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Preface

Over the last few years, significant developments have been taking place in high-
dimensional data analysis, which are driven primarily by a wide range of appli-
cations in many fields, such as genomics and signal processing. In particular,
substantial advances have been made in the areas of feature selection, covariance
estimation, classification and regression. This book intends to examine important
issues arising from high-dimensional data analysis to explore key ideas for statis-
tical inference and prediction. The book is structured around topics on multiple
hypothesis testing, feature selection, regression, classification, dimension reduc-
tion, as well as applications in survival analysis and in biomedical research.

Fundamental statistical issues underlying data have changed, when moving
from low-dimensional to high-dimensional analyses. For instance, certain struc-
tures such as sparsity need to be utilized in feature selection when the number
of candidate features greatly exceeds that of the sample size. As a result of
high-dimensionality, traditional statistical methods designed for low dimensional
problems become inadequate or break down. To meet these challenges in high-
dimensional analysis, statisticians have been developing new methods and intro-
ducing new concepts, where many issues emerge with regard to how to identify or
utilize certain structures for dimension reduction in inference and prediction.

There exists a vast body of literature on high-dimensional analysis, especially
for prediction, classification and regression. We do not intend to give an overview
of each subject but would like to mention here only a few topics of interest—feature
selection, basis/grouping pursuit, multiple hypothesis testing, effective dimension
reduction and projection pursuit, sparsity, high-dimensional regression and classi-
fication.

Many classification problems are often high-dimensional. In Chapter 1, Fan,
Fan and Wu review contemporary classification methods, including linear discrim-
inant analysis, naive Bayes, and loss-based methods, as well as the impact of
dimensionality on classification, with a special attention towards regularization
and feature selection. In Chapter 2, Liu and Wu move further to the topic of large
margin classification, where they examine various state-of-art methods for various
of support vector machines, and their connection with probability estimation.

In Chapter 3, Cai and Sun consider large-scale multiple testing. They begin by
reviewing methods for controlling family-wise error rates and false discovery rates
(FDR), as well as other pertinent issues in multiple testing. Their main focus is on
optimal multiple testing procedures minimizing the false nondiscovery rate while
controls the FDR. Both independent and dependent cases are considered.

The topic of high-dimensional feature (variable) selection has been a focus in
recent research. In Chapter 4, Yuan reviews several popular variable selection
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methods, and contrast classical methods such as stepwise selection with mod-
ern methods such as regularization. In Chapter 5, Zhu, Pan and Shen examine
Bayesian model selection for networks, particularly gene networks where the num-
ber of genes in a network may greatly exceed the sample size.

In Chapter 6, Li describes a number of interesting applications in genomics
studies involving networks and graphical models, where the dimension under con-
sideration is ultra-high. Various regression techniques have been reviewed, where
special structures of genomic data are considered.

Survival data analysis is an important subject in biostatistics. Analysis high-
dimensional survival data requires power tools. In Chapter 7, Li and Ren focus on
joint modeling for censored and longitudinal data. Various models are reviewed,
subject to different types of censoring. In Chapter 8, Nan reviews the recent
development of feature selection in penalized regression in survival analysis, which
is a marriage between high-dimensional feature selection and survival analysis.
Several methods are examined, particularly for high-dimensional covariates such as
gene expressions, whereas various penalties such as grouped, hierarchical penalties
are discussed.

For high-dimensional data analysis, dimension reduction is essential. In Chap-
ter 9, Yin gives a comprehensive review on sufficient dimension reduction in re-
gression. In Chapter 10, Chen and Yang discuss combining strategies.

Finally, we sincerely hope that this book can simulate further interest from
statisticians, computer scientists and engineers, and promote further collabora-
tions among them to attack important problems in high-dimensional data analysis.

T Tony Cai, Philadelphia
Xiaotong Shen, Minneapolis
May 18, 2010
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Chapter 1

High-Dimensional Classification*

Jianging Fan! Yingying Fan! and Yichao Wu$

Abstract

In this chapter, we give a comprehensive overview on high-dimensional clas-
sification, which is prominently featured in many contemporary statistical
problems. Emphasis is given on the impact of dimensionality on implemen-
tation and statistical performance and on the feature selection to enhance
statistical performance as well as scientific understanding between collected
variables and the outcome. Penalized methods and independence learning
are introduced for feature selection in ultrahigh dimensional feature space.
Popular methods such as the Fisher linear discriminant, Bayes classifiers,
independence rules, distance-based classifiers and loss-based classification
rules are introduced and their merits are critically examined. Extensions to
multi-class problems are also given.

Keywords: Bayes classifier, classification error rates, distanced-based clas-
sifier, feature selection, impact of dimensionality, independence learning, in-
dependence rule, loss-based classifier, penalized methods, variable screening.

1 Introduction

Classification is a supervised learning technique. It arises frequently from bioinfor-
matics such as disease classifications using high throughput data like micorarrays
or SNPs and machine learning such as document classification and image recog-
nition. It tries to learn a function from training data consisting of pairs of input
features and categorical output. This function will be used to predict a class label
of any valid input feature. Well known classification methods include (multiple)
logistic regression, Fisher discriminant analysis, k-th-nearest-neighbor classifier,
support vector machines, and many others. When the dimensionality of the input

*The authors are partly supported by NSF grants DMS-0714554, DMS-0704337, DMS-
0906784, and DMS-0905561 and NIH grants R01-GM072611 and R0O1-CA149569.

tDepartment of ORFE, Princeton University, Princeton, NJ 08544, USA, E-mail: jqfan@
princeton.edu

Information and Operations Management Department, Marshall School of Business, Univer-
sity of Southern California, Los Angeles, CA 90089, USA, E-mail: fanyingy@marshall.usc.edu

§Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA, E-mail:
wu@stat.ncsu.edu



4 Jianging Fan, Yingying Fan and Yichao Wu

feature space is large, things become complicated. In this chapter we will try to
investigate how the dimensionality impacts classification performance. Then we
propose new methods to alleviate the impact of high dimensionality and reduce
dimensionality.

We present some background on classification in Section 2. Section 3 is de-
voted to study the impact of high dimensionality on classification. We discuss
distance-based classification rules in Section 4 and feature selection by indepen-
dence rule in Section 5. Another family of classification algorithms based on dif-
ferent loss functions is presented in Section 6. Section 7 extends the iterative sure
independent screening scheme to these loss-based classification algorithms. We
conclude with Section 8 which summarizes some loss-based multicategory classifi-
cation methods.

2 Elements of classifications

Suppose we have some input space X and some output space V. Assume that there
are independent training data (X;,Y;) € & x ¥, ¢ = 1,...,n coming from some
unknown distribution P, where Y; is the i-th observation of the response variable
and X; is its associated feature or covariate vector. In classification problems,
the response variable Y; is qualitative and the set Y has only finite values. For
example, in the cancer classification using gene expression data, each feature vector
X; represents the gene expression level of a patient, and the response Y; indicates
whether this patient has cancer or not. Note that the response categories can
be coded by using indicator variables. Without loss of generality, we assume
that there are K categories and IV = {1,2,...,K}. Given a new observation X,
classification aims at finding a classification function g : X — Y, which can predict
the unknown class label Y of this new observation using available training data as
accurately as possible.

To access the accuracy of classification, a loss function is needed. A commonly
used loss function for classification is the zero-one loss:

L(y, 9(x)) = { ?’ Zgg ; Zj (2.1)

This loss function assigns a single unit to all misclassifications. Thus the risk of
a classification function g, which is the expected classification error for an new
observation X, takes the following form:

K
W(g) = E[L(Y,gX)] = E [Z Lk, g(X))P(Y = k]X)]
k=1
=1— P(Y = g(x)|X = x), (2.2)

where Y is the class label of X. Therefore, the optimal classifier in terms of
minimizing the misclassification rate is

g (x) = arg max P(Y =k|X =x) (2.3)
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This classifier is known as the Bayes classifier in the literature. Intuitively, Bayes
clagsifier assigns a new observation to the most possible class by using the posterior
probability of the response. By definition, Bayes classifier achieves the minimum
misclassification rate over all measurable functions:

W(g*) = min W(g). (2.4)

This misclassification rate W (g*) is called the Bayes risk. The Bayes risk is the
minimum misclassification rate when distribution is known and is usually set as
the benchmark when solving classification problems.

Let fx(x) be the conditional density of an observation X being in class %,
and 7 be the prior probability of being in class k with Zfil m; = 1. Then by
Bayes theorem it can be derived that the posterior probability of an observation
X being in class k is

fk(x)‘ll'k
PY =kX=x)= —5—"—. 2.5
( x =) Sy filx)ms 25

Using the above notation, it is easy to see that the Bayes classifier becomes
*
= . 2.
9" (x) = arg max fi.(x)m (2.6)

For the following of this chapter, if not specified we shall consider the classifi-
cation between two classes, that is, K = 2. The extension of various classification
methods to the case where K > 2 will be discussed in the last section.

The Fisher linear discriminant analysis approaches the classification problem
by assuming that both class densities are multivariate Gaussian N (u+1,X) and
N(u,,X), respectively, where gy, k = 1,2 are the class mean vectors, and X is
the common positive definite covariance matrix. If an observation X belongs to
class k, then its density is

fr(x) = (2m) 7P/ (det (%)) /2 exp {—%(x — )BT (x — uk)} , (27

where p is the dimension of the feature vectors X;. Under this assumption, the
Bayes classifier assigns X to class 1 if

w1 f1(X) 2 T2 f2(X), (2.8)
which is equivalent to

log 7+ (X — )T B (s — p2) >0, (2.9)

where p = 1(p; + p2). In view of (2.6), it is easy to see that the classification
rule defined in (2.8) is the same as the Bayes classifier. The function

dp(x) = (x— N)Tz_l(ﬂ'l — o) (2.10)
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is called the Fisher discriminant function. It assigns X to class 1 if 6p(X) > log Z2;
otherwise to class 2. It can be seen that the Fisher discriminant function is linear
in x. In general, a classifier is said to be linear if its discriminant function is a
linear function of the feature vector. Knowing the discriminant function ér, the
classification function of Fisher discriminant analysis can be written as gr(x) =
2 ~ I(0rp(x) > log22) with I(:) the indicator function. Thus the classification
function is determined by the discriminant function. In the following, when we
talk about a classification rule, it could be the classification function g or the
corresponding discriminant function 4.

Denote by @ = (1, f1, X) the parameters of the two Gaussian distributions
N(p,, X) and N(puy, ). Write W (4, @) as the misclassification rate of a classifier
with discriminant function §. Then the discriminant function ép of the Bayes
classifier minimizes W (9, @). Let ®(t) be the distribution function of a univariate
standard normal distribution. If 7y = m2 = %, it can easily be calculated that the
misclassification rate for Fisher discriminant function is

2
W(op,0) = ® (—d—gﬂ) , (2.11)
where d(0) = {(; — p2)TE " 1y — 15)}/? and is named as the Mahalanobis
distance in the literature. It measures the distance between two classes and was
introduced by Mahalanobis (1930). Since under the normality assumption the
Fisher discriminant analysis is the Bayes classifier, the misclassification rate given
in (2.11) is in fact the Bayes risk. It is easy to see from {(2.11) that the Bayes risk
is a decreasing function of the distance between two classes, which is consistent
with our common sense.

Let T be some parameter space. With a slight abuse of the notation, we
define the maximum misclassification rate of a discriminant function & over I' as

Wr(d) = Zu;; W (s, ). (2.12)
€

It mesasures the worst classification result of a classifier § over the parameter space
T. In some cases, we are also interested in the minimax regret of a classifier, which
is the difference between the maximum misclassification rate and the minimax
misclassification rate, that is, ‘

Rr(6) = Wr(8) — sup min W(4, 6). (2.13)
fer ¢

Since the Bayes classification rule 3 minimizes the misclassification rate W (6, 6),
the minimax regret of § can be rewritten as

Br(8) = Wr(8) — sup W(33,0). (2-14)
fcr

From (2.11) it is easy to see that for classification between two Gaussian distribu-
tions with common covariance matrix, the minimax regret of § is

— 1
Rr(5) = We(6) ~ s @ (—§d(0)) . (2.15)
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Figure 2.1 Illustration of distance-based classification. The centroid of each subsample
in the training data is first computed by taking the sample mean or median. Then, for
a future observation, indicated by query, it is classified according to its distances to the
centroids.

The Fisher discriminant rule can be regarded as a specific method of distance-
based classifiers, which have attracted much attention of researchers. Popularly
used distance-based classifiers include support vector machine, naive Bayes clas-
sifier, and k-th-nearest-neighbor classifier. The distance-based classifier assigns a
new observation X to class k if it is on average closer to the data in class k than
to the data in any other classes. The “distance” and “average” are interpreted
differently in different methods. Two widely used measures for distance are the
Euclidean distance and the Mahalanobis distance. Assume that the center of class
i distribution is y; and the common convariance matrix is 3. Here “center” could
be the mean or the median of a distribution. We use dist(x, p;} to denote the
distance of a feature vector x to the centriod of class ¢. Then if the Euclidean
distance is used,

diste(x, p;) = \/ (x — )T (x — p3)s (2.16)

and the Mahalanobis distance between a feature vector x and class 4 is

distar(x, ;) = \/(x — ) TS x — ). (2.17)
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Thus the distance-based classifier places a new observation X to class k if
indi 3= k.
arg min ist(X, u;) =k (2.18)

Figure 2.1 illustrates the idea of distanced classifier classification.

When m = mp = 1/2, the above defined Fisher discriminant analysis has the
interpretation of distance-based classifier. To understand this, note that (2.9) is
equivalent to

(X~ p) =X~ py) < (X = p2)TETHX - ). (2.19)

Thus dr assigns X to class 1 if its Mahalanobis distance to the center of class 1 is
smaller than its Mahalanobis distance to the center of class 2. We will introduce
in more details about distance-based classifiers in Section 4.

3 Impact of dimensionality on classification

A common feature of many contemporary classification problems is that the di-
mensionality p of the feature vector is much larger than the available training
sample size n. Moreover, in most cases, only a fraction of these p features are im-
portant in classification. While the classical methods introduced in Section 2 are
extremely useful, they no longer perform well or even break down in high dimen-
sional setting. See Donoho (2000) and Fan and Li (2006) for challenges in high
dimensional statistical inference. The impact of dimensionality is well understood
for regression problems, but not as well understood for classification problems. In
this section, we discuss the impact of high dimensionality on classification when
the dimension p diverges with the sample size n. For illustration, we will consider
discrimination between two Gaussian classes, and use the Fisher discriminant anal-
ysis and independence classification rule as examples. We assume in this section
that 7, = 72 = % and n; and n. are comparable.

3.1 Fisher discriminant analysis in high dimensions

Bickel and Levina (2004) theoretically studied the asymptotical performance of
the sample version of Fisher discriminant analysis defined in (2.10), when both
the dimensionality p and sample size n goes to infinity with p much larger than n.
The parameter space considered in their paper is

111 = {9 : d2(9) 2 Czacl < Aulm(z:) < )\ma.x(z) < C2, B € ka = 172}7 (31)

where ¢, ¢, and ¢y are positive constants, Amin(2) and Amax (%) are the minimum
and maximum eigenvalues of X, respectively, and B = Ba g = {u: P ey a;ju? <
d?} with d some constant, and a; — 00 as j — oo. Here, the mean vectors pig,
k = 1,2 are viewed as points in {2 by adding zeros at the end. The condition on

eigenvalues ensures that i‘\"‘—“((gg- < %f < 00, and thus both ¥ and 1 are not

ill-conditioned. The condition d?(8) > ¢? is to make sure that the Mahalanobis
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distance between two classes is at least ¢. Thus the smaller the value of ¢, the
harder the classification problem is.

Given independent training data (X;,Y;), ¢ = 1,...,n, the common covari-
ance matrix can be estimated by using the sample covariance matrix

K
E=30 > Xi— m)Xi — )"/ (n — K). (3:2)
k=1Y.=k
Eor the mean vectors, Bickel and Levina (2004) showed that there exist estimators
£ of py, k=1,2 such that

max g, — iyl = o). (3.3)

Replacing the population parameters in the definition of 7 by the above esti-
mators py and 3, we obtain the sample version of Fisher discriminant function
orF.

It is well known that for fixed p, the worst case misclassification rate of or
converges to the worst case Bayes risk over I't, that is,

Wr,(6r) — B(c/2), as n — o0, (3.4)
where ®(t) = 1 — &(¢) is the tail probability of the standard Gaussian distribution.

Hence, dr is asymptotically optimal for this low dimensional problem. However,
in high dimensional setting, the result is very different.

Bickel and Levina (2004) studied the worst case misclassification rate of 5
when n; = n2 in high dimensional setting. Specifically they showed that under

some regularity conditions, if p/n — oo, then

Wr, (0r) — —;*,
where the Moore-Penrose generalized inverse is used in the definition of 6p. Note
that 1/2 is the misclassification rate of random guessing. Thus although Fisher
discriminant analysis is asymptotically optimal and has Bayes risk when dimension
p is fixed and sample size n — o0, it performs asymptotically no better than
random guessing when the dimensionality p is much larger than the sample size
n. This shows the difficulty of high dimensional classification. As have been
demonstrated by Bickel and Levina (2004) and pointed out by Fan and Fan (2008),
the bad performance of Fisher discriminant analysis is due to the diverging spectra
(e.g., the condition number goes to infinity as dimensionality diverges) frequently
encountered in the estimation of high-dimensional covariance matrices. In fact,
even if the true covariance matrix is not ill conditioned, the singularity of the
sample covariance matrix will make the Fisher discrimination rule inapplicable
when the dimensionality is larger than the sample size.

(3.5)

3.2 Impact of dimensionality on independence rule

Fan and Fan (2008) studied the impact of high dimensionality on classification.
They pointed out that the difficulty of high dimensional classification is intrinsi-
cally caused by the existence of many noise features that do not contribute to the



