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Preface

Since the birth of the Calculus of Variations, it has been understood that they
apply, variational methods can obtain better results than other methods. More-
over, they apply a very large number of situations. It was also realized many
years ago that the solutions of a large number of problems are in fact critical

points of functionals.

This book mainly reflects a significant part of my research activity during
recent years. Except for the first chapter, it is constructed based on the results
obtained myself or cooperated directly with other mathematicians such as D.
Cao, W. Zou, etc.. The main results of this book generalize and improve some
important known results involved in elliptic equations, superlinear problems. So,

some newest research progresses on these topics are presented.

The material covered in this book is for advanced graduate and Ph.D stu-
dents or anyone who engages in critical points theory and its applications. The

book is organized as follows.

In Chapter 1 we provide some prerequisites for this book. We summarize
some knowledge of Sobolev space, differential functionals and so forth. Basically,
these theories are essentially known and readily available in many books. Well

trained readers may skip this chapter.

In Chapter 2 we study the existence of nontrivial solutions for some su-
perlinear variational problems, including a generalized Kadomtsev-Petviashvili
equation in multi-dimensional spaces, two classes of quasilinear problem with

nonlinear boundary conditions and a superlinear elliptic BVPs.

In Chapter 3 we study the existence and multiplicity of solutions for Brezis-

Nirenberg problems with Hard terms by means of the pseudo-index theory and
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cohomological index theory.

Chapter 4 deals with the existence of infinitely many nontrivial solutions
to Kirchhoff-type problems. The main tools are local minima approach and a

variant version of the fountain theorem of M. Willem.

In Chapter 5 we study the existence and multiplicity of solutions for several
kinds of singular elliptic equation involving critical Sobolev-Hardy exponents by

means of the concentration-compactness principle and variational methods.

I have a good fortune to be a post-doctoral at the Institute of Applied Math-
ematics, Chinese Academy of Science, following Professor D. Cao for the years
2002 to 2004, and at the Department of Mathematics of Tsinghua University
during the years 2006 to 2008, following Professor W. Zou. I am very grateful to
Professor Z.Q. Wang for inviting me to visit his department during the year 2009,

and enlightening discussions with Wang when I visited Utah State University.

This book mainly consists of the results of my recent research. It is not
intended and nor is it possible to be complete. The author wishes to thank the
NSFC (No. 10971238), for supporting the publication of this book.
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Chapter 1

Preliminaries

In this chapter, we summarize some classical results on nonlinear functional anal-
ysis and partial differential equations. Some of them are well known and we shall
omit their proofs. For others, although their proofs may be found in many exist-
ing books, see, for instances, [144,150,113,46,153,154], etc., we make no apology
for repeating them.

1.1 Sobolev Spaces

Let Q be an open subset of RN, N € N, Define
IP(Q) := {u: © — R is Lebesgue measurable, ||u||zr@q) < 00},

where .
)
lulley = ([ 1aa) ", 1< p<so0
Q

If p=+o0,

_ - inf
2= ess sup |ul ACE,meas(A)=0 g 4 ful

where meas(A) denotes the Lebesgue measure of A. Let
P (Q):={u: Q— R,ue LP(V) for each V CC Q},

where V cC Q<= V c V c Q and V is compact. We shall in the sequel write

[lul| o) as |lul[p or |ulp for short.

Let C°(£2) denote the space of infinitely differentiable functions ¢ :  —
R with compact support in . For each ¢ € C(Q2) and a multiindex o =

(ay,---,an) with order o = ay + « -+ + an, we denote
o aoN
D= .
Oz} o'y
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Definition 1.1. Suppose u,v € L. (). We say that v is the at®-weak partial

loc

derivative of u, written as D?u = v if
/ uD%¢dz = (1) / védz
Q Q
for all ¢ € C(Q).

It is easy to verify that the ot*-weak partial derivatives of u, if it exists, i s

uniquely defined up to a set of measure zero.

Let C™(€)) be the set of functions having derivatives of order < m being
continuous in (m = integer > 0 or m = 0o). Let C™(2) be the set of functions

in C™(£2) all of whose derivatives of order < m have continuous extension to Q.

Definition 1.2. Fix p € [1,+o0] and k € NU {0}. The Sobolev space
W*P(Q)

consists of all u : © — R which have a*-weak partial derivatives D*u for each
multiindex o with |a| < k and D*u € LP(Q).

When p = 2, we usually set
H*(Q) = W*3(Q), k£=0,1,2, -

Note that H%(2) = L*(Q2).

Definition 1.3. If u € W*P(Q), we define its norm as

(Z|a|§k fQ |Dau|p) ’ y PE [1) +OO),

> lal<k €85 8UPg | D%uf, p = +oo.

||u||wkm(n) =

Definition 1.4. We define WF*(Q) as the closure of C°(Q) in W*P(S)) with

respect to its norm defined in Definition 1.3. It is customary to write
H(Q) = Wo*(82)

and denote by H=1(Q) the dual space to H}(S2).
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The following results can be found in L.C. Evans [61].

Proposition 1.5. For each k = 1,2,--- and 1 < p < +oo, the Sobolev
space (W*P(Q), || - |lwrs)) is a Banach space and so is W*?(Q). In particu-
lar, H*(Q), H}(Q) are Hilbert spaces.

Definition 1.6. Let (X, ||-||x) and (Y,||||y) be two Banach spaces, X C' Y. We
say that X is continuously imbedded in Y (denoted by X < Y) if the identity
td: X — Y is a linear bounded operator, that is, there is a constant C > 0 such
that ||lufly < C||ul|x for all w € X. In this case, constant C > 0 is called the
embedding constant. If moreover, each bounded sequence in X is precompact in

Y, we say the embedding is compact, written X —<— Y.

Definition 1.7. A function u: Q C RY — R is said to be Hélder continuous

with exponent v > 0 if

[W]™ = sup M < 0.

TAYEN |-"U - ylfy

Definition 1.8. The Holder space C*7(Q) consists of all functions u € C*({)

for which the norm

lullera(@) == D" [ID%ullogy + > [Du]

la] <k lal=F

is finite. It is a Banach space. We set C*°(Q) = C*(Q)).

We have the following imbedding results, see Adams [1], L.C. Evans [61] and
D. Gilberg-N.S. Trudinger [69].

Proposition 1.9. IfQ is a bounded domain in RY, then
L), kp< N,1<q< Np/(N - kp),
WEP(Q) — Cm™*(Q)), 0<a<k—m—N/p and
0<m<k—-N/p<m+1.
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Proposition 1.10. If ) is a bounded domain in RY, then

L), kp<N,1<qg< Np/(N —kp),
WgP(Q) == { C™(), 0<a<k—m—N/p and
0<m<k—N/p<m+1.

The following proposition can be found in H. Brezis [29] and M. Willem
[144].

Proposition 1.11. The following imbedding are continuous:

HY(RM) — LP(RN), if2<p<oo,N=1,2,

H'(RM) — LP(RN), if2<p<2,N>3,

where 2* = 2N/(N —2) if N > 3 and 2* = +o0 if N = 1,2, is called a critical

exponent.

For N > 3, let
[[Vull3

we LRV} ||ull2.

S =

be the best Sobolev constant. Then by G. Talenti’s results (see [28]),

_|IvUl

S ;
U113

where
(N(N —2))N—2/
(1 +laf) 22

U(z) =

Note that if RV is replaced by a bounded domain, S is never achieved. Let

Ng(m)g(zv—z)/z
(2 + |3,:|2)(N—2)/2 ’

ve(z) :=

where N = (N(N —2))V=2/4 ¢ > 0 and € € C(RY, [0,1]) with £(z) = 1if || <

r/2;&(x) = 0 if |z| > 7, where 7 can be chosen to meet different requirements.
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Proposition 1.12. The following estimates are true (see e.g. M. Willem [144]).

lelis = S92 + O™, ol = OE-a12)
V0ullg = 5772 4+ 0(N), Vel = loells = O(E¥-272),
ce?|lne| + O(e?), N =4,

ce? +0(NV"?), N2=>5,

el =

where ¢ > 0 Is a constant.

We shall frequently use the following Gagliardo-Nirenberg Inequality, see
L.C. Evans [61] and J. Chabrowski [46].

Proposition 1.13. For every u € H'(RV), ||ull, < C||Vul|§]|ull;~* with % =
al=2 4 (1-a)¥ r>1,a€|0,1], where c is a constant depending on p, @, 1, N.

The following concentration-compactness lemma is due to P.L. Lions [105].

Lemma 1.14. Let r > 0 and q € [2,2*). For any bounded sequence {un} of
HY(RN), if
sup / |up|?dz — 0, asn — oo,

B(yr)

z€RN

where B(y,r) :={z e RY : |z —y| <}, then u, — 0 in LP(RN) for g < p < 2*.

Proof. We only consider the case N > 3. Choose p1,p2,t,t' > 1, such that pit =
q,pot! = 2,1/t + 1/t = 1,p; + p2 = p. By Holder Inequality and Proposition

/ |un [Pdx
B(y,r)
1/t 1/¢
< ( J lunlmdx) ( J lunl”*'dw)
B(y,r) B(y,r)

1.10, we obtain
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1/t
<c ( / Iunlpltdx) ][22
B(y.r)
1/t p2/2
<c (/ |un[”1tdx) (/ (u? + IVun|2)dx)
B(yr) B(y,r)
1/t
<c (/ |un|”1td:v) :
B(y,r)

Here and in the sequel the letter ¢, C will be used repeatedly to denote various
constants when the exact values are irrelevant. Covering RY by balls with radius

r in such a way that each point of RY is contained in at most N + 1 balls, then

1/t
/ \un|Pdz < (N + 1)c sup (/ |un|qda:) ,
RN yERN B(yiT)

which implies the conclusion. This completes the proof.

we have

1.2 Differential Functionals

Let E be a Banach space with the norm || - || and U C E an open set. The dual
space of E is denoted by E', i.e., E' denotes the set of bounded linear functionals

on E. Consider a functional I : U — R.

Definition 1.15. The functional I has a Fréchet derivative F € E' atu e U if

I(u+h)—I(u) — F(h)
im =
h€E,h—0 || Al

Define I'(v) = F or VI(u) = F and sometimes refer to it as the gradient
of T at u. Usually, I(-) is a nonlinear operator. Let C'(U,R) be the set of all
functionals which have continuous Fréchet derivative on U. A point u € U is
called a critical point of functional I € C*(U,R), provided I "(u) = 0.
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Definition 1.16. The functional I has a Gateaux derivative G € E' at u € U

if, for every h € E,
lim I(u+th) — I(u)
t—0 t
The Gateaux derivative at point u € U is denoted by DI(u). Clearly, if I

has a Fréchet derivative F' € E' at u € U, then I has a Gateaux derivative and

= G(h).

I'(u) = DI(u). But the converse is not true. However, if I has Gateaux derivative
at every point of some neighborhood of u € U such that DI(u) is continuous at
u, then I has a Fréchet derivative and I'(u) = DI(u). This is a straightforward

consequence of the Mean Value Theorem.

Let f(z,t) be a function on Q x R, where £ may be bounded or unbounded.
We say that f is a Carathéodory function if f(z,t) is continuous in ¢ for a.e.

z € ) and measurable in z for every t € R.

Lemma 1.17. Assume thatp > 1,q > 1. Let f(z,t) be a Carathéodory function
on ) X R and satisfy

|F(z,t)] < a+ [t V(z,t) € Q xR,

where a,b > 0 and () is either boubed or unbounded. Define a Carathéodory
operator by

Bu = f(z,u(x)), ue LP(Q).

Let {ur}p2y C LP(Q). If |Jur — uoll, — 0 as k — 400, then ||Buy — Bugl||, — 0
as k — oo. Particularly, if ) is bounded, then B is a continuous and bounded
mapping from LP(2) to L4(SY) and the same conclusion is true if { is unbounded

and a = 0.

Proof. 1t is easy to see that there is a subsequence, still denoted by {ux} such
that

ug(z) — ug(z), ae. z €. (1.1)

Since f is a Carathéodory function, we have

Bug(z) — Bug(z), ae.z €. (1.2)
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Put
’l)k(.’E) =a+ bluk(x),p/q7 k= 07 17 2) o

Then by (1.1)-(1.3),
|Buk(z)| < vp(z) for allz € ; wvp(z) — vo(z) ae. z €.

In view of |ug|? + |ug|? — ||ux|? — |uo|?| = 0, by Fatou’s Theorem, we get
/ liminf (Junl? + Juol — [luxl? — |uol?) de

<lim inf /(|uk|p+ luol? — ||ug|” — |uol?|) de.

From (1.1)-(1.5), we see that

li P — |ugfP|dx = 0.
Jim [ el = fuoPlds =0
It follows that
/ lvg — vo|%dx < bq/ ||uk|? — |uo|P|dz — O
Q Q
as k — oo. Since there exist constants C' > 0, C; > 0 such that

|Bug — Bug|? < C(|Bug|?+ |Bug|?)
C(|velP + |vol?)

<
< Ci(Jug — vol? + |vol|?)

a.e. z € (), and by Fatou’s Lemma, one has
/ lim inf (Cy(jve — vo|?) — | Bug — Buo|?) da
Q k—4o00

< limk_i)rfoo A (Ci{lvk — vol|?) — |Bug — Bug|?) dz.
Combining (1.2),(1.3),(1.7) and (1.8), we have
|| Bux — Bul|; — 0.
Finally, if ©2 is bounded, then for any u € L*(£2), obviously we have

1Bullg < e+ clfullf/,

(1.3)

(1.4)

(1.5)

(1.9)

where ¢ > 0 is a constant. Inequality (1.9) still remains true if Q is unbounded

and a = 0. Therefore, B is a continuous and bounded mapping from LP(2) to

L1(Q)) and the same conclusion is true if €2 is unbounded and a = 0.

O
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The following lemma can be found M. Willem [144).

Lemma 1.18. Assume that py,ps,qi,q0 > 1. Let f(z,t) be a Carathéodory

function on 2 X R and satisfy
|f(z,8)] < alt[P/a + b[tP2/%2, V(z,t) € Q x R,

where a,b > 0 and () is either bounded or unbounded. Define a Carathéodory
operator by
Bu = f(z,u(z)), ue€ H :=L"(Q)N LP(Q).

Define the space E := L%(Q) + L%(f)) with the norm
lullz = inf{||v]|za @) + [lw]|a @},

whereu =v+w € E,v € L%(Q),w € L=(). Then B = B, + B,, where B; is a
bounded and continuous mapping from LP(Q) to L%(2),¢ = 1,2. In particular,
B is bounded continuous mapping from H to E.

Proof. Let £ : R — [0,1] be a smooth function such that () = 1fort €
(=1,1);€(¢) = 0 for t & (—2,2). Put

9(z, 1) = £ f(=,1), h(z,t) = (1 - £(t)) f(x, ¢).

Without loss of generality, we may assume that p, /@1 < p2/qs. Then there exist
two constants d > 0,m > 0 such that

lg9(z, )] < dltf™/",  |h(z, )] < mlt]P/e,

Define

Biu = g(z,u), uwe LF(Q);

Byu = h(z,u), ue€ LP(Q).
Therefore, by Lemma 1.17, B; is a bounded and continuous mapping from L7 ()
to L%(Q),7=1,2. It is readily seen that B := B; + B, is a bounded continuous
mapping from H to E.



