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Preliminaries

This chapter contains a short review of those topics from elementary single
variable calculus that will repeatedly be needed in later chapters, together with
an introduction to the terminology used in discussing convergence, error

analysis, and the machine representation of numbers.

1.1 Review of Calculus

Fundamental to the study of calculus are the concepts of limit and continuity
of a function.
Definition 1.1 Let f be a function defined on a set X of real numbers; f is

said to have the limit L at x,, written lim f(z)=L, if, given any real number ¢

-
Eoae 7

>0, there exists a real number §>>0 such that | f(z) —L|<¢, whenever z€ X
and 0<|x—ux, | <8. (See Figure 1. 1)

S(x)

Figure 1.1
Definition 1.2 Let f be a function defined on a set X of real numbers and

Zo € X; f is said to be continuous at z, if lim f(x) = f(z,). The function f is said

to be continuous on X if it is continuous at each number in X; C(X) denotes the
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set of all functions continuous on X. When X is an interval of the real line, the
parentheses in this notation will be omitted. For example, the set of all functions
continuous on the closed interval [a,5] will be denoted Cla,&].

In a similar manner, the limit of a sequence of real or complex numbers can
be defined.

Definition 1. 3 Let {z,};2: be an infinite sequence of real or complex
numbers. The sequence is said to converge to a number z(called the limit) if, for
any e>0, there exists a positive integer N(¢) such that n>N(e¢) implies |z, — x|

<Ze. The notation limx, =z, or x,—>x as n—>o°, means that the sequence

{z,}:2, converges to x.

The following theorem relates the concepts of convergence and continuity.

Theorem 1.4 If fis a function defined on a set X of real numbers and z, €
X, then the following are equivalent;

(1) f is continuous at x,;

(2) if {x,};Z1 is any sequence in X converging to z,, then

'}imf(x,, )= f(z0)
Definition 1.5 If f is a function defined in an open interval containing x, ,
f is said to be differentiable at x, if
» lin_lf(ac)—f(:lco)
— XTI
exists. When this limit exists it is denoted by f' (x;) and is called the derivative
of f at zo. A function that has a derivative at each number in a set X is said to be
differentiable on X.

Theorem 1.6 If the function f is differentiable at z,, then f is continuous
at x,.

The set of all functions that have n continuous derivatives on X is denoted by
C'(X), and the set of functions that have derivatives of all orders at each number
in X is denoted by C* (X). Polynomial, rational, trigonometric, exponential,
and logarithmic functions are in class C*(X), where X consists of all numbers at
which the functions are defined. When X is an interval of the real line, we will
again omit the parentheses in this notation. ‘

The next theorems are of fundamental importance in deriving methods for
error estimation. The proofs of these theorems and the other unreferenced results
in this section can be found in any elementary calculus text.

Theorem 1.7 (Rolle’s Theorem) Suppose f€ Cla,b6] and f is differentiable
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on (a,b). If fla)=f(b)=0, then a number ¢,a<c<b, exists with f (¢) =0,
(See Figure 1. 2)
Six)

i : L%
0 a ¢ \/h *

Figure 1. 2
Theorem 1. 8(Mean Value Theorem) If f€[a,b] and f is differentiable on

(a,6), then a number ¢,a<<c<<d, exists such that

fo=LOZLe) (ge Figure 1.3)
Sx)

(b.S(b))

(a.fla))

*

Figure 1,3

Theorem 1.9 (Extreme Value Theorem) If f€ C[a,b], then ¢, c: € [a,b]
exist with f(6,) < f(2) < f(c.) for each z € [a,5]. If, in addition, f is
differentiable on (4,5), then either ¢,=a, ¢,=b, or F'(e)=0 for each i=1,2.

Two other results will be needed in our study of numerical methods. The
first is a generalization of the usual Mean Value Theorem for Integrals.

Theorem 1. 10(Weighted Mean Value Theorem for Integrals) If f&€Cla,b],
g is integrable on [a,6], and g(x)=>0, then there exists a number cra<lc<b,
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such that
(3 b
J f(x)g(x)dx=f(c)J- g(x)dx

When g (x) =1, this theorem givés what is called the average value of the
function over the interval [a,6] (see Figure 1. 4). The proof of Theorem 1. 10 is
not generally given in a basic calculus course, but can be found in any standard
advanced calculus text.

Six)
1

(b.f(b))

(e.fle)

- X

Figure 1. 4

The other theorem we will need that is not generally presented in a basic
calculus course is derived by applying Rolle’ s Theorem ( Theorem 1. 7)
successively to f, f,+++, and finally to f ",

Theorem 1. 11 (Generalized Rolle’s Theorem) Let f€ C[a,b] be n times
differentiable on (a,b). If f vanishes at the n+1 distinct numbers x,,***»x, in
La,b], then a number ¢ in (a,b) exists with f* (¢)=0.

The next theorem presented is the Intermediate Value Theorem. Although
its statement is intuitively clear, the proof is beyond the scope of the usual
calculus course. The proof can be found in most advanced calculus texts.

Theorem 1. 12 (Intermediate Value Theorem) If f€ Cla,5] and K is any
number between f(a) and (&), then there exists ¢ in (a,8) for which f(c)=K (see
Figure 1. 5).

Example 1  To show that #* —2z* + 322 — 1 =0 has a solution on the
interval [0,1], consider the function f(x) = z°®—2x® + 32> — 1. Clearly f is
continuous on [0,1] and f(0)=—1 while f(1)=1. Since £(0)<<0<<f(1), the

intermediate Value Theorem implies that there is a number x, with 0<<z<1, for
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which £* —2x* +32* —1=0. O
As seen in Example 1, the Intermediate Value Theorem is important as an
aid to determine when solutions to certain problems exist. It does not, however,

give a means for finding these solutions. This topic will be discussed more

thoroughly in Chapter 2.

J(x)
Aol (b,/(b))
N e —— ,
fla)r E
(a,fla)) :'
0 a i 4[) ¥

Figure 1.5

The final theorem in this review from calculus describes the development of
the Taylor polynomials. The importance of the Taylor polynomials to the study
of numerical analysis cannot be overemphasized, and the following result will be
used repeatedly.

Theorem 1, 13(Taylor's Theorem)  Suppose f€ C'[a,b] and f™*" exists on
(as0]. Let zo€[a,b]. For every € [a,b], there exists &(x) between x, and r
with

flx)=P,(x)+R,(x)
where

P,,(x)=f(xo)+f'(.7cn)(x~xo)+—f,—§—f°—)-(x—xo)2 Ao

f(n) (10)(

—_— ”
n! x Zo)

n £
=Iz§0f k(|x°)(1—l’°)k

(u+1)
and R,(z)= (nﬁ(ﬁ’) (z— )"+
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Here P,(x) is called the nth-degree Taylor polynomial for f about x, and R, (x) is
called ‘the remainder term (or truncation error) associated with P, (x). The
infinite series obtained by taking the limit of P,(x) as n—+oo is called the Taylor
Series for f about x,.

The term truncation error generally refers to the error involved in using a
truncated or finite summation to approximate the sum of an infinite series. This
terminology will be reintroduced in subsequent chapters.

Example 2 Let f(x)=cosz. Since f& C” (R), Theorem 1. 13 can be
applied for any n>0.

For n=2 and x,=0, Theorem 1. 13 gives
cosr=1— %12 + —é—ﬁ siné(x)

where &(x) is a number between 0 and x.

With r=. 001, the Taylor polynomial and remainder term is
cos. 001 =1—(. 001)7 +(. 001)*sing(x)

=.9999995+(. 166) » 10 *siné(x)
where 0<<g(x)<C. 001. (The bar over the last digit in . 166 is used to indicate
that this digit repeats indefinitely. )

Since |singé(x) | <1,. 9999995 can be used as an approximation to cos. 001
with assurance of at least nine decimal-place accuracy. Using standard tables, it
can be found that

cos. 001 =.989999500000042
so there is actually 13-decimal-place accuracy.
If, in this example, the third-degree Taylor polynomial had been used with

xo=0, then
co =1___L 2_+_i 4 E( )
s 2.1‘ 241‘ cosé(x

where 0<{¢(x)<<. 001, since f”(0) =0, The approximating polynomial remains
the same, and the approximation would still be . 9999995, but 13— decimal-place

accuracy would be expected since

1.,
5% cos&(x)

This corresponds more closely to the actual accuracy obtained. '

<§lz<. 001)*(1)==4. 2X 10~ M



1 Preliminaries 7

Exercise
1. Show that the following equations have at least one solution in the given
intervals.
(1) zxcosr—2x*+3r—1=0,[0.2,0.3] and [1. 2,1. 3]
(2) (x—2)*—1In =0, [1,2] and {e,4]
2. Find intervals containing solutions to the following equations.
(1) x—37"=0 (2) 4z —e"=
3. Show that f'(x) is 0 at least once in the given intervals.
(1) flx)=1—e+(e—D)sin(nx/2),[0,1]
(2) f(x)=(x—1)tan x+zsinnz,[0,1]

1.2: Round-Off Errors and Computer Arithmetic

When a calculator or digital computer is used to perform numerical
calculations, an unavoidable error, called round-off error, must be considered.
This error arises because the arithmetic performed in a machine involves numbers
with only a finite number of digits, with the result that many calculations are
performed with approximate representations of the actual numbers. In a typical
computer, only a relatively small subset of the real number system is used for the
representation of all real numbers. This subset contains only rational numbers,
both positive and negative, and stores a fractional part, called the mantissa,
together with an exponential part, called the characteristic. For example, a
single-precision floating-point number used in the IBM 370 or 3000 series consists
of a 1-binary-digit sign indicator, a 7-binary-digit exponent with a base of 16 ,» and
a 24-binary-digit mantissa. Since 24 binary digits correspond to between 6 and 7
decimal digits, we can assume that this number has at least 6 decimal digits of
precision for the floating-point number system. The exponent of 7 binary digit
gives a range of 0 to 127, but because of an exponential bias the range is actually
—64 to +63, that is, 64 is automatically subtracted from the listed exponert,

The machine number

0 1000010 101100110000010000000000

precisely represents the decimal number 7
+[(%)‘+<%)3+(—;—)4+(%)7+(—%)8+(—;—)“:’X165“’5‘=179.015625
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since the first binary digit represents the sign, 0 for plus and 1 for minus, the
next seven binary digits represent the exponent, and the last twenty-four binary
digits represent the mantissa. This machine number is actually used to represent
any real number in the interval

[179.01561737060546875, 179.01563262939453125]

since the next smallest machine number is

[ 0 1000010 101100110000001111111111}=179. 0156097412109375

and the next largest machine number is

[ 0 1000010 101100110000010000000001|=179. 0156402587890625

With this representation, the smallest positive number that can be expressed is
16 %1077, and the largest is 16 =107, At least one of the four leftmost
binary digits for any nonzero number greater than 16 % is required to be one.
Consequently, there are 15X 2% numbers of the form
. didyeredy X169
which are used by this system to represent all real numbers. Numbers occurring
in calculations that have a magnitude of less than 167% result in what is called
underflow, and are often set to zero, while numbers greater than 16% result in an
overflow condition and cause the computations to halt.

The number representation system described above is not standard for all
computing machines, but gives an indication of the possible difficulties that can
occur. For the remainder of this discussion, we will, for simplicity, assume that
machine numbers are represented in the normalized decimal form

x.didsed, X10", 1<d;1 <9, 0<5d, <9 (1.D
for each i=2,+--,k, where, from what we have just discussed, the IBM machines
have approximately k=6 and —77<Cn<(76.

It is useful to consider the representation of an arbitrary real number in the
floating-point form (1. 1). Any positive real number y can be normalized to
achieve the form

y=.dds**did 1dpsz " X 10"
if we assume y is within the numerical range of the machine. The floating-point
form (1. 1), denoted by fI(y), is obtained by terminating the mantissa of y at %
decimal digits. There are two ways of performing this termination, One method
is to simply chop off the digits dy+,ds+2*** to obtain
FICy)=.d\d;s+d; X10"
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This method is quite accurately called chopping the number. The other method is
to add 5X10""“**V tg y and then chop to obtain
fL(y)=".8103+-+8, X 10"

The latter method is often referred to as rounding the number. In this method if
disy 225, we add one 10 d, to obtain fI(y); that is, we round up. If d,y;<<5, we
merely chop off all but the first # digits; so we round down. For example,
if k=5 and rounding is used, we represent x and e as . 31416 X 10" and . 27183 X
10", respectively. If £=5 and chopping is used, we represent = and e as . 31415
X 10! and . 27182X 10", respectively.

Since the real numbers with which we are familiar cannot always be represented
exactly inside a machine, it is necessary to consider the error due to this finite-digit
approximation. The following definition specifies two methods for measuring
approximation errors. These methods will be used throughout the text.

Definition 1,14 If p»* is an approximation to p, absolute error is given by
{p—p" |+ and the relative error is given by [p—p* |/{p|, provided that p5£0.

Consider the absolute and relative errors in representing p by p* in the
following example.

Example 1

(1) If p=.3000X 10 and p* =, 3100 X 10, the absolute error is . 1 and the
relative error is . 3333 107",

(2) If p=.3000X107% and p* =. 3100 X 10~%, the absolute error is . 1 X
107 and the relative error is . 3333 X 107!, ‘

(3> If p=.3000X10* and p* =.3100X 10*, the absolute error is . 1 X 10°
and the relative error is . 3333 X 107!,

This example shows that the same relative error, . 3333X 10! » occurs for
widely varying absolute errors. Consequently, as a measure of accuracy, the
absolute error may be misleading and the relative error more meaningful. As the
following definition indicates, the relative error can be used to tell something
about the number of correct digits of an approximation or representation. O

Returning to the machine representation of numbers we see that the floating
point representation fI(y) for the number y has the relative error
y— fi(y)

y
Using % decimal digits in the representation produces an error bound of 10~**" for

chopping and 5X107* for rounding,



