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NOTES ON THE EXERCISES

THE EXERCISES in this set of books have been designed for self-study as well as
classroom study. It is difficult, if not impossible, for anyone to learn a subject
purely by reading about it, without applying the information to specific problems
and thereby being encouraged to think about what has been read. Furthermore,
we all learn best the things that we have discovered for ourselves. Therefore the
exercises form a major part of this work; a definite attempt has been made to
keep them as informative as possible and to select problems that are enjoyable
as well as instructive. v

In many books, easy exercises are found mixed randomly among extremely
difficult ones. This is sometimes unfortunate because readers like to know in
advance how long a problem ought to take —otherwise they may just skip over
all the problems. A classic example of such a situation is the book Dynamic
Programming by Richard Bellman; this is an important, pioneering work in
which a group of problems is collected together at the end of some chapters
under the heading “Exercises and Research Problems,” with extremely trivial
questions appearing in the midst of deep, unsolved problems. It is rumored that
someone once asked Dr. Bellman how to tell the exercises apart from the research
problems, and he replied, “If you can solve it, it is an exercise; otherwise it’s a
research problem.”

Good arguments can be made for including both research problems and
very easy exercises in a book of this kind; therefore, to save the reader from
the possible dilemma of determining which are which, rating numbers have been
provided to indicate the level of difficulty. These numbers have the following
general significance:

Rating Interpretation

00 An extremely easy exercise that can be answered immediately if the
material of the text has been understood; such an exercise can almost
always be worked “in your head.”

10 A simple problem that makes you think over the material just read, but
is by no means difficult. You should be able to do this in one minute at
most; pencil and paper may be useful in obtaining the solution.

20 An average problem that tests basic understanding of the text mate-
rial, but you may need about fifteen or twenty minutes to answer it
completely.
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solve the problem by yourself, or unless you absolutely do not have time to work
this particular problem. After getting your own solution or giving the problem a
decent try, you may find the answer instructive and helpful. The solution given
will often. be quite short, and it will sketch the details under the assumption
that you have earnestly tried to solve it by your own means first. Sometimes the
solution gives less information than was asked; often it gives more. It is quite
possible that you may have a better answer than the one published here, or you
may have found an error in the published solution; in such a case, the author
will be pleased to know the details. Later editions of this book will give the
improved solutions together with the solver’s name where appropriate.

When working an exercise you may generally use the answers to previous
exercises, unless specifically forbidden from doing so. The rating numbers have
been assigned with this in mind; thus it is possible for exercise n + 1 to have a
lower rating than exercise n, even though it includes the result of exercise n as
a special case.

Summary of codes: 00 Immediate
10 Simple (one minute)
20 Medium (quarter hour)

> Recommended 30 Moderately hard

M  Mathematically oriented 40 Term project

HM Requiring “higher math” 50 Research problem
EXERCISES

1. [00] What does the rating “M20 " mean?

2. [10] Of what value can the exercises in a textbook be to the reader?

3. [3{] Leonhard Euler conjectured in 1772 that the equation w* + z* + y* = 2 has
no solution in positive integers, but Noam Elkies proved in 1987 that infinitely many
solutions exist [see Math. Comp. 51 (1988), 825-835]. Find all integer solutions such
that 0 <w <z <y <2z <108,

4. [M50] Prove that when n is an integer, n > 4, the equation w" + z" + y* = 2™
has no solution in positive integers w, z, y, z.

Exercise is the beste instrument in learnyng.
— ROBERT RECORDE, The Whetstone of Witte (1557)
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CHAPTER THREE

RANDOM NUMBERS

Any one who considers arithmetical
methods of producing random digits
is, of course, in a state of sin.

— JOHN VON NEUMANN (1951)

Lest men suspect your tale untrue,
Keep probability in view.

— JOHN GAY (1727)

There wanted not some beams of light
to guide men in the exercise of their Stocastick faculty.

— JOHN OWEN (1662)

3.1. INTRODUCTION

NUMBERS that are “chosen at random” are useful in many different kinds of
applications. For example:

a) Simulation. When a computer is being used to simulate natural phenomena,
random numbers are required to make things realistic. Simulation covers many
fields, from the study of nuclear physics (where particles are subject to random
collisions) to operations research (where people come into, say, an airport at
random intervals).

b) Sampling. It is often impractical to examine all possible cases, but a random
sample will provide insight into what constitutes “typical” behavior.

¢) Numerical analysis. Ingenious techniques for solving complicated numerical
problems have been devised using random numbers. Several books have been
written on this subject.

d) Computer programming. Random values make a good source of data for
testing the effectiveness of computer algorithms. More importantly, they are
crucial to the operation of randomized algorithms, which are often far superior
to their deterministic counterparts. This use of random numbers is the primary
application of interest to us in this series of books; it accounts for the fact that
random numbers are already being considered here in Chapter 3, before most of
the other computer algorithms have appeared.

1



2 RANDOM NUMBERS 3.1

e) Decision making. There are reports that many executives make their deci-
sions by flipping a coin or by throwing darts, etc. It is also rumored that some
college professors prepare their grades on such a basis. Sometimes it is important
to make a completely “unbiased” decision. Randomness is also an essential part
of optimal strategies in the theory of matrix games.

f) Cryptography. A source of unbiased bits is crucial for many types of secure
communications, when data needs to be concealed.

g) Aesthetics. A little bit of randomness makes computer-generated graphics
and music seem more lively. For example, a pattern like

JHIRAERS | ey, FRRERREE
OnoOoOOqn ™mere #ppealing than 5= =55555

in certain contexts. [See D. E. Knuth, Bull. Amer. Math. Soc. 1 (1979), 369.]

h) Recreation. Rolling dice, shuffling decks of cards, spinning roulette wheels,
etc., are fascinating pastimes for just about everybody. These traditional uses
of random numbers have suggested the name “Monte Carlo method,” a general
term used to describe any algorithm that employs random numbers.

People who think about this topic almost invariably get into philosophical
discussions about what the word “random” means. In a sense, there is no such
thing as a random number; for example, is 2 a random number? Rather, we speak
of a sequence of independent random numbers with a specified distribution, and
this means loosely that each number was obtained merely by chance, having
nothing to do with other numbers of the sequence, and that each number has a
specified probability of falling in any given range of values. .

A uniform distribution on a finite set of numbers is one in which each
possible number is equally probable. A distribution is generally understood
to be uniform unless some other distribution is specifically mentioned.

Each of the ten digits 0 through 9 will occur about ;5 of the time in a
(uniform) sequence of random digits. Each pair of two successwe digits should
occur about 100 of the time, and so on. Yet if we take a truly random sequence
of a million digits, it will not always have exactly 100,000 zeros, 100,000 ones,
etc. In fact, chances of this are quite slim; a sequence of such sequences will have
this character on the average.

Any specified sequence of a million digits is as probable as any other. Thus,
if we are choosing a million digits at random and if the first 999,999 of them
happen to come out to be zero, the chance that the final digit is zero is still
exactly 1 16> in a truly random situation. These statements seem paradoxical to
many people, yet no contradiction is really involved.

There are several ways to formulate decent abstract definitions of random-
ness, and we will return to this interesting subject in Section 3.5; but for the
moment, let us content ourselves with an intuitive understanding of the concept.

Many years ago, people who needed random numbers in their scientific work
would draw balls out of a “well-stirred urn,” or they would roll dice or deal out
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cards. A table of over 40,000 random digits, “taken at random from census
reports,” was published in 1927 by L. H. C. Tippett. Since then, a number of
devices have been built to generate random numbers mechanically. The first such
machine was used in 1939 by M. G. Kendall and B. Babington-Smith to produce
a table of 100,000 random digits. The Ferranti Mark I computer, first installed
in 1951, had a built-in instruction that put 20 random bits into the accumulator
using a resistance noise generator; this feature had been recommended by A. M.
Turing. In 1955, the RAND Corporation published a widely used table of a
million random digits obtained with the help of another special device. A famous
random-number machine called ERNIE has been used for many years to pick the
winning numbers in the British Premium Savings Bonds lottery. [F. N. David de-
scribes the early history in Games, Gods, and Gambling (1962). See also Kendall
and Babington-Smith, J. Royal Stat. Soc. A101 (1938), 147-166; B6 (1939), 51—
61; S. H. Lavington’s discussion of the Mark I in CACM 21 (1978), 4-12; the
review of the RAND table in Math. Comp. 10 (1956), 39-43; and the discussion
of ERNIE by W. E. Thomson, J. Royal Stat. Soc. A122 (1959), 301-333.]

Shortly after computers were introduced, people began to search for efficient
ways to obtain random numbers within computer programs. A table could be
used, but this method is of limited utility because of the memory space and
input time requirement, because the table may be too short, and because it
is a bit of a nuisance to prepare and maintain the table. A machine such as
ERNIE might be attached to the computer, as in the Ferranti Mark I, but this
has proved to be unsatisfactory since it is impossible to reproduce calculations
exactly a second time when checking out a program; moreover, such machines
have tended to suffer from malfunctions that are extremely difficult to detect.
Advances in technology made tables useful again during the 1990s, because
a billion well-tested random bytes could easily be made accessible. George
Marsaglia helped resuscitate random tables in 1995 by preparing a demonstration
disk that contained 650 random megabytes, generated by combining the output
of a noise-diode circuit with deterministically scrambled rap music. (He called
it “white and black noise.”)

The inadequacy of mechanical methods in the early days led to an interest
in the production of random numbers using a computer’s ordinary arithmetic
operations. John von Neumann first suggested this approach in about 1946;
his idea was to take the square of the previous random number and to extract
the middle digits. For example, if we are generating 10-digit numbers and the
previous value was 5772156649, we square it to get

33317792380594909201;

the next number is therefore 7923805949.

There is a fairly obvious objection to this technique: How can a sequence
generated in such a way be random, since each number is completely determined
by its predecessor? (See von Neumann’s comment at the beginning of this
chapter.) The answer is that the sequence isn’t random, but it appears to
be. In typical applications the actual relationship between one number and
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its successor has no physical significance; hence the nonrandom character is
not really undesirable. Intuitively, the middle square seems to be a fairly good
scrambling of the previous number.

Sequences generated in a deterministic way such as this are often called
pseudorandom or quasirandom sequences in the highbrow technical literature,
but in most places of this book we shall simply call them random sequences,
with the understanding that they only appear to be random. Being “apparently
random” is perhaps all that can be said about any random sequence anyway.
Random numbers generated deterministically on computers have worked quite
well in nearly every application, provided that a suitable method has been
carefully selected. Of course, deterministic sequences aren’t always the answer;
they certainly shouldn’t replace ERNIE for the lotteries.

Von Neumann'’s original “middle-square method” has actually proved to be a
comparatively poor source of random numbers. The danger is that the sequence
tends to get into a rut, a short cycle of repeating elements. For example, if zero
ever appears as a number of the sequence, it will continually perpetuate itself.

Several people experimented with the middle-square method in the early
1950s. Working with numbers that have four digits instead of ten, G. E. Forsythe
tried 16 different starting values and found that 12 of them led to sequences
ending with the cycle 6100, 2100, 4100, 8100, 6100, ..., while two of them
degenerated to zero. More extensive tests were carried out by N. Metropolis,
mostly in the binary number system. He showed that when 20-bit numbers are
being used, there are 13 different cycles into which the middle-square sequence
might degenerate, the longest of which has a period of length 142.

It is fairly easy to restart the middle-square method on a new value when
zero has been detected, but long cycles are somewhat harder to avoid. Exercises 6
and 7 discuss some interesting ways to determine the cycles of periodic sequences,
using very little memory space.

A theoretical disadvantage of the middle-square method is given in exercises
9 and 10. On the other hand, working with 38-bit numbers, Metropolis obtained
a sequence of about 750,000 numbers before degeneracy occurred, and the re-
sulting 750,000 x 38 bits satisfactorily passed statistical tests for randomness.
[Symp. on Monte Carlo Methods (Wiley, 1956), 29-36.] This experience showed
that the middle-square method can give usable results, but it is rather dangerous
to put much faith in it until after elaborate computations have been performed.

Many random number generators in use when this chapter was first written
were not very good. People have traditionally tended to avoid learning about
such subroutines; old methods that were comparatively unsatisfactory have been
passed down blindly from one programmer to another, until the users have no
understanding of the original limitations. We shall see in this chapter that the
most important facts about random number generators are not difficult to learn,
although prudence is necessary to avoid common pitfalls.

It is not easy to invent a foolproof source of random numbers. This fact was
convincingly impressed upon the author in 1959, when he attempted to create a
fantastically good generator using the following peculiar approach:
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Algorithm K (“Super-random” number generator). Given a 10-digit decimal
number X, this algorithm may be used to change X to the number that should
come next in a supposedly random sequence. Although the algorithm might be
expected to yield quite a random sequence, reasons given below show that it
is not, in fact, very good at all. (The reader need not study this algorithm in
great detail except to observe how complicated it is; note, in particular, steps
K1 and K2.)

K1. [Choose number of iterations.] Set ¥ « [X/10°], the most significant
digit of X. (We will execute steps K2 through K13 exactly Y + 1 times;
that is, we will apply randomizing transformations a random number of
times.)

K2. [Choose random step.] Set Z + | X/10%] mod 10, the second most signifi-
cant digit of X. Go to step K(3+ Z). (That is, we now jump to a random
step in the program.)

K3. [Ensure > 5 x 10°.] If X < 5000000000, set X < X + 5000000000.

K4. [Middle square.] Replace X by | X2/10%| mod 10'°, that is, by the middle
of the square of X.

KS5. [Multiply.] Replace X by (1001001001 X) mod 10°.

K6. [Pseudo-complement.] If X < 100000000, then set X <+ X + 9814055677;
otherwise set X « 101° — X,

K?7. [Interchange halves.] Interchange the low-order five digits of X with the
high-order five digits; that is, set X « 10°(X mod 10%) + | X/10%], the
middle 10 digits of (101° +1)X.

K8. [Multiply.] Same as step K5.

K9. [Decrease digits.]| Decrease each nonzero digit of the decimal representation
of X by one.

K10. (99999 modify.] If X < 10°, set X « X2 + 99999; otherwise set X «
X —99999.

K11. [Normalize.] (At this point X cannot be zero.) If X < 10%, set X « 10X
and repeat this step.

K12. [Modified middle square.] Replace X by | X (X — 1)/10%] mod 10'°, that
is, by the middle 10 digits of X (X — 1).

K13. [Repeat?] If Y > 0, decrease Y by 1 and return to step K2. If ¥ = 0, the
algorithm terminates with X as the desired “random” value. |

o

(The machine-language program corresponding to this algorithm was intended
to be so complicated that a person reading a listing of it without explanatory
comments wouldn’t know what the program was doing.)

Considering all the contortions of Algorithm K, doesn’t it seem plausible that
it should produce almost an infinite supply of unbelievably random numbers?
No! In fact, when this algorithm was first put onto a computer, it almost im-
mediately converged to the 10-digit value 6065038420, which — by extraordinary
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Table 1

A COLOSSAL COINCIDENCE: THE NUMBER 6065038420
IS TRANSFORMED INTO ITSELF BY ALGORITHM K.

Step X (after) Step X (after)

K9 1107855700

K10 1107755701

K11 1107755701

K12 1226919902 Y=3
K5 0048821902

K6 9862877579

K7 7757998628

K8 2384626628

K9 1273515517

K10 1273415518

Ki1 1273415518

Ki2 5870802097 Y=2
K11 5870802097

K12 3172562687 Y=1

K1 6065038420
K3 6065038420
K4 6910360760
K5 8031120760
K6 1968879240
K7 7924019688
K8 9631707688
K9 8520606577
K10 8520506578
K11 8520506578
K12 0323372207 Y=6
Ké 9676627793
K7 2779396766
K8 4942162766

K9 3831051655 K4 1540029446
K5 7015475446

K10 3830951656

K11 3830951656 K6 2984524554
K7 2455429845

K12 1905867781
K12 3319967479
Ké 6680032521
K7 3252166800
K8 2218966800

K8 2730274845
K9 1620163734
K10 1620063735
K11 1620063735
K12 6065038420 Y=0

o
I
ot

coincidence —is transformed into itself by the algorithm (see Table 1). With
another starting number, the sequence began to repeat after 7401 values, in a
eyclic period of length 3178.

The moral of this story is that random numbers should not be generated
with a method chosen at random. Some theory should be used.

In the following sections we shall consider random number generators that
are superior to the middle-square method and to Algorithm K. The correspond-
ing sequences are guaranteed to have certain desirable random properties, and
no degeneracy will occur. We shall explore the reasons for this random-like
behavior in some detail, and we shall also consider techniques for manipulating
random numbers. For example, one of our investigations will be the shuffling of
a simulated deck of cards within a computer program.

Section 3.6 summarizes this chapter and lists several bibliographic sources.

EXERCISES

> 1. [20] Suppose that you wish to obtain a decimal digit at random, not using a
computer. Which of the following methods would be suitable?
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a)

b)
<)

d)

2.
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Open a telephone directory to a random place by sticking your finger in it some-
where, and use the units digit of the first number found on the selected page.
Same as (a), but use the units digit of the page number.

Roll a die that is in the shape of a regular icosahedron, whose twenty faces have
been labeled with the digits 0, 0, 1, 1, ..., 9, 9. Use the digit that appears on
top, when the die comes to rest. (A felt-covered table with a hard surface is
recommended for rolling dice.)

Expose a geiger counter to a source of radioactivity for one minute (shielding
yourself) and use the units digit of the resulting count. Assume that the geiger
counter displays the number of counts in decimal notation, and that the count is
initially zero.

Glance at your wristwatch; and if the position of the second-hand is between 6n
and 6(n + 1) seconds, choose the digit n.

Ask a friend to think of a random digit, and use the digit he names.

Ask an enemy to think of a random digit, and use the digit he names.

Assume that 10 horses are entered in a race and that you know nothing whatever
about their qualifications. Assign to these horses the digits 0 to 9, in arbitrary
fashion, and after the race use the winner’s digit.

[M22] In a random sequence of a million decimal digits, what is the probability

that there are exactly 100,000 of each possible digit?

3.
4.

[10] What number follows 1010101010 in the middle-square method?
[20] (a) Why can’t the value of X be zero when step K11 of Algorithm K is

performed? What would be wrong with the algorithm if X could be zero? (b) Use
Table 1 to deduce what happens when Algorithm K is applied repeatedly with the
starting value X = 3830951656.

5.

[15] Explain why, in any case, Algorithm K should not be expected to provide

infinitely many random numbers, in the sense that (even if the coincidence given in
Table 1 had not occurred) one knows in advance that any sequence generated by
Algorithm K will eventually be periodic.

> 6.

[M21] Suppose that we want to generate a sequence of integers Xo, X1, X3, ...,

in the range 0 < X, < m. Let f(z) be any function such that 0 < z < m implies
0 £ f(z) < m. Consider a sequence formed by the rule X,4+1 = f(X,). (Examples are
the middle-square method and Algorithm K.)

a)

b)

Show that the sequence is ultimately periodic, in the sense that there exist numbers
A and p for which the values

Xo, X1, oovy Xpy oony Xuga-a

are distinct, but X1y = X, when n > u. Find the maximum and minimum
possible values of ¢ and A,

(R. W. Floyd.) Show that there exists an n > 0 such that X, = X3,; and the
smallest such value of n lies in the range u < n < u+ A. Furthermore the value of
X~ is unique in the sense that if X,, = X3, and X, = Xs,, then X, = Xn.

Use the idea of part (b) to design an algorithm that calculates y and X for any
given function f and any given Xy, using only O(u+ )) steps and only a bounded
number of memory locations.



