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Preface

The word “bifurcation” means “splitting into two”. “Bifurcation” is used to
describe any sudden change that occurs while parameters are being smoothly
varied in any system: dynamical, ecological, etc. Our survey is devoted to the
bifurcations of phase portraits of differential equations ~ not only to bifurcations
of equilibria and limit cycles, but also to perestroikas of the phase portraits of
systems in the large and, above all, of their invariant sets and attractors. The
statement of the problem in this form goes back to A.A. Andronov.

Connections with the theory of bifurcations penetrate all natural phenomena.
The differential equations describing real physical systems always contain
parameters whose exact values are, as a rule, unknown. If an equation modeling
a physical system is structurally unstable, that is, if the behavior of its solutions
may change qualitatively through arbitrarily small changes in its right-hand side,
then it is necessary to understand which bifurcations of its phase portrait may
occur through changes of the parameters.

Often model systems seem to be so complex that they do not admit meaningful
investigation, above ail because of the abundance of the variables which occur.
In the study of such systems, some of the variables that change slowly in the
course of the process described are, as a rule, assumed to be constant. The
resulting system with a smaller number of variables can then be investigated.
However, it is frequently impossible to consider the individual influences of
the discarded terms in the original model. In this case, the discarded terms
may be looked upon as typical perturbations, and, accordingly, the original
model can be described by means of bifurcation theory applied to the reduced
system.

Reformulating the well-known words of Poincaré on periodic solutions, one
may say that bifurcations, like torches, light the way from well-understood
dynamical systems to unstudied ones. L.D. Landau, and later E. Hopf, using this
idea of bifurcation theory, offered a heuristic description of the transition from
laminar to turbulent flow as the Reynolds number increases. In Landau’s sce-
nario this transition was accomplished through bifurcations of tori of steadily
growing dimensions. Later on when the zoo of dynamical systems and their
bifurcations had significantly grown, many papers appeared, describing — mainly
at a physical level - the transition from regular (laminar) flow to chaotic (turbu-
lent) flow. The chaotic behavior of the 3-dimensional model of Lorenz for
convective motions has been explained with the aid of a chain of bifurcations.
This explanation is not included in the present survey since, to save space,
bifurcations of systems with symmetry have not been included. Lorenz’s system
is centrally symmetric.

The theory of relaxation oscillations, which deals with systems in which the
parameters slowly change with time (these parameters are called slow variables),
closely adjoins the theory of bifurcations in which parameters do not change
with time. In “fast-slow” systems of relaxation oscillations, a slowness parameter



8 V.I. Arnol'd, V.S. Afrajmovich, Yu.S. I'yvashenko, L.P. Shil'nikov

enters that characterizes the speed of change of the slow variables. When this
parameter is zero, a fast-slow system transforms into a family studied in the
theory of bifurcations, but at a nonzero value of the parameter specific phe-
nomena arise which are sometimes called dynamical bifurcations.

In this survey, systematic use is made of the theory of singularities. The
solutions to many problems of bifurcation theory (mostly of local ones) consist
of presenting and investigating a so-called principal family — a kind of topological
normal form for families of the class studied. The theory of singularities helps to
guess at, and partiaily to investigate, principal families. This theory also describes
the theory of bifurcations of equilibrium states, singularities of slow surfaces,
slow motions in the theory of relaxation oscillations, etc.

We also note that finitely smooth normal forms of local families of differential
equations are especially useful in the theory of nonlocal bifurcations. On one
hand, these normal forms substantially simplify the presentation and investiga-
tion of bifurcations, and also simplify and clarify the proof and analysis of the
results obtained. On the other hand, the nonlocal theory of bifurcations helps
to select problems from the theory of normal forms that are important for
applications. In our opinion, at the present time, the connection between the
theory of normal forms and the nonlocal theory of bifurcations is not used often
enough.

This survey includes, along with what is known, a series of new results, some
of these are known to the authors through private communications. [Added in
translation: The results mentioned below were new when the Russian text was
written (1985). Now most of them have been published. The additional list of
references is given after the main one and numbered.] Among these are eight new
topics. The first is a complete investigation of bifurcations from equilibria in
generic two-parameter families of vector fields on the plane with two intersecting
invariant curves (the so-called reduced problem for two purely imaginary pairs,
Sect. 4.5 and Sect. 4.6 of Chap. 1 (see Zoladek (1987)). The second is the
construction of finitely smooth normal forms and functional moduli of the
C'-classification of local families of vector fields and diffeomorphisms (Yu.S.
I’'yashenko and S.Yu. Yakovenko, Sect. 5.7-5.10 of Chap. 2 (see II'yashenko and
Yakovenko [3*, 4*])). The third is the construction of a topological invariant of
vector fields with a trajectory homoclinic to a saddle with complex eigenvalues
(Sect. 5.6 of Chap. 3). The fourth is the description of a generic two-parameter
deformation of a vector field with two homoclinic curves at a saddle, in which
the bifurcation diagram of the deformation contains a continuum of components.
(D.V. Turaev and L.P. Shil'nikov [9*], Sect. 7.2 of Chap. 3). The fifth result is
the definition of a statistical limit set as a possible candidate for the concept of
a physical attractor (Sect. 8.2 of Chap. 3 (I'yashenko [2*])). The sixth one is the
description of connections between the theory of implicit equations and relax-
ation oscillations, and the normalization of slow motions for fast-slow systems
with one or two slow variables (see Arnol'd’s theorem in Sect. 2.2-2.7 of Chap.
4 and the related paper by Davidov [1*]). The seventh result is normalization
of fast-slow equations, and the explicit form and investigation of systems of first
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approximation (Sect. 3.2-3.5 of Chap. 4; see the related paper by Teperin [8*]).
The eighth and last one is the investigation of the delayed loss of stability in
generic fast-slow systems as a pair of eigenvalues of a stable singular point of a
fast equation crosses the imaginary axis (the birth of a cycle as a dynamical
bifurcation (A.I. Nejshtadt, § 4 of Chap. 4); see [6*, 7*]). We also point here to a
conjecture on the bifurcations in generic multiple parameter families of vector
fields on the plane that is closely related to Hilbert’s 16™ problem (Sect. 2.8 of
Chap. 3).

Our survey, inevitably, is incomplete. We did not include in it the com-
paratively few works on local bifurcations in three-parameter families and on
nonlocal bifurcations in two-parameter families; some relevant citations are,
however, given in the References. In describing nonlocal bifurcations we limited
ourselves to only those things which happen on the boundary of the set of
Morse-Smale systems. The theory of such bifurcations is substantially complete,
although it is not very well known; it is mostly due to works of the Gor’kij
school, which often have been published in sources that are hard to obtain. That
part of the boundary of the set of Morse-Smale systems on which a countable
set of nonwandering trajectories arise is not yet fully explored; but Sect. 7 of
Chap. 3 is devoted to this problem. For reasons of consistency of style we often
formulate known results in a form different from that in which they first appeared.

Chap. 1 and 2 were written by V.I. Arnol’d and Yu.S. II’yashenko. Chap. 3, in
its final version, was written by V.S. Afrajmovich and Yu.S. II'vashenko with the
participation of V.I. Arnol’d and L.P. Shil’nikov. Sect. 1.6 of Chap. 2 was written
by V.S. Afrajmovich. Sects. 1 and 2 of Chap. 4 were written by V.I. Arnol’d, Sect.
3, except for Sect. 3.7, by Yu.S. II'yashenko. Sect. 3.7 was written by N.Kh. Rozov,
Sect. 4 by A.1. Nejshtadt, Sect. 5 by A.K. Zvonkin; the authors sincerely thank
them. The authors do not claim that the list of References is complete. In its
organization we followed the same principles as in the survey by Arnol’d and
I’'yashenko (1985). The symbol a denotes the end of some formulations.



Chapter 1
Bifurcations of Equilibria

The theory of bifurcations of dynamical systems describes sudden qualitative
changes in the phase portraits of differential equations that occur when param-
eters are changed continuously and smoothly. Thus, upon loss of stability, a limit
cycle may arise from a singular point, and the loss of stability by a limit cycle
may give rise to chaos. Such changes are termed bifurcations.

In Chap. 1 and 2 only local bifurcations are investigated, that is, bifurcations
of phase portraits near singular points and limit cycles are considered.

In differential equations describing real physical phenomena, singular points
and limit cycles are most often found in general position, that is, they are
hyperbolic. However, there are special classes of differential equations where
matters stand differently. Such classes are, for example, systems having sym-
metries related to the very nature of the phenomena investigated, and also
Hamiltonian systems, reversible systems, and equations that preserve phase
volume. Consider, for example, the one-parameter family of dynamical systems
on the line with second-order symmetry:

X = v(x, ¢g), v(—x, &) = —v(x, g).

A typical bifurcation of a symmetric equilibrium in such a system is the
pitchfork bifurcation shown in Fig. 1 (v = x(e — x?)). In this bifurcation, from the
loss of stability by a symmetric equilibrium, two new, less symmetric, equilibria
branch out. In this process the symmetric equilibrium position continues to exist,
but it loses its stability.

In typical one-parameter families of general (nonsymmetric) systems, pitchfork
bifurcations do not occur. Under a small perturbation of the vector field v(x, &}
above (although the breaking of symmetry may be ever so slight) the pitchfork
in Fig. 1 changes into one of the four pairs of curves in Fig. 2. From these pictures
it is evident that the phenomena occurring in response to a smooth, slow change
of a parameter in an idealized, strictly symmetric system are qualitatively differ-
ent from those in a perturbation of it. Therefore, it is necessary to take account
of the influence of a slight breaking of symmetry when analysing bifurcations in
symmetric systems, if such a break is generally possible. On the other hand,
strictly symmetric models occur in some instances. Such is the case, for example,
for normal forms (see §3 below). In these cases it is necessary to investigate
bifurcations of symmetric systems within the class of perturbations that do not
break symmetry.

. The degenerate cases which are avoidable by small generic perturbations of
an individual system may become unavoidable when families of systems are
studied. Therefore, in the investigation of degenerate cases, instead of studying
an individual degenerate equation one should always consider the bifurcations
that occur in generic families of systems that display a similar degeneracy in an
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Fig. 1. Bifurcation of equilibria in a symmetric system

- &

Fig. 2. Bifurcation of equilibria in a nearly symmetric system
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unavoidable form. Technically, this investigation is carried out with the help of
the construction of special, so-called versal, deformations; in some sense these
contain all possible deformations.

§ 1. Families and Deformations

In this section the transversality theorem and the “reduction principle”, which
allows one to lower the dimension of phase space by “neglecting” inessential
(hyperbolic) variables, are formulated.

1.1. Families of Vector Fields. We consider a family of differential equations,
say,

X = v(x, &), xeUcR", e Bc Rk

The domain U is called phase space, B is called the space of parameters (or the base
of the family), and v is called a family of vector fields on U with base B.
Henceforth, unless stated otherwise, only smooth families will be considered (v
is of class C®).

1.2. The Space of Jets. Let U and W be domains of the real, linear spaces R"
and R™, respectively. If we choose coordinate systems in R" and R™, then the k-jet
of a mapping U — W at a point x is the vector-valued Taylor polynomial at x
with degree <k. Similarly, the set of all k-jets of mappings U — W is defined by
U x {the space of m-component vector polynomials, of degrees no greater than
k,in n variables, with constant terms in W}, and therefore it is a smooth manifold.
The manifold of k-jets of mappings U — W is denoted by J*(U, W).
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Analogously, J*(M, N) is the manifold of k-jets of mappings of a smooth
manifold M into a smooth manifold N.

1.3. Sard’s Lemma and Transversality Theorems. Consider a smooth mapping
f: U — W. A point x of U is regular if the image, under the derivative of f at x,
of the tangent space at x is the whole tangent space to W:

SeX)TU = T, ,W.
The value of f at a critical (i.e., nonregular) point is called a critical value.

Sard’s Lemma. The set of critical values of a smooth mapping has Lebesgue
measure zero.

Definition. Two linear subspaces X and Y of a linear space L are transversal if
their sum is the whole space: X + Y = L. [For example, two perpendicular
planes in R? are transversal, two perpendicular straight lines are not. Translator]

Everywhere in this subsection A and B denote smooth manifolds, and Cis a
smooth submanifold of B.

Definition. The mapping f: A — B is called transversal to C at a point a in A
if either f(a) does not belong to C or the tangent plane to C at f(a) and the image,
under the derivative of f at g, of the tangent plane to 4 at a are transversal:

ST A + T, C = T; () B.

Definition. The mapping f: A — Bis transversal to C if it is transversal to C at
each point of 4.

Remark. Ifdim 4 + dim C < dim Band a mapping f: 4 — Bis transversal to
C, then the intersection f(4) N C is empty.
We denote by C"(U, W) the space of r-smooth mappings of U into W.

The Weak Transversality Theorem for Domains in R". Let C be a smooth
submanifold in W. The mappings f: U — W that are transversal to C form an
everywhere dense countable intersection of open sets' in C'(U, W) (where r > max
(dim W — dim U — dim C, 0)).

The Weak Transversality Theorem for Manifolds. Let 4 be a compact manifold,
and let C be a compact submanifold of a manifold B. Then the mappings f: A — B
transverse to C form an open everywhere dense set in the space of all r-smooth
mappings of A into B (where r > max (dim B — dim A — dim C, 0)).

Remarks. The closeness of two mappings is defined in terms of the C"-norms
of the functions determining them. If one of the manifolds A or C is not compact,
then “open everywhere dense set” must be replaced by “residual set”.

t Such intersections are sometimes called thick sets or residual sets.
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Let M and N be smooth manifolds (or domains in vector spaces). Associated
to each smooth mapping is its ‘k-jet extension’ j*f: M — J*(M, N); the k-jet of the
mapping f at x corresponds to a point x of M.

Thom’s Transversality Theorem. Let C be a proper submanifold of the space of
k-jets J*(M, N). Then the set of mappings f: M — N, whose k-jet extensions are
transversal to C, forms a residual set in the space of mappings from M into N in the
C'-topology (where r > ro(k, dim M, dim N), for some function ry).

1.4. Simplest Applications: Singular Points of Generic Vector Fields. Every-
where in this subsection a “generic” field or family is a field or family from some
residual subset of the corresponding function space. Vector fields are defined on
domains of the space R". : '

Theorem. For a generic family of vector fields the set of singular points of the
fields of the family forms a smooth submanifold in the direct product of phase space
with the space of parameters.

«The set of singular points of the fields of family has the form {(x, &)lv(x, &) =
0}. By Sard’s lemma the set of critical values of the mapping v has measure zero.
Consequently, there exists an arbitrarily small vector 6, for which —édisa regular
value of the mapping v. The set {v(x, &) = — 4} is a smooth submanifold by the
implicit function theorem. But this submanifold is the set of singular points of
vector fields of the family v(x, ¢) + 6.»

The projection of the manifold of equilibria onto the space of parameters is a
smooth mapping. The theory of singularities of smooth mappings (in particular,
of projections) allows one to classify the critical points of generic mappings (and,
consequently, also the bifurcations of equilibrium positions in generic families).

For example, if there is just one parameter, then a typical bifurcation is,
modulo diffeomorphisms fibred over the axis of parameters, the same as in the
family with equilibrium curve ¢ = + x? (birth or death of a pair of equilibria). If
there are two parameters, then projection leads to one of the normal forms:

g = £x? (a fold),
g, = x> + &,x (a Whitney pleat or cusp).

Theorem. All the singular points of a generic vector field are nondegenerate (do
not have zero eigenvalues).

«Suppose v is a vector field with phase space U. Consider the mapping
v: U — R", and suppose that a point O takes the role of the submanifold C. By the
weak transversality theorem, a generic mapping v is transversal to C. This implies
the nondegeneracy of the singular points of v.»

Theorem. All the singular points of a generic vector field are hyperbolic.

«Consider the one-jet extension of the mapping v from the phase space U to R".
The space J!(U, R") consists of points of the form (x, y, A), where xe U, y € R",



