion (Scheme 1e). As shown in Fig. 2a, the Sm(III) or Eu(III) ion is in a eight-coordinated geometry defined by four oxygen atoms from L^{2-} , one oxygen from the HL^{1-} , one aqua oxygen atom and two nitrogen atoms from phen ligand, forming a

Fig. 3. Two-dimensional network through hydrogen bonds in 3 and 4.

distorted bicapped trigonal prism LnN_2O_6 with the metal to ligating atom distances Sm-O = 2.297-2.512 Å, Sm-N = 2.633-2.659 Å in 3; Eu-O = 2.2291-2.499 Å, Eu-N = 2.620-2.643 Å in 4. $[Ln_2(L)_2(\text{phen})_2]$, being as dimeric subunits, are formed by carboxylate linkers, which are reproduced through adamantane-dicarboxylate bridging, giving rise to a double chain structure (Fig. 2b). The chains are further extended into two-dimensional network through hydrogen bonds between the carboxylate and aqua oxygen atoms with distance O-H···O = 2.647-2.878 Å and \angle (O-H···O) = 150°, as well as weak C-H···O interaction with C-H···O = 3.352 Å and \angle (C-H···O) = 147° in 3;