字通信

(英文版·第3版)

Digital Communications

(英)

Ian A. Glover 斯特斯克莱德大学 Peter M. Grant 爱丁堡大学

0

数字通信

(英文版·第3版)

Digital Communications

(Third Edition)

Ian A. Glover and Peter M. Grant: Digital Communications, Third Edition (ISBN 978-0-273-71830-7).

Copyright © Pearson Education Limited 2004, 2010.

This edition of Digital Communications, Third Edition is published by arrangement with Pearson Education Limited. Licensed for sale in the mainland territory of the People's Republic of China only, excluding Hong Kong, Macau, and Taiwan.

本书英文影印版由英国 Pearson Education 培生教育出版集团授权出版。未经出版者书面许可,不得以任何方式复制或抄袭本书内容。

此影印版只限在中国大陆地区销售(不包括香港、澳门、台湾地区)。

封底无防伪标均为盗版 版权所有,侵权必究 本书法律顾问 北京市展达律师事务所

本书版权登记号: 图字: 01-2010-4827

图书在版编目 (CIP) 数据

数字通信(英文版・第3版)/(英)格罗弗(Glover, I.A.),格兰特(Grant, P.M.)著; 一北京: 机械工业出版社,2010.9

(经典原版书库)

书名原文: Digital Communications, Third Edition

ISBN 978-7-111-31669-5

I. 数··· II. ①格··· ②格··· III. 数字通信 - 英文 IV. TN914.3

中国版本图书馆 CIP 数据核字 (2010) 第 166807 号

机械工业出版社(北京市西城区百万庄大街22号 邮政编码 100037)

责任编辑:李俊竹

北京京师印务有限公司印刷

2010年9月第1版第1次印刷

150mm×214mm·33.5 印张

标准书号: ISBN 978-7-111-31669-5

定价: 98.00 元

凡购本书,如有缺页、倒页、脱页,由本社发行部调换

客服热线: (010) 88378991: 88361066

购书热线: (010) 68326294; 88379649; 68995259

投稿热线: (010) 88379604

读者信箱: hzjsj@ hzbook. com

Preface

Digital communications is a rapidly advancing applications area. Significant current activities are in the development of mobile communications equipment for personal use, in the expansion of the available bandwidth (and hence information carrying capacity) of the backbone transmission structure through developments in optical fibre, and in the ubiquitous use of networks for data communications.

The aim of this book is fourfold: (1) to present the mathematical theory of signals and systems as required to understand modern digital communications equipment and techniques, (2) to apply and extend these concepts to information transmission links which are robust in the presence of noise and other impairment mechanisms, (3) to show how such transmission links are used in fixed and mobile data communication systems for voice and video transmission, and (4) to introduce the operating principles of modern communications networks formed by the interconnection of many transmission links using a variety of topological structures.

The material is set in an appropriate historical context. Most of the chapters include substantive numerical examples to illustrate the material developed and conclude with problem questions which have been designed to help readers assess their comprehension of this material.

In Chapter 1, we summarise the history of communication systems and introduce some basic concepts such as accessing, modulation, multiplexing, coding and switching, for line and radio transmission. Chapter 1 also includes a review of the advantages of digital communications systems over the older analogue systems which they are now, largely, replacing.

The next 18 chapters are organised in four parts reflecting the four aims referred to above. Specifically Chapters 2 through 4 are devoted to a basic theory of periodic, transient and random signals and the concept of linear transmission systems. Chapters 5 through 13 cover the fundamentals of digital communications and include sampling and multiplexing, baseband line transmission, decision and information theory, cryptography and error control coding, including turbo coding. This second part also includes a description of the many bandpass modulation schemes used in modern systems, the calculation of received power and associated signal-to-noise ratio for a communications link, and an indication of how the performance of a system can be assessed by simulation, before any actual hardware construction is attempted.

Part Three, Chapters 14 through 16, describes how the principles of digital communications are applied in fixed point-to-point terrestrial, and satellite based, microwave systems, in mobile and cellular radio systems, and in video (TV) transmission and storage systems. The fourth part, Chapters 17 through 21, is devoted to communication networks. This starts with a discussion of network topologies, access techniques and their signalling and

routing protocols and architectures before moving on to queueing theory. It then progresses naturally to public networks, SDH and ISDN, the internationally agreed standard for the worldwide digital telecommunications network, before finally concluding with broadcast networks, both wired and wireless local area networks. This completely revised and extended networks section in the second edition introduces the reader to a range of rapidly evolving wireless networking techniques.

To assist the reader, the book includes a list of abbreviations and also a list of notations and conventions used for the mathematical material.

An extensive reference list including key WWW addresses, standards and a bibliography is provided at the end of the book, before the index. All publications referred to in the text are compiled in this list. Each reference is identified in the text by the name(s) of the author(s) and, where necessary, the year of publication in square brackets.

The book is aimed at readers who are completing a graduate level BEng/MEng degree, or starting a postgraduate level MSc degree in Communications, Electronics or Electrical Engineering. It is assumed that these readers will have competence in the mathematical concepts required to handle comfortably the material in Part One.

The book has been compiled from lecture notes associated with final year BEng/MEng/MSc core, and optional, courses in signal theory and digital communications as provided at the Universities of Bath, Bradford and Edinburgh from 1990 to date. We have deliberately extended our coverage, however, to include some practical aspects of the implementation of digital PCM, SDH, packet speech systems, and the capability of optical and microwave long haul communication systems. With this balance between theory, applications and systems implementation we hope that this text will be useful both in academia and in the rapidly growing communications industry.

To aid the instructor and the student we provide a current erratum plus outline solutions to the majority of the end of chapter problems on the World Wide Web at the Edinburgh server address: http://www.see.ed.ac.uk/~pmg/DIGICOMMS/index.html or via the Pearson Education website at www.pearsoned.co.uk/glover.

In addition, we have some further software examples in the areas of filtering, transforms and adaptive processors which are available via the above server address.

Ian Glover and Peter Grant

Author's acknowledgements

First edition

Parts of this book have been developed from BEng, MEng and MSc courses provided at the Universities of Edinburgh and Bradford. Three of these courses were first taught by Dr James Dripps at Edinburgh, and Professor Peter Watson and Dr Neil McEwan at Bradford, and we acknowlegde their initial shaping of these courses, which is reflected in the book's content and structure. We are grateful to Dr Dripps for having provided draft versions of Chapters 7 and 9 and also for giving us access to material which now forms parts of Chapters 6, 10, 17 and 18. We are grateful to Dr McEwan for providing the original versions of sections 2.5.1, 4.3.1, 4.3.2 and 4.3.3 in the form of his teaching notes. Some of the material in Chapters 2, 3, 4, 8 and 11 had its origins in notes taken during lectures delivered at Bradford by Professor Watson and Dr McEwan. We also acknowledge Dr Brian Flynn for assistance with parts of Chapter 19, Dr Angus McLachlan for providing initial thoughts on Chapter 12, Dr Tom Crawford (of Hewlett Packard, Telecomms Division, South Queensferry) for giving us access to further material for Chapter 19 and providing some initial insights into Chapter 6. We are grateful to Dr David Parish of Loughborough University of Technology, for providing an initial draft of Chapter 16, Professor Paddy Farrell (of Victoria University, Manchester) for helpful comments on Chapter 10 and Dr David Cruickshank at Edinburgh for assistance with the problem solutions which are provided on the WWW.

We would like to thank all those colleagues at the Universities of Bradford and Edinburgh who have provided detailed comments on sections of this text. Thanks must also go to the many students who have read and commented on earlier versions of this material, helped to refine the end of chapter problems and particularly Yoo-Sok Saw and Paul Antoszczyszn who generously provided figure material for Chapter 16.

Special thanks are due to Joan Burton, Liz Paterson, Diane Armstrong and Beverley Thomas for their perseverance over several years in typing the many versions of the individual chapters, as they have evolved from initial thoughts into their current form. We also acknowledge Bruce Hassall's generous assistance with the preparation of the final version of the text in the appropriate typefont and text format.

Finally we must thank our respective families, Nandini and Sonia, and Marjory, Lindsay and Jenny for the considerable time that we required to write this book.

Ian Glover and Peter Grant, 1998

Second edition

This second edition has been further developed from BEng, MEng and MSc courses provided at the Universities of Edinburgh, Bath and Bradford. We acknowledge Professor Keith Blow from the University of Birmingham for updates to Chapter 12, Professor Mike Woodward of Bradford University for preparing the revised Chapter 17 (now Chapter 19), Professor Simon Shepherd also of Bradford University for reading and commenting on the new material on encryption in Chapter 9, Dr Robert Watson at Bath for preparing the new section in Chapter 10 on turbo coding and the Bluetooth section in Chapter 21, the generous assistance of both John Martin and Steve Pennock, also from Bath, for providing access to all their material on networks for enhancing Part Four of this revised text, and Dr David Cruickshank at Edinburgh for continued assistance with the problem solutions which are provided on the WWW.

We would like to thank all those colleagues at the Universities of Bath and Edinburgh who have again provided detailed comments on sections of this text. Thanks must also go to the many students who continue to read, comment and suggest improvements to the chapter contents and also the solutions to the problem questions. Thanks are also due to the many instructors worldwide who have emailed us with positive comments and suggestions.

Special thanks are due to Diane Armstrong, Caroline Saunders and Kim Orsi for their perseverance in typing the revised chapters and tables. We also acknowledge again Bruce Hassall, the IT Services Manager in the School of Engineering and Electronics at the University of Edinburgh and his staff, in particularly Michael Gordon, for their generous assistance with the typsetting, formatting, and figure editing to achieve the professional layout of the final text.

Finally, we must thank our respective families, Nandini and Sonia, and Marjory for our time spent writing and revising this book.

Ian Glover and Peter Grant, 2003

Third edition

This third edition has been further developed to reflect recent advances in the five years since we prepared the second edition to ensure that the text remains current and up to date. We have thus extended particularly Chapter 21 on networks to include MIMO and UWB as well as increasing the coverage of FDDI and DQDB networks.

This edition is dedicated to Nandini (1952-2007).

Ian Glover and Peter Grant, 2009

Publisher's acknowledgements

We are grateful to the following for permission to reproduce copyright material:

Figures

Figure 1.1 from Technical demographics (Cochrane, P., Electronics and Engineering Journal 1995) 5(4) pp. 221–232, Reproduced with permission of the IEE; Figure 1.2 from Transmission Systems (Earnshaw, CM (Flood, J.E. and Cochrane, P., eds) 1991) Chapter 1, Peter Peregrinus; Figure 1.7 from Future directions in longhaul fibre optic systems, British Telecom Technology Journal, 8(2), 1-17 (Cochrane, P. April 1990), BT Group; Figure 5.8 from Digital Processing, Synthesis and Recognition. Reprinted from Furui, 1989, by courtesy of Marcel Dekker, Inc.; Figure 5.34 from Delta modulation quantising noise analysis and computer simulation results, Bell System Technical Journal, 45(1), pp. 1117–1148 (O'Neal, J.B. January 1966), AT & T; Figure 6.10b From Carlson, A.B., Communication Systems: An Introduction to Systems and Noise, 3rd ed, 1986, McGraw-Hill, Reproduced with permission of the McGraw-Hill Companies; Figure 6.22a from Digital Communications – Satellite/Earth Station Engineering, Prentice Hall (Feher, K. 1983) Printed by permission of the author; Figure 6.22b from Digital Communications – Microwave Applications, Prentice Hall (Feher, K. 1981) Printed by permission of the author; Figures 6.31, 6.32 from High-speed copper access: a tutorial review, Electronics and Communications Engineering Journal, 11(3), pp. 125-148 (Czajkowski, I.K. June 1999), Reproduced with permission of the IEE; Figure 7.8 from *Principles and Practice of Information Theory*, Addison-Wesley (Blahut, R.E. 1987), Reproduced with permission of the author; Figure 9.8 from Facsimile today, Electronics and Communication Engineering Journal, 3(5), pp. 223-231 (Pugh, A. October 1991), Reproduced with permission of the IEE; Figure 9.12 from Voice and Audio Compression for Wireless Communications, John Wiley (Hanzo, L., Somerville, F.C.A. and Woodward, J.P. August 2007). Reproduced with permission of Wiley-Blackwell; Figure 10.28 from Coding as a cure for communication calamities, Electronics and Communication Engineering Journal, 2(6), pp. 213-220 (Farrell, P.G. December 1990), Reproduced with permission of the IEE; Figure 10.35 from Near optimum error correcting coding and decoding: Turbo codes, IEEE Transactions on Communications, 44(10), pp. 1261-1271 (Berrou, C. and Glavieux, A. October 1996), Reproduced with the permission of the IEEE @ 1996 IEEE; Figure 11.38b from A study of modulation for digital mobile telephony, IEEE 29th Vehicular Technology Conference Proceedings, pp. 13-19 (Hirade, K. and Murota, K. March 1979), Reproduced with permission of the IEEE © 1979 IEEE; Figure 11.39 from Mobile Communication Systems, Springer and Blackie (Parsons, J.D. and Gardiner, J. 1990) with kind permission from Springer Science

and Business Media; Figure 11.41 from A study of modulation for digital mobile telephony, IEEE 29th Vehicular Technology Conference Proceedings, pp. 13-19 (Hirade, K. and Murota, K. March 1979), Reproduced with permission of the IEEE © 1979 IEEE; Figures 11.46, 11.47 and 11.48 from Telecommunications Systems Engineering, Prentice Hall/reprinted by Dover Press, New York (Lindsey, W.C. and Simon, M.K. 1973/1991) Dover Press; Figure 12.25 from J.D. Kraus, "Radio Astronomy", Cygnus-Quasar Books, 1986, with permission; Figures 12.31, 20.31, 20.32 from Transmission Systems, Peter Peregrinus (Flood, J.E. and Cochrane, P. (eds) 1991), Reproduced with permission of the IEE; Figures 12.32, 12.33 from Future directions in long-haul fibre optic systems, British Telecom Technology Journal, 8(2), 1-17 (Cochrane, P. April 1990), BT Group; Figure 13.12 from Techniques for estimating bit error rate in the simulation of digital communication systems, IEEE Journal on Selected Areas in Communications, SAC-2(1), pp. 153-170 (Jeruchim, H.C. et al 1984), Reproduced with permission of the IEEE © 1984 IEEE; Figure 13.42 from Techniques for estimating bit error rate in the simulation of digital communication systems, IEEE Journal on Selected Areas of Communication Systems, SAC-2(1), pp. 153-170 (Jeruchim, H.C. et al 1984), Reproduced with the permission of the IEEE @ 1984 IEEE; Figures 14.20, 14.22, 14.30 from ITU-R Handbook of Radiometeorology, ITU (1996), Reproduced with the permission of the International Telecommunications Union; Figure 14.21 from Radiowave Propagation (Hall, M.P.M. and Barclay, L.W. (eds) 1989), Peter Peregrinus; Figure 14.26 from CCIR Handbook, ITU (1988), Reproduced with the permission of the International Telecommunications Union; Figure 14.35 from ITU-R Re.c P.676 (1995), Reproduced with the permission of the International Telecommunications Union; Figure 15.2 from Personal and Mobile Radio Systems, Macario, RCV (ed.), Peter Peregrinus (Parsons, J.D. 1991) Chapter 2 'Characterisation of fading mobile radio channels'; Figure 15.21 from UWB Communication Systems - A Comprehensive Overview, Hindawi Publishing (Benedetto, M.-G., Kaiser, T., Porcino, D., Molisch, A. and Oppermann, I. 2006), Reproduced with permission of Hindawi Publishing Corporation; Figures 16.8, 16.9, 16.12, 16.19 from School of Engineering, University of Edinburgh; Figure 16.17 from Video Coding, Peter Peregrinus (Ghanbari, M. 1999), Reproduced with permission of the IEE; Figure 18.4 from Computer Communications (Beauchamp, K.G. 1990) © 1990 Chapman and Hall; Figure 4.10 (labelled 3.10) with permission of Cengage Learning Services Limited; Figure 18.29 from Halsall, F. 1996 Data Communications Computer Networks and Open Systems, 4th ed., Addison-Wesley, with permission of Pearson Education Ltd./Figure 18.29 © Addison-Wesley Publishers Ltd. Reproduced by permission of Pearson Education, Inc; Figures 20.13 and 20.36 from Special issues on SDH, British Telecommunications Engineering, 10(2) (Leakey, D. (ed) 1991), BT Group; Figure 20.77 from FSAN OAN-WG and future issues for broadband optical access networks, IEEE Communications Magazine, 39(12), pp. 126-133 (Maeda, Y., Okada, K. and Faulkner, D. December 2001), Reproduced with permission of the IEEE © 2001 IEEE; Figure 20.79 from Driving fibre to the home, IEEE Communications Magazine, 38(11), pp. 106-110 (Kettler, D. and Kafka, H. November 2000), Reproduced with permission of the IEEE @2000 IEEE; Figure 20.83 from The PacketCable architecture, IEEE Communications Magazine, 39(6), pp. 90-96 (Mille, E. and Russell, G. June 2001), Reproduced with permission of the IEEE © 2001 IEEE; Figures 20.87, 20.93 from Mesh networks for broadband access, IEEE Review, 47(1), pp. 17-22 (Fowler, T. January 2001), Reproduced with permission of the IEEE © 2001 IEEE; Figure 20.88 from Wireless internet over LMDS: architecture and experimental implementation, IEEE Communications Magazine, 39(5), pp. 126–132 (Mahonen, P., Saarinen, T. and Shelby, Z. May 2001), Reproduced with permission of the IEEE © 2001 IEEE; Figure 20.89 from Wireless internet over LMDS: architecture and experimental implementation, *IEEE Communications Magazine*, 39(5), pp. 126–132 (Mahonen, P., Saarinen, T. and Shelby, Z. May 2001), Reproduced with permission of the IEEE © 2001 IEEE; Figure 20.92 from Fixed broadband wireless access: state of the art, challenges and future directions, *IEEE Communications Magazine*, 39(1), 100–108 (Bolcskei, H., Paudraj, J.A., Hari, K.V.S. and Nabar, R.I. January 2001), Reproduced with permission of the IEEE © 2001 IEEE; Figures 20.97, 20.98 from The Halo Network, *IEEE Communications Magazine*, 38(6), pp. 142–148 (Colella, N.J., Martin, J.M. and Akyildiz, I.F. June 2000), Reproduced with permission of the IEEE © 2000 IEEE; Figure 20.99 from Standardization plan for broadband access network transport, *IEEE Communications Magazine*, 39(7), pp. 166–172 (Maeda, Y. and Feigel, A. July 2001), Reproduced with permission of IEEE © 2001 IEEE.

Tables

Table 18.9 from *Telecommunications: Protocols and Designs* (Spragins, J.D. 1991) Table 9.5, Reproduced with permission from Pearson Education Inc.

In some instances we have been unable to trace the owners of copyright material, and we would appreciate any information that would enable us to do so.

Abbreviations

2G Second generation 3G Third generation

AAL ATM adaption layer

ABM Asynchronous balanced mode

ABR Available bit rate

AC Alternating current (i.e. sinusoidal signal), access control, area code

STAPP

ACF Autocorrelation function, access control field

ACK Acknowledgement

ACL Asynchronous connectionless
ACSE Association control service element
A/D or ADC Analogue to digital converter

ADCCP Advanced data communications control procedure
ADM Add and drop multiplexer, adaptive delta modulation

ADPCM Adaptive differential pulse code modulation
ADSL Asymmetric digital subscriber line (transmissions)

ADSL Asymmetric digital subscriber line (transmissi AFI Authority and format identifier

AGC Automatic gain control
AI Adaption interface

AIA Active interference avoidance
AK-TPDU Acknowledgement TPDU

ALOHA (not an abbreviation but Hawaiian for 'hello')

AM Amplitude modulation
AMI Alternate mark inversion

Advanced mobile phone system (USA)

AN Access network

AMPS

ANS Abstract syntax notation

ANSI American National Standards Institute

AOA Angle of arrival AP Access point

APCO (US) associated public safety comminications office

APD Avalanche photodiode
APK Amplitude/phase keying
ARM Asynchronous response mode

ARPANET Advanced Research Projects Agency Network

ARO Automatic repeat request

ASCII American Standard Code for Information Interchange

ASIC Application specific integrated circuit

ASK Amplitude shift keying ASN Abstract syntax notation

ATM Asynchronous transfer mode, automatic teller machine

AU Administrative unit

AUG AU group

AUI Attachment unit interface AWG American wire gauge

BA Basic (rate) access (in ISDN)
BASK Binary amplitude shift keying
BCH Bose-Chaudhuri-Hocquenghem
BCJR Bahl, Cocke, Jelinek, Raviv (algorithm)

BER Bit error ratio/rate

BFSK Binary frequency shift keying

BICI Broadband (or B-ISDN) intercarrier interface

BIM Broadcast interface module
BIS Boundary/border IS
B-ISDN Broadband ISDN
BL Baseband layer

BMVBranch metric valueBNABroadcast network adaptor $BO_{i/o}$ Back-off (input/output)BPIBaseline privacy interface

B-PON Broadband passive optical network

BPSK Binary phase shift keying

BRAN Broadband radio access network

BRL Bluetooth radio layer
BRZ Bipolar return to zero

BS Base station

BSS Broadcast satellite service, basic service set

BT British Telecom

CAC Connection admission control, channel access control

CAP Carrierless amplitude and phase (modulation)

CASE Common application service element

CATV Community antenna TV

CBR Constant bit rate
CC Central controller

CCIR Comité Consultatif International des Radiocommunications CCITT Comité Consultatif International Télégraphique et Téléphonique

CCK Complementary code keying

CCRE Commitment, concurrency and recovery element
CCS7 Common channel signalling system No. 7

CC-TPDU Connection confirm TPDU

CD Cumulative distribution, compact disc, collision detection,

carrier detection

xii Abbreviations

CDDI Copper distributed data interface
CDMA Code division multiple access
CD-ROM Compact disc read-only memory

CDT Credit (flow control)
CDV Cell delay variation

CELP Codebook of excited linear prediction

CEPT Confederation of European PTT Administrations CFMSK Continuous frequency minimum shift keying

CIR Carrier to interference ratio

CLNP Connectionless network layer (IP) protocol
CLNS Connectionless network layer service

CLR Cell loss ratio
CM Cable modem

CMCI Cable modem computer interface

CMI Coded mark inversion

CMIP Common management information protocol

CMIR Carrier modulated IR

CMOS Complementary metal oxide silicon (transistor)

CMRI Cable modem return path interface

CMTRI Cable modem telephone return path interface

CMTS Cable modem termination system

CN Core network

CNR Carrier-to-noise ratio
CODEC Coder/decoder

COFDM Coded orthogonal frequency division multiplex

CONP Connection-oriented network protocol
CONS Connection-oriented network service

CPD Centre point detection
CPN Customer premises network

CP(S)M Continuous phase (shift) modulation

CR Call request

CRC Cyclic redundancy check

CRT Cathode-ray tube

CR-TPDU Connection request TPDU

CS Carrier sense, circuit switched, convergence sub-layer

CSDN Circuit switched data network

CSMA/CD Carrier sense multiple access/collision detection

CSPDN Circuit switched packet data network

CTD Cell transfer delay
CTS Clear to send
CW Continuous wave

D Data

DA Demand assigned

DAC Digital to analogue converter
DASS Digital access signalling system

DAT Digital audio tape

DAVIC Digital Audio Video Council
DBS Direct broadcast satellite

DC Direct current D/C Downconverter

DCCE Digital cell centre exchange
DCE Data communication equipment
DCF Distributed coordination function

DCT Discrete cosine transform

DDSSC Digital delivered services switching centre

DECT Initially Digital European cordless telecommunications

now Digital enhanced cordless telecommunications

DEPSK Differentially encoded phase shift keying

DES Data encryption standard
DFB Distributed feedback (laser)

DFS Discrete Fourier series, dynamic frequency selection

DFT Discrete Fourier transform

DHCP Dynamic host configuration protocol

DI Distribution interface

DIUC Downlink interval usage code

DLC Data-link controller
DL-MAP Downlink map
DM Delta modulation
DMIR Direct modulation IR

DMPSK Differential M-symbol phase shift keying

DMSU Digital main switching unit

DMT Discrete multitone
DNS DOA Domain name system
Direction of arrival

DOCSIS Data over cable service interface specification

DPCM Differential pulse code modulation
DPNSS Digital private network signalling system

DPRS DECT packet radio service
DPSK Differential phase shift keying
DQDB Distributed queue dual bus

DQPSK Differential quadrature phase shift keying

DRFSI Downstream RF site interface

DSB Double sideband
DS-CDMA Direct sequence CDMA
DSI Digital speech interpolation
DSL Digital subscriber line
DSMX Digital system multiplexer

DSP Digital signal processing, domain specific part

DSR Data set ready

DSS1 Digital subscriber signalling No. 1
DSSS Digital subscriber signalling system,
direct sequence spread spectrum

xiv Abbreviations

DTE Data terminal equipment

DTI Department of Trade and Industry (UK)
DTP Distributed transaction processing

DTR Data terminal ready

DT-TPDU Data TPDU
DUP Data user part
DV Data/voice (packet)
DVB Digital video broadcast

DVB-C Digital video broadcast – cable

DVD Digital video disc
DVR Digital video recorder

ECMA European Computer Manufacturers Association

ED End delimiter

EDFA Erbium doped fibre amplifier

EDGE Enhanced data rate for GPRS evolution

EFT Electronic funds transfer

EFTPOS Electronic funds transfer at point of sale EIA Electronic Industries Association

EIRP Effective isotropic radiated power

EM Encrypted message

EMI Electromagnetic interference

ENQ Enquiry

EOT End of transmission
EOW Engineering order wire
ER Error reporting (flag)
ERD End routing domain
ERF Error function

ERFC Complementary error function
ERMES European Radio Message System
ES End system, elimination signal
ESD Energy spectral density

ES-IS End system to intermediate system

ETS(I) European Telecommunications Standards Institute (formerly CEPT)

ESS Extended service set

EY-NPMA Elimination yield non pre-emptive priority multiple access

FCC Federal Communications Commission

FCFS First come first served
FCS Frame check sequence
FDD Frequency division duplex
FDDI Fibre distributed data interface
FDM Frequency division multiplex
FDMA Frequency division multiple access

FEC Forward error correction

FECC Forward error correction coding

FET Field effect transistor

Far end crosstalk FEXT

FFSK Fast frequency shift keying Fast Fourier transform **FFT**

Frequency hopped (transmission) FH Frequency hop synchronisation FHS Frequency hopped (spread spectrum) FH(SS)

First in first out **FIFO** First in last out **FILO**

Finite impulse response FIR First in random out FIRO FM Frequency modulation Final permutation FP

Field programmable gate array **FPGA**

Future public land mobile telecommunications system **FPLMTS**

FS Fourier series

Frequency shift keying **FSK** Free space path loss FSPL. Fourier transform FT

File transfer access and management FTAM

FTTB Fibre to the building/business

FTTC Fibre to the kerb **FTTCab** Fibre to the cabinet FTTH Fibre to the home **FWA** Fixed wireless access

Fresnel zone FZ

Global third generation G3G Global area network GAN **GFI** General format identity

Gaussian (filtered) minimum shift keying GMSK

Grade of service GoS

General packet radio system **GPRS GPS** Global positioning system Group switching centre GSC

originally Groupe Spéciale Mobile **GSM**

now Global System for Mobile communications

Higher order automatic cross-connect equipment HACE

HALO High altitude long operation High altitude platform HAP HCI Host controller interface HDB High density bipolar **HDLC** High level DLC

High speed digital subscriber loop HDSL

HDTV High definition television

HEO High earth orbit HF High frequency

Abbreviations xvi

HFC Hybrid fibre coax

Highly inclined highly elliptical (orbit) HIHE

ETSI HIPERLAN variant **HIPERACCESS**

HIPERLAN High performance local area network **HomePNA** Home Phoneline Network Alliance

High power amplifier **HPA**

High speed circuit switched data **HSCSD** High speed downlink packet access **HSDPA**

High speed LAN **HSLAN**

HUMAN High rate unlicensed MAN

Inphase (signal component), information I

IC Incoming call

Interactive channel satellite distribution system ICSDS

I+D Integrate and dump

ID Identity

International data encryption algorithm **IDEA**

IDI Initial domain identifier Integrated digital network IDN Initial domain port IDP Interdomain routing protocol

IDRP

ISDN DSL IDSL

Institute of Electrical and Electronics Engineers **IEEE**

Intermediate frequency IF

Intermediate frequency amplifier **IFA**

Inter-frame space **IFS**

Inverse fast Fourier transform **IFFT** Interactive network module IIM Infinite impluse response IIR Injection laser diode ILD INA Interaction network adaptor

International Maritime Satellite Consortium **INMARSAT**

International Telecommunications Satellite Consortium INTELSAT Intermodulation product, internet protocol, initial permutation IP

The Water

IPSS International packet switched service

Infrared, interdomain routing IR

Intermediate system IS

International switching centre ISC Integrated services digital network ISDN

ISI Intersymbol interference

Intermediate system to intermediate system IS-IS Industrial, scientific and medical (frequency band) **ISM** International Organization for Standardization ISO

ISO presentation protocol ISO-PP ISO session (layer) protocol ISO-SP

Internet service provider, intermediate services part **ISP**

ISDN user part **ISUP**