Erlang %R3E (FER)

Programming

O’REILLY*

s &7 ﬂ:"’? H kit #t Francesco Cesarini & Simon Thompson &

Erlang %RiE (wam)

Erlang Programming

O’REILLY®

Beijing + Cambridge « Farnham » Koln + Sebastopol « Taipei « Tokyo

O’Reilly Media, Inc. £ & & & & & Ak kA&

FEAFHEH

BHERRE (CIP) $uR

Erlang 8. X3/ (F#) EFEHH| (Cesarini, F.),
(%) #¥&7% (Thompson,S.) ¥ —RENA . —FR: &
FRZEHREL, 2010.6

FH4/F3C: Erlang Programming

ISBN 978-7-5641-2269-0

] . QE-11.0% - @i% I.0BFES-&
Figkit - Iv. D TP312

T EAR A B 518 CIP $rimizs (2010) %5 089047 5

LHERBUDEVER A RIEIL
B3, 10-2010-157 2

©2009 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University
Press, 2010. Authorized reprint of the original English edition, 2009 O'Reilly Media, Inc., the
owner of all rights to publish and sell the same. .

All rights reserved including the rights of reproduction in whole or in part in any form.

¥ LB jA &y O'Reilly Media, Inc. £ & 2009,

EHPM Y R kg A R 20i0, S EP R A9tk SR Ao 4K B 2] ok SR AL A=K B ALGI BT A
—— O'Reilly Media, Inc. #3# T,

BBHTH, ABBBHT, FHAENESFLRTRUAETHIESN,

Erlang Z##2 (RZEIRR)

HAR & AT: REARFE LRI

oo ik ERHM%2S #h 4 : 210096
BB AL

55} Bk ;. http://press.sen.edu.cn

B, FHEfE: press@seu.edu.cn

Ef Ril: P ENRIHRA H

A&, T87EkK x 980%K 16 F A
Efl k. 31 Eflgk

< . 607 T

R R: 201046 A¥ 1hK

Bl #&k: 20104E 6 ¥ 1 kENRI

¥ 2, ISBN 978-7-5641-2260-0

En . 1~1800

& . 64.00 T (M)

FHEBEFNERRAM, FEESRERSMKE. wiF ((FH). 025-83792328

Foreword

Erlang is our solution to three problems regarding the development of highly concur-
rent, distributed “soft real-time systems”:

* To be able to develop the software quickly and efficiently
* To have systems that are tolerant of software errors and hardware failures
* To be able to update the software on the fly, that is, without stopping execution

When we “invented” Erlang, we focused on telecommunication systems, but today
these requirements are applicable to a large number of applications, and Erlang is used
in applications as divergent as distributed databases, financial systems, and chat serv-
ers, among others. Recent interest in Erlang has been fueled by its suitability for use on
multicore processors. While the world is struggling to find methods to facilitate porting
applications to multicore processors, Erlang applications can be ported with virtually
no changes.

Initially, Erlang was slow to spread; maybe it was too daring to introduce functional
programming, lightweight concurrency, asynchronous message passing, and a unique
method to handle failures, all in one go. It is easy to see why a language such as Java,
which is only a small step away from C++, was easier for people to swallow. However,
to achieve the goals I’ve just mentioned, we feel our approach has weathered the test
of time. The use of Erlang is expanding rapidly.

This book is an excellent and practical introduction of Erlang, and is combined with a
number of anecdotes explaining the ideas and background behind the development of
Erlang.

Happy and, I trust, profitable reading,

—Mike Williams

Director of Traffic and Feature Software

Product Development Unit WCDMA, Ericsson AB
one of the inventors of Erlang

xiii

Preface

What made us start writing this book in the first place is the enthusiasm we share for
Erlang. We wanted to help get the word out, giving back a little of what the community
has given to us. Although we both got into Erlang for very different reasons, the end
result was the same: lots of fun hours doing lots of fun stuff at a fraction of the effort
it would have taken with other languages. And best of all, it is not a tool we use for
hobby projects, but one we use on a daily basis in our real jobs!

Francesco: Why Erlang?

The year was 1994. While studying computer science at Uppsala University, one of the
courses I took was on parallel programming. The lecturer held up the first edition of
Concurrent Programming in Erlang (Prentice Hall) and said, “Read it.” He then held
up a handout and added, “These are the exercises, do them,” after which Erlang barely
got a mention; it was quickly overshadowed with the theory of threads, shared memory,
semaphores, and deadlocks.

As the main exercise for this course, we had to implement a simulated world inhabited
by carrots, rabbits, and wolves. Rabbits would roam this world eating carrots that grew
in random patches. When they had eaten enough carrots, the rabbits would get fat and
split in two. Wolves ran around eating up the rabbits; if they managed to catch and eat
enough rabbits, they would also get fat and split. Rabbits and wolves within a certain
distance of each other would broadcast information on food and predators. If a rabbit
found a carrot patch, other rabbits would quickly join him. If a wolf found a rabbit,
the pack would start chasing it.

The final result was amusingly fun to watch. The odd rabbit would run straight into a
group of wolves, while others would run in other directions, sometimes stopping to
grab a carrot en route. Every carrot patch, rabbit, and wolf was represented as an Erlang
process communicating through message passing.

The exercise took me about 40 hours to solve. Although I enjoyed using Erlang and
was positively surprised at the simplicity of its concurrency model and lack of OS
threads for every process, I did not think that much of it right there and then. After all,
it was one of the dozen or so languages I had to learn for my degree. Having used ML

in my functional programming courses and ADA in my real-time programming courses,
for me Erlang was just another language in the crowd. That changed a few months later
when I started studying object-oriented programming.

In the object-oriented (OO) programming course, we were given the same simulated
world lab but had to solve it with Eiffel, an OO language our new lecturer insisted was
ideal for simulations. Although I had already solved the same problem and was able to
reuse a good part of the algorithms, it took me and a fellow student 120 man-hours to
solve.

This was the eye-opener that led me to believe the declarative and concurrent features
in Erlang had to be the direction in which software development was heading. At the
time, I was not sure whether the language that would lead the way in this paradigm
shift was going to be Erlang, but I was certain that whatever language it was, it would
be heavily influenced by Erlang and its ancestors. I picked up the phone and called Joe
Armstrong, one of the inventors of Erlang. A week later, I visited the Ericsson Computer
Science Lab for an interview, and I have never looked back.

Simon: Why Erlang?

I have worked in functional programming since the early 1980s, and have known about
Erlang ever since it was first defined about 20 years ago. What I find most attractive
about Erlang is that it’s a language that was designed from the start to solve real and
difficult problems, and to do it in an elegant and powerful way. That’s why we’ve seen
Erlang used in more and more systems in recent years.

It’s also a small language, which makes writing tools for it much more practical than
for a language such as Java, C++, or even Haskell. This, and the quality of the libraries
we’ve been able to build on in our work, has helped the functional programming group
at Kent to be very productive in implementing the Wrangler refactoring tool for Erlang.

Who Should Read This Book?

We have written this book to introduce you to programming in Erlang. We don’t expect
that you have programmed in Erlang before, nor do we assume that you are familiar
with functional programming in other languages.

We do expect you to have programmed in Java, C, Ruby, or another mainstream lan-
guage, and we’ve made sure that we point out to you where Erlang differs from what
you’re used to.

xvi | Preface

How to Read This Book

We wrote this book in two parts, the first to be read sequentially and the second can
be read concurrently (or sequentially in whatever order you like), as the chapters are
independent of each other.

The first 11 chapters of the book cover the core parts of Erlang:

Chapter 1 gives a high-level introduction to the language, covering its key features
for building high-availability, robust concurrent systems. In doing this, we also
describe how Erlang came to be the way it is, and point out some of its high-profile
success stories, which explain why you may want to adopt Erlang in one of your
projects.

The basics of sequential programming in Erlang are the subject of Chapters 2 and
3. In these chapters, we cover the central role of recursion in writing Erlang pro-
grams, as well as how single assignment in Erlang is quite different from the way
variables are handled in other languages, such as C and Java.

‘While covering sequential programming, we also introduce the basic data types of
Erlang—numbers, atoms, strings, lists, and tuples—comparing them with similar
types in other languages. Other types are covered later: records in Chapter 7, and
function types and binaries in Chapter 9. Large-scale storage in ETS tables is the
topic of Chapter 10.

Erlang’s distinctiveness comes to the fore in Chapters 4-6, which together cover
the concurrent aspects of Erlang, embodied in message passing communication
between concurrently executing processes running in separate memory spaces.

It is possible to “hot-swap” code in a system, supporting software upgrades in run-
ning systems: this is the topic of Chapter 8.

To conclude this part of the book, we cover distributed programming in Chap-
ter 11. This allows different Erlang runtime systems (or nodes), which might be
running on the same or different machines, to work together and interact as a
distributed system.

In the remaining chapters, we cover a variety of different topics largely independent of
each other. These include the following:

The Open Telecom Platform (OTP) gives a set of libraries and design principles
supporting the construction of robust, scalable systems in Erlang; this is the subject
of Chapter 12.

The Erlang distribution contains some standard computing applications: we cover
the Mnesia database in Chapter 13 and the wxErlang GUI programming library in
Chapter 14.

Preface | xvii

* Erlang distribution gives one mechanism for linking Erlang systems to each other.
Chapter 15 shows how Erlang supports programming across the Internet using
sockets, and Chapter 16 covers the various ways in which Erlang can interwork
with systems written in C, Java, and Ruby, as well as many other languages.

* The standard Erlang distribution comes with a number of very useful tools, and
we cover some of these next. Chapter 17 explains in depth how all aspects of Erlang
systems can be traced without degrading their performance, and Chapter 18 covers
tools for checking the correctness of programs, and for constructing documenta-
tion for Erlang systems. Unit testing, and how it is supported by EUnit, is the
subject of Chapter 19.

* The last chapter, Chapter 20, looks at how to write programs that are elegant,

readable, and efficient, and pulls together into one place much of the accumulated
experience of the Erlang community.

The Appendix covers how to get started with Erlang, how to use the Erlang shell,
popular tools for Erlang, and how to find out more about Erlang,

Each chapter is accompanied by a set of exercises, and you can download all the code
in this book from its website:

http:/fwww.erlangprogramming.org

The website also has references to further reading as well as links to the major sites
supporting the Erlang community.

We wrote this book to be compatible with Erlang Release 13 (R13-B). Most of the
features we describe will work with earlier releases; known incompatibilities with more
recent earlier releases are detailed on our website.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, filenames, file extensions, and occasionally, emphasis
and keyword phrases.

Constant width
Indicates computer coding in a broad sense. This includes commands, options,
variables, attributes, keys, requests, functions, methods, types, classes, modules,
properties, parameters, values, objects, events, event handlers, XML and XHTML
tags, macros, and keywords.

Constant width bold
Indicates commands or other text that the user should type literally.

xviii | Preface

Constant width italics
Indicates text that should be replaced with user-supplied values or values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples

This book is intended to help you write programs and systems in Erlang. In general,
you may use the code in this book in your programs and documentation.

You do not need to contact the publisher for permission unless you are reproducing a
significant portion of the code. For example, if you are writing a program that uses
several chunks of code from this book you are not required to secure our permission.
Answering a question by citing this book and quoting example code does not require
permission.

Incorporating a significant amount of example code from this book into your product’s
documentation does require permission. Selling or distributing a GD-ROM of examples
from O’Reilly books does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Erlang Programming, by Francesco Ce-
sarini and Simon Thompson. Copyright © 2009 Francesco Cesarini and Simon Thomp-
son, 978-0-596-51818-9.” '

If you feel your proposed use of code examples falls outside fair use or the permission
given here, feel free to contact us as permissions@oreilly.com.

Safari® Books Online

Saf ari-) When you see a Safari® Books Online icon on the cover of your favorite

v technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://my.safaribooksonline.com.

Preface | xix

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

On the web page for this book we list errata, examples, and any additional information.
You can access this page at:

http:/lwww.oreilly.com/catalog/9780596518189

or at:
http:/flwww.erlangprogramming.org

To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http:/fwww.oreilly.com/

Acknowledgments

In writing this book, we need to acknowledge everyone who made it possible. We start
with Jan “Call Me Henry” Nystrém, who helped jumpstart this project.

The team at O’Reilly Media provided us with endless support. In particular, our editor,
Mike Loukides, patiently guided us through the process and provided encouragement,
ensuring that the chapters kept on coming. Special thanks also go out to Audrey Doyle
for the copyediting, and to Rachel Monaghan, Marlowe Shaeffer, Lucie Haskins,
Sumita Mukherji, and everyone else on the production team.

We continue with the OTP team, and in particular, Bjorn Gustavsson, Sverker Eriksson,
Dan Gudmundsson, Kenneth Lundin, Hikan Mattsson, Raimo Niskanen, and Patrik
Nyblom, who helped us not only with the undocumented and unreleased features,
ensuring that what is in print is in line with the latest release, but also with accuracy
and correctness.

Other reviewers who deserve a special mention include Thomas Arts, Zvi Avraham,
Franc Bozic, Richard Carlsson, Dale Harvey, Oscar Hellstréom, Steve Kirsch, Charles
McKnight, Paul Oliver, Pierre Omidyar, Octavio Orozio, Rex Page, Michal Ptaszek,
Corrado Santoro, Steve Vinoski, David Welton, Ulf Wiger, and Mike Williams.

xx | Preface

Although we will not go into detail regarding what each of you did, it is important that
you all know that your individual contributions had an influence in making this a better
book. Thank you all!

Francesco needs to thank Alison for all her patience and support. I did not know what
I was getting into when 1 agreed to write this book, and neither did you. Until the time
to start working on the next book comes, I promise you laptop- and cell phone-free
vacations. A thank you also goes to everyone at Erlang Training and Consulting for all
the encouragement and to Simon for being such a great coauthor. We should all do it
again sometime, as the result was worth it. But now, rest!

Simon wants to say a huge thank you to Jane, Alice, and Rory for their patience and
support over the past few very busy months: without your encouragement, it just
wouldn’t have happened. Thanks, too, to Francesco for inviting me to join the project:
it’s been really enjoyable working together. T hope we get the chance to do it again, just
not too soomn....

Preface | xxi

Foreword

Preface Cereeneinrens rervsesenarenes

1.

Introduction PP
Why Should I Use Erlang?
The History of Erlang
Erlang’s Characteristics
High-Level Constructs

Concurrent Processes and Message Passing
Scalable, Safe, and Efficient Concurrency

Soft Real-Time Properties
Robustness
Distributed Computation
Integration and Openness
Erlang and Multicore
Case Studies
The AXD301 ATM Switch
CouchDB
Comparing Erlang to C++
How Should I Use Erlang?

BasicErdang Cerrereans

Integers
The Erlang Shell
Floats
Mathematical Operators
Atoms
Booleans
Tuples
Lists
Characters and Strings

Table of Contents

Atoms and Strings
Building and Processing Lists
List Functions and Operations
Term Comparison
Variables
Complex Data Structures
Pattern Matching
Functions
Modules
Compilation and the Erlang Virtual Machine
Module Directives
Exercises

SequentialErflangc.oiiiiiiiiiiiiii e

Conditional Evaluations
The case Construct
Variable Scope
The if Construct
Guards
Built-in Functions
Object Access and Examination
Type Conversion
Process Dictionary
Meta Programming
Process, Port, Distribution, and System Information
Input and Output
Recursion
Tail-Recursive Functions
Tail-Call Recursion Optimization
Iterations Versus Recursive Functions
Runtime Errors
Handling Errors
Using try ... catch
Using catch
Library Modules
Documentation
Useful Modules
The Debugger
Exercises

Concurrent Programmingcceovvviianniieniiaens,

Creating Processes
Message Passing

23
24
25
28
30
32
33
38
40
40
41
43

45
46
46
48
49
50
53
53
54
55
55
56
57
59
63
66
67
68
70

.70

74
77
77
79
80
82

89
90
92

iv | Table of Contents

Receiving Messages 94
Selective and Nonselective Receives 97
An Echo Example 100

Registered Processes 102

Timeouts 104

Benchmarking 106

Process Skeletons 107

Tail Recursion and Memory Leaks 108

A Case Study on Concurrency-Oriented Programming 110

Race Conditions, Deadlocks, and Process Starvation 112

The Process Manager 114

Exercises 115

Process Design Patterns bttt et et eeeeerraa, Ceeees 117

Client/Server Models 118
A Client/Server Example 119

A Process Pattern Example 125

Finite State Machines 126
An FSM Example 127
A Mutex Semaphore 129

Event Managers and Handlers 131
A Generic Event Manager Example 132
Event Handlers 135

Exercises 137

Process Error Handling cereas Ceeresriens Ceateaiinas Cerieiens 139

Process Links and Exit Signals 139
Trapping Exits 142
The monitor BIFs 144
The exit BIFs 145
BIFs and Terminology 146
Propagation Semantics 148

Robust Systems 148
Monitoring Clients 150
A Supervisor Example 152

Exercises 154

Records and Macros treseeerrnaces Cerrerraees veeees veees 157

Records 158
Introducing Records 158
Working with Records 159
Functions and Pattern Matching over Records 160
Records in the Shell 161

Table of Contents | v

Record Implementation 162

Record BIFs 164
Macros 165
Simple Macros 165
Parameterized Macros 166 -
Debugging and Macros 166
Include Files 168
Exercises 168
8. SoftwareUpgrade t e eeeetesitaenrar st rier it reratasararaaes 173
Upgrading Modules 173
Behind the Scenes 176
Loading Code 179
The Code Server 180
Purging Modules 182
Upgrading Processes 182
The .erlang File 186
Exercise ' 186
9. More Data Types and High-Level Constructsocvvniiniininiiianens. 189
Functional Programming for Real 189
Funs and Higher-Order Functions 190
Functions As Arguments 190
Writing Down Functions: fun Expressions 192
Functions As Results 193
Using Already Defined Functions 194
Functions and Variables 195
Predefined, Higher-Order Functions 195
Lazy Evaluation and Lists 197
List Comprehensions 198
A First Example 198
General List Comprehensions 198
Multiple Generators 200
Standard Functions 200
Binaries and Serialization 201
Binaries 202
The Bit Syntax 203
Pattern-Matching Bits 205
Bitstring Comprehensions 206
Bit Syntax Example: Decoding TCP Segments 206
Bitwise Operators 208
Serialization 208
References 210

vi | Table of Contents

10.

.

12.

Exercises

ETSand DetsTablesocvvveviinnaiinnans,

ETS Tables
Implementations and Trade-offs
Creating Tables
Handling Table Elements
Example: Building an Index, Act 1
Traversing Tables
Example: Building an Index, Act II
Extracting Table Information: match
Extracting Table Information: select
Other Operations on Tables
Records and ETS Tables
Visualizing Tables

Dets Tables

A Mobile Subscriber Database Example
The Database Backend Operations
The Database Server

Exercises

Distributed Programmingin Erlang Cerresneenraannen

Distributed Systems in Erlang
Distributed Computing in Erlang: The Basics
Node Names and Visibility
Communication and Security
Communication and Messages
Node Connections
Remote Procedure Calls
The rpc Module
Essential Distributed Programming Modules
The epmd Process
Distributed Erlang Behind Firewalls
Exercises

OTPBehaviorsovevvviveeererareanannns Cerenarresna

Introduction to OTP Behaviors
Generic Servers
Starting Your Server
Passing Messages
Stopping the Server
The Example in Full
Running gen_server

211

cerereaeeias 213
213
214
216
217
218
220
222
223
225
226
226
228
229
231
232
237
242

............ 245
245
247
249
250
252
253
256
258
258
260
261
261

............ 263
263
266
266
268
270
271
273

Table of Contents | vii

Supervisors 276

Supervisor Specifications 277
Child Specifications 278
Supervisor Example 279
Dynamic Children 280
Applications 281
Directory Structure 282

The Application Resource File 283
Starting and Stopping Applications 284

The Application Monitor 287
Release Handling 287
Other Behaviors and Further Reading 290
Exercises 291
13. IntroducingMnesiacoviuiiiiiiiiiiiiiiiiiiiiiieii i, 293
. When to Use Mnesia 293
Configuring Mnesia 295
Setting Up the Schema 295
Starting Mnesia 296
Mnesia Tables 296
Transactions 299
Writing 299
Reading and Deleting 300
Indexing 301
Dirty Operations 302
Partitioned Networks ‘ 304
Further Reading 305
Exercises 306
14. GUIProgrammingwithwxErlang ..o, 309
wxWidgets 309
wxErlang: An Erlang Binding for wxWidgets 310
Objects and Types 311
Event Handling, Object Identifiers, and Event Types 312
Putting It All Together 313

A First Example: MicroBlog 314
The MiniBlog Example 317
Obtaining and Running wxErlang 321
Exercises 321
15. SocketProgrammingocuveeerrenrioeenienaenarniicnscasnnsens 323
User Datagram Protocol 323
Transmission Control Protocol 327

viii | Table of Contents

