(%) Stanley B. Lippman # %resh £ R

{C++ Primer) fEERBENNTEH
KB EFRENC +IRLM
R R

1 e g B
China Machine

Essential C++
(HERBEW

(%) Stanley B. Lippman ®IB% &L T

LB T v W ORR

T China Machine Press

English reprint edition copyright © 2010 by Pearson Education Asia Limited and China
Machine Press.

Original English language title: Essential C++ (ISBN 978-0-201-48518-9) by Stanley B.
Lippman, Copyright © 2000.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing
as Addison-Wesley.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan,
Hong Kong SAR and Macau SAR).

A 5H S BZF1MR HiPearson Education Asia Ltd 3&AUHLAE Tl HARAE IR HER ., KRB H
WEBEET, AEUEMNFREHIRDEEBANE.

TRFHREARKMEEN (FREFEEFE, RS NTREANPESSHX) 8
#ET,

AFH kA Pearson Education (AT HRER) B E, TREZLRE
#HE.

HIR B iRt h R
IR, B R
AHEEME AARTRARIGESR

AHFENEIZS: B%. 01-2010-1535
EBEMSE (CIP) ¥ig

Essential C++ ({EBERR) / (35) #7iH#F| (Lippman, S. B.) #; R85, &MHEEEE. —t
3. HUMRITOL AR, 20108

(ZHER)

H 4 E 3 ;. Essential C++

ISBN 978-7-111-31221-5
I1.E+- TN.Q#f @#% - @& LNCEE-BFRIH-%FX IV.TP312
W AR A B A5 e CIPS i i (2010) 3129159 %

PR Tl AR bRt AR 55 EA#222 WERER 100037)
HiEmiE: & &

AL FOR U ED 95 A R 2) Bl

2010410 A iR 1R EN R

186mm X% 240mm . 18.75E[13k

FrdEd5E . ISBN 978-7-111-31221-5

Effr: 49.007C

JUBAS, mARBRT. BIH. K, B TEREGR
Z ARk (010) 88378991, 88361066

WHhek. (010) 68326294, 88379649, 68995259
Hfahik. (010) 88379604

iE#{E4 . hzjsj@hzbook.com

FF =
(==

SRR

AR

e Ee

AR Stanleygt (C++ Primer) JFHIN —ALHFEME, BREMFD (C++ Primer) B A
[F, C++ Primer) B —A B 4IFERAIEFIIS, M (Essential C++) KB RN T ik RAEEBRE
TRC+H+X | TIESLAMERF LIE, FU—UIETRMLEFEH %, YRR,

ER—FE, FIRXH—FREREBVEARETREMESEE (Stanley § D MI7E
AEERBTXHEA), BHPBERTHRECHHEESME, LERTHRLETNE. FHREMN
BWEMZRER CXEHEHNERE TABRMESE, RREIZESPRIEN. EHRRE,
BRFEXENMARIBESH “IEH” Hik, WC+H+BRE/RNESBTEETERFERER
Mo “EH” WHE, XEREBMNELREAZRBKRLN—/1FEH, FTERBERXBAHRE,
WLBESAH2BEE. BIMETCHCH+ZRITLGTANXR, EMIIERROHNE, £
HEESEFRZCRBEER “HFH0" CH+ ARG, XN EERENS T HHE. &E
RSy RNE, BEABHEN, BN REZHEF, REFIH TALIEENIRY,
kA B IRERE g TR,

FEEMEESD, BRNERTREKGERE, HEMXWMHA LAEHTSEEY. EHE
Reifhix B iF BRIEENT, REMLEBMNATERR T4,

BfE, BRMMEEATRBHOIFMES, LEBRITTUERE —AX—FA4F45.

R, XABLERERE., ROEER, XKWAZEIIT, HA (C++ Primer) & L3
51, PrEEFRIH—HFI1237H ., XAEBAXAEIL—EEERIER, XEL “HER” ©.

MAE— T RIGREXBIRREELEER? XEEEA A BT,

ZELUAB—EERNELEIEENE AN, HEMIESSIHET APk, Ki
RTREFWEMBFEEAL —ZLR, EEEMickey#HFE . RBEFH—H BEERALT
KL R KBENIFE S . M- HEURRAEFEETENLRE%0, RS2 Z AR
L, mEEREHRANARBIPRATLAREN, FERANEEANRRHEREE Xk
HHEL2EBRRUEFHANTRE, SA—2RERHEER, KLRBRACEEENH 22—,
2EVRE CBX H R ERTE 2 AR, ARSI IR RBIPERA AT,

CGIEAR #2000 ok &40 iy i W A 3845 S X R T A At B AL BA A 24, At fE A —
WER, ERBAERE - LARIRR—ZRPl T BBEIERTR, HER AW
LAfE A ZIHoudiniZh B & AR E LY . RACH+EIMTXAT R, MiREE, FRERM
AMI,

—H#tEB (BRitJinkoFChyuan), TR ER APerlE B XN TR, FAHMBATDE AL
BOVRBAFR, i1R&MPerl, TclZRkMiES ., (TDRERETLVEMAIE, BHEERES.
BREIIAHMETD, RITER —MLATIETD Mira, — {7 #RTD TimF4s JLA7 B e 5h i
Mike, StevefiTonyal,) WiH, HEF/RFRICERHTE, FABRNMEBERIF—2HANR, FAHS
{#Paul, GaetanFfFZl A MDaveffE HIRXNTERKH N ERPeterfE, Hla, 818K, friE®
WERR, Fit-- .

XA ALET ., BERHACHHHIERMBCHASEEELTRBRAGBH, TRESHE
Perlf, T, 10, BEARAXFEEHEEAEBIE—T. AL ERAILUAKET, BLAESRTT, &
BEIAZA., EERFTRAERFRRKZAY, BABRMERZERIANAZ, TELUER
WIE, BERERAREEEN. SHEEENRERIEMS, ZARAKMNEZAZRLUHIIE WA
WL, mHh A—%%, HRAH—KE4840 /N, BABEEFMPerlGf——HE)
FEMEIE MRS ISR ATHE, RNAET o REEINERERITT.

FENV R Randal Schwartzffy (Learning Perl), ‘BiLIFEBEF B LIE, MAKRBERXER
JEEFiR. B4R, SAEBBEHPRFIEN. CERTRE2EEZNEE, AT HERK
WAREETRAENRE— R R ELLRAPer A GRS ITREAILL T .

B X RBE B EIRB A EHE I C++HI AR, (C++ Primer) B3R H L

RAEXRLMAE., EEBBBAEAT. BRARMEBETE—FFH—BUAESIREE
FilJosée Lajoiesk & ELUT . At FXAPEEICHBESMNERESR, XEBATEET.
EBRRARRERSABRERE,

YRATEES AR, WTRC+ T RPerlfl, B, WRABBARZ (Learning Perl), EZHHATR
f#3C++, EEMRMET, EREMNEEE—THZE0 AR REEM LSRR

D) EHEE. EiHENEREE, MYREENE—ERRELNOLERE, FEL LA
BEDE LR AEEREERELRNE . A ROBEE, URBWHEMY., e
FENONARFAEELXAMBEENAST. R, FE0mRELEXIERE, 215
%, €C++ Primer) ZEZBEHER LWL B ILSIEMA, TikMbLREBN (HxA4
WARALAL, X—HHAERIosée SN), BREERTBIBIOT AU RIER TS FIZEH,
XERAATHEAMD.

2) I8, £ (C++ Report) I(TL4RRATNME, HRY LT XHE—IE, REREE—
A HE AR TE R L N R R E MR, A Bhe R, XEBHRNAER—RFINRRRH
BRIF, HEMRFENSR S AR IS, RLASEDAL BHRKE BNk
REMROLEAIE, BT EBAKIH BT, St TEHEREY, RUMBIARERA,
REBBEFRES IR, RRERBHMYER, FURREREXBEISEN. XEERF
FEAEMRE. BoriESHEMEEMIUFELTURTN, XERNES, RFLRERAEE.

3) JEGIME . (C++ Primer) HAS T ILETIEMAHRIGTESN, A HRHRNTEE
WAL AT RSB, BRARBFREBEESRBREFY, HAEMANERINK
(C++ Primer) WEE ., A THINE— A, HRABRBTHABRFIENEER. RRENHE
Deborah Lafferty i : “4nfRBsiSth— &, MFTEMNEEN TRILEIERAWBN,”

AHpEH

EHEETELEMHE MR, FIZEEHE - NMIENREERF, AHTHEESH
iR, BRENNESNEEIRKRE . TR GREMN. vectorfustringd®, FKM4FIEHRIEW, LA
B ARt iostreamE, FWAEX —BTHE| Avectorfistring2k B H LB IIB VREE H
BATA R NEBHARECRMEA TS,

EOEMERE T AR FE R R B, B T+ H RS R M NEE . EHEE.
B RS, LARAR I 6 SR EE

EIRIMRE T BrEARMERMRE (STL): —HE I, Bltovector, list, setFimap, LAK
TEFR TRt 2 LWz A E S, Blinsort (), copy()fimerge(), MfiFBkIE T 5
H T R AR RVE B IR man A A Y T YRR

BA—ZC+H+BFR, RWETETHERERBRURERMRORERER., BI4ENET

VI

C++2eHLEIR I FIE A, EibiRaEeIEA X AR F SIS EIRRE . FlnREL T #afE
BETIERIRE, BATBRIRTE T T CASE AT DU R A R TAERI 2. FSEMBET my R’
WX, EERMRAOLERERE R —RFIHEXH. Fln, RITGETHERMZHESE
EXT—TEBRBENRRER, MARNE B ICLAIER AR, _

KRR FORA T/, KB — R AR, ERFRSEML-TRBANRREE
{&. Blanvectorkgt ATLAZHL ERAEMTLRER ., mbufferk M AETTUSHCHTREEE,
EFTEAZ B ERR/D, Z—FRELS - XA SRREKIRIT,

B5, BIERART A FCHRI R CEILGILA R AL EMABIR AR EER
Rk, WFRASHTHREINEHWER. THRBUCHEH LAz RESRM T AREEF T,

XTHRAH

FEH U EEFERDLL KR > B E LA ¥ LATE Addison Wesley Longmanfy X 3%
(http://www.informit.com/store/product.aspx?isbn=0201485184) T #., FrHAILIDERLE Visual
C++ 5.0 (Intel C++43i% %) FVisual C++ 6.0 (HC++4RIER) TEIMIX, REBCHE
KLRBRFINBRITRESFEHBB—ABE KRk, mREXHE, FIERBWERLAS K
(slippman@objectwrite.com), BEBENTFIRMNLF—RIEERNBE, (EFAEHEE
BRTEEAREAN,)

it

X B BERERIRRH (C++ Primer) F3MAIETER Josée Lajoie, —HLARMETL T THR AR
3R, AOGRE DA ABERAAHNEZITEE, EEF M MZETREARE. R RLE
#r 5l Dave Slayton, fhLA—XRBEMGKEAHEFTE TABNLEAAMRLER, Ak
Steve Vinoskix} A& HHFR T F.0ME X B RAIHLIE,

B kil Addison-Wesley I 4miB I BA : 43iDeborah Lafferty N\ —FF L X #FE XN H ,
HE % Betsy Hardingerxt 25 AYEIEMAEH TH Y KHPITER, M7~ 28 John Fullerll| 1%
BIHEFRTRETRMOEE,

ERSHBAERY, BREA S5 WBRTE, FAf (Essential C++) Fi1—
stk (&) HRiEFENE . UL R ZE B Colin Lipworth, Edwin LeonardLA 5 Kenneth
MeyerfIiEh.OFN1E .

FRESHER
EEREEBRAEHE, I ECHIE S BAFIIF A4 B LippmanFiLajoie 4 (C++

VII

Primer) L)% Stroustrupffj {The C++ Programming Language), WAHEHA LIRS, AP+
BARBEEAMTEERREECIREE, TEE2FBHSIHZNER, (EHEENSZ0R
A[LLTE (C++ Primer) #0 {The C++ Programming Language) H3EF],)

[LIPPMANS98] Lippman, Stanley, and Josée Lajoie, C++ Primer, 3rd Edition, Addi-
son Wesley Longman, Inc., Reading, MA (1998) ISBN 0-201-82470-1.

[LIPPMAN96a] Lippman, Stanley, Inside the C++ Object Model, Addison Wesley
Longman, Inc., Reading, MA (1996) ISBN 0-201-83454-5.

[LIPPMAN96b] Lippman, Stanley, Editor, C++ Gems, a SIGS Books imprint, Cam-
bridge University Press, Cambridge, England (1996) ISBN 0-13570581-9.
[STROUSTRUPY7] Stroustrup, Bjarne, The C++ Programming Language, 3rd Edition,

Addison Wesley Longman, Inc., Reading, MA (1997) ISBN 0-201-88954-4.

[SUTTER99] Sutter, Herb, Exceptional C++, Addison Wesley Longman, Inc., Read-
ing, MA (2000) ISBN 0-201-61562-2.

HERRZ 2

FHBHICFFHEIEH10.5 pt. Palatino, BFXFIETRKEBFNIEHS.5 pt. lucida, &
BoE CAEMAFMECHERBIRAARMER (()). Bk, fooRFHE—NBFXNR, M
bar () #RMRME—NRF R T . KM FEMFEFIZ APalatino,

© (C++BFIRIHEEY EENERXIEE, Bb, Bjarne StroustrupiBF B —F LAC++H EFMAIHT 1k
(http://stroustrup.com/Programming, 3R IEERIEF), XTI ANER . B, FHIEERH?
HEHENRENEE, TEALE—CHESYE, FERELFFHAFCHERBOBFR., —FHE

Contents

FE
LE]
Chapter 1: Basic C++ Programntingoiiuue i, 1
1.1: HowtoWriteaC++ Programoiuiiniinnt e in i iiiirannenn. 1
1.2: Defining and InitializingaDataObjectcoviinint o, 7
1.3: Writing EXpressions ittt e 10
1.4: Writing Conditional and Loop Statementsc0unn... 15
1.5: HowtoUse Arraysand Vectorsc.uuuuiumunnneiininne e, 22
1.6 Pointers Allow for Flexibilityoouuieiinienin... s 26
1.7: WritingandReadingFileso oo i 30
Chapter 2: Procedural Programmingttt ittt tiie it 35
21: HowtoWriteaFunction ittt it e, 35
22: InvokingaFunction i i i i e i e, 41
2.3: Providing Default Parameter Valuescoooiiiiniiinnnninannn... 50
24: UsingLocalStaticObjects i i, 53
25: DeclaringaFunctionInline........... 55
2.6: ProvidingOverloaded Functionsottt iiiinn .. 56
2.7: Defining and Using Template Functions oo iinnn.... 58
2.8: Pointers to Functions Add Flexiblity oottt ..., 60
29: SettingUpaHeaderFile i i iiiiiiiiiiiiriinnnnnnn.. 63
Chapter 3: Generic Programming i uu ittt ae et e e eaan, 67
3.1: The Arithmeticof PoInters.oiiiii it iine e iiaieennennann. 68
3.2: MakingSenseof Iteratorsc.oiiiiiiiiiiiiiiii e e 73
3.3: Operations CommontoAllContainers....................................... 76
3.4: Using theSequential Containerso ittt 77
3.5: UsingtheGenericAlgorithms iiiiiiia... 81
3.6: HowtoDesignaGenericAlgorithm oo oL, 83
3.7: UsingaMapot iiiiiiniiiin et iietatinar e naiatatnttretinnranesas 20
38 UsingaSetot e e e e e 91
39: HowtoUselteratorInsertersttt it 93
3.10: UsingtheiostreamIteratorst iiiirinininiernnnennnannnn. 95
Chapter 4: Object-Based PrOZI@MMING.o v vt vt et e ien et et et e n e e etaeaeneanneasnn 29
41: HowtoImplementaClass it 100
4.2: What Are Class Constructors and the Class Destructor? 104
43: WhatAremutableand const?ottt e e 109
4.4: WhatlIsthethisPointer? ittt it iiniann.n. 113

IX

45: StaticClass Memberst iiini ittt ittt 115

4.6: BuildinganIteratorClassooiieriiiiieiiiiieiiiieinrarannnannn, 118

4.7: Collaboration Sometimes Requires Friendship, 123

4.8: Implementing a Copy Assignment Operator e 125

49: Implementinga FunctionObject i, 126

4.10: Providing Class Instances of the iostream Operators 128
4.11: Pointers to Class Member Functionso, 130
Chapter 5: Object-Oriented Programmingo vuiiuneinintraeinienerarernarnseseansons 135
5.1: Object-Oriented Programming Concepts.c.oiiierintrnnneririnnaen.. 135

5.2: A Tour of Object-Oriented Programming, 138

5.3: Polymorphism withoutInheritance ittt 142

5.4: Defining an AbstractBase Classcoviiiintiiiireiiienreinneranannnn. 145

55: DefiningaDerived Classouitiiieiii e etiniorarer e iinananerss 148

5.6: Usingan Inheritance Hierarchy i, 155

5.72 How Abstract ShouldaBaseClassBe? i, 157

5.8: Initialization, Destruction, and Copy ciuiniiiinniinaniniennannn, 158

5.9: Defining a Derived Class Virtual Functiono iiiaiaiaa., 160

5.10: Run-Time TypeIdentification i ittt 164
Chapter 6: Programming with Templateso ettt iaaaennn, 167
6.1: Parameterized Typesottt 169

6.2: The Template Class Definition it 171

6.3: Handling Template Type Parameterscoocuuevrnasstoanrnnasiocansans 172

6.4: Implementing the TemplateClassciiiiiiiariiiiiniiiinannns 174

6.5: AFunction Template Qutput Operatorcoiiiieieiiiniinantinanannns 180

6.6: Constant Expressions and Default Parametersciiiiieanaa, 181

6.7: Template ParametersasStrategyot 185

6.8: Member Template FUNCHONSo viientniinnrnirarerarennntnenasananias 187
Chapter 7: Exception Handling.ottt iieeii ittt iieneaniaonasaasnnnenns 191
71: Throwingan Exceptionot 191

7.2: Catching an EXCePHON ittt enealeiiiiniiitr e rrinntetoananannns 193

7.3: Tryingforan Exceptonoiiiiiiiiii ittt s 194

7.4: Local Resource Managementc.oimeeennteaeioranentanenoannns 198

75: TheStandard Exceptions ©.......coiiiiiieiiii et iia e 200
Appendix A: Exercise SOIUIONS it et 205
Appendix B: Generic Algorithms Handbookt iiiiiiiiisrsrtinianan, 255
F £ T 271
-- 277

Basic C++ Programming

% 3. AHEN. ARE

In this chapter, we evolve a small program to exercise the fundamental components of
the C++ language. These components consist of the following:

1. Asmall set of data types: Boolean, character, integer, and floating point.

2. Asetof arithmetic, relational, and logical operators to manipulate these types.
These include not only the usual suspects, such as addition, equality, less than,
and assignment, but also the less conventional increment, conditional, and
compound assignment operators.

3. A set of conditional branch and looping statements, such as the if statement
and while loop, to alter the control flow of our program.

4. A small number of compound types, such as a pointer and an array. These al-
low us, respectively, to refer indirectly to an existing object and to define a col-
lection of elements of a single type.

5. Astandard library of common programming abstractions, such as a string and
a vector.

11 How to Write a C++ Program

We’ve been asked to write a simple program to write a message to the user’s terminal
asking her to type in her name. Then we read the name she enters, store the name so
that we can use it later, and, finally, greet the user by name.

OK, so where do we start? We start in the same place every C++ program starts —
in a function called main(). main() is a user-implemented function of the following
general form:

int main()

{

// our program code goes here

2 Essential C++

int is a C++ language keyword. Keywords are predefined names given special
meaning within the language. int represents a built-in integer data type. (I have much
more to say about data types in the next section.)

A function is an independent code sequence that performs some computation. It
consists of four parts: the return type, the function name, the parameter list, and the
function body. Let’s briefly look at each part in turn.

. tetern 0 5 The return type of the function usually represents the result of the computation.
ABFERED, & main() has an integer return type. The value returned by main () indicates whether our
BEEFHE, x8 program is successful. By convention, main() returns 0 to indicate success. A nonzero

o return value indicates something went wrong.

N : The name of a function is chosen by the programmer and ideally should give some

. BB ETRA sense of what the function does. min() and sort (), for example, are pretty good func-
HAILMERA, 2R tion names. £ () and g() are not as good. Why? Because they are less informative as to

RRERAC R what the functions do.

R, @%ﬁf@& main is not a language keyword. The compilation system that executes our C++
ﬁ{}gm?@ﬁg*f programs, however, expects a main() function to be defined. If we forget to provide

one, our program will not run.

R % The parameter list of a function is enclosed in parentheses and is placed after the
— : name of the function. An empty parameter list, such as that of main (), indicates that

the function accepts no parameters.

The parameter list is typically a comma-separated list of types that the user can
pass to the function when the function is executed. (We say that the user has called, or
invoked, a function.) For example, if we write a function min () to return the smaller of
two values, its-parameter list would identify the types of the two values we want to
compare. A min () function to compare two integer values might be defined as follows:

~ int min(int vall, int val2)

{

// the program code goes here ...

s }
. LN
" k:ﬁ%g i ? oL é The body of the function is enclosed in curly braces ({}). It holds the code sequence

ME—A, T that provides the computation of the function. The double forward slash (//) repre-
B AT RN sents a comment, a programmer’s annotation on some aspect of the code. It is intended
Sk A ' for readers of the program and is discarded during compilation. Everything following
the double forward slash to the end of the line is treated as a comment.

Our first task is to write a message to the uset’s terminal. Input and output are not

: a predefined part of the C++ language. Rather, they are supported by an object-oriented
2 %&iﬂ_{liﬁ;‘i ;ﬁi class hierarchy implemented in C++ and provided as part of the C++ standard library.
ﬁﬁ:ﬁc; j% ﬁ’“‘;ﬁ F% A class is a user-defined data type. The class mechanism is a method of adding to .

wm %i%éﬁﬁ;f pu - the data types recognized by our program. An object-oriented class hierarchy defines

. e a family of related class types, such as terminal and file input, terminal and file output,

Chapter 1 Basic C++ Programming 3

and so on. (We have a lot more to say about classes and object-oriented programming
throughout this text.)

C++ predefines a small set of fundamental data types: Boolean, character, integer,
and floating point. Although these provide a foundation for all our programming,
they are not the focus of our programs. A camera, for example, must have a location in
space, which is generally represented by three floating point numbers. A camera also
has a viewing orientation, which is also represented by three floating point numbers.
There is usually an aspect ratio describing the ratio of the camera viewing width to
height. This is represented by a single floating point number.

On the most primitive level, that is, a camera is represented as seven floating point
numbers, six of which form two x,y,z coordinate tuples. Programming at this low level
requires that we shift our thinking back and forth from the manipulation of the camera
abstraction to the corresponding manipulation of the seven floating point values that
represent the camera in our program.

The class mechanism allows us to add layers of type abstraction to our programs. ; ;
For example, we can define a Point3d class to represent location and orientation inﬁ rEnny

space. Similarly, we can define a Camera class containing two Point3d class objects
and a floating point value. We're still representing a camera by seven floating point
values. The difference is that in our programming we are now directly manipulating
the Camera class rather than seven floating point values.

The definition of a class is typically broken into two parts, each represented by a ;
separate file: a header file that provides a declaration of the operations supported by the§: il e
class, and a program text file that contains the implementation of those operations.

To use a class, we include its header file within our program. The header file makes
the class known to the program. The standard C++ input/output library is called the
iostream library. It consists of a collection of related classes supporting input and out-
put to the user’s terminal and to files. To use the iostream class library, we must in-
clude its associated header file:

#include <iostream»

To write to the user’s terminal, we use a predefined class object named cout (pro-
nounced see out). We direct the data we wish cout to write using the output operator
(<<), as follows:

cout << "Please enter your first name: ";

This represents a C++ program statement, the smallest independent unit of a C++
program. It is analogous to a sentence in a natural language. A statement is terminated
by a semicolon. Our output statement writes the string literal (marked by double quo-
tation marks) onto the user’s terminal. The quotation marks identify the string; they
are not displayed on the terminal. The user sees

Please enter your first name:

4

Essential C++

Our next task is to read the user’s input. Before we can read the name the user
types, we must define an object in which to store the information. We define an object
by specifying the data type of the object and giving it a name. We've already seen one
data type: int. That's hardly a useful way of storing someone’s name, however! A
more appropriate data type in this case is the standard library string class:

string user_name;

This defines user_name as an object of the string class. The definition, oddly
enough, is called a declaration statement. This statement won't be accepted, however,
unless we first make the string class known to the program. We do this by including
the string class header file:

#include <string>

To read input from the user’s terminal, we use a predefined class object named cin
(pronounced see in). We use the input operator (>>) to direct cin to read data from the
user’s terminal into an object of the appropriate type:

cin >> user_name;

The output and input sequence would appear as follows on the user’s terminal.
(The user’s input is highlighted in bold.)
Please enter your first name: anna
All we've left to do now is to greet the user by name. We want our output to look
like this:
Hello, anna ... and goodbye!
I know, that’s not much of a greeting. Still, this is only the first chapter. We'll get
a bit more inventive before the end of the book.
To generate our greeting , our first step is to advance the output to the next line.
We do this by writing a newline character literal to cout:

cout << '\n';

A character literal is marked by a pair of single quotation marks. There are two pri-
mary flavors of character literals: printing characters such as the alphabet ('a', 'a,
and so on), numbers, and punctuation marks (*;*, *-*, and so on), and nonprinting
characters such as a newline (*\n') or tab ('\t'). Because there is no literal represen-
tation of nonprinting characters, the most common instances, such as the newline and
tab, are represented by special two-character sequences.

Now that we've advanced to the next line, we want to generate our Hello:

cout << "Hello, ";

Next, we need to output the name of the user. That’s stored in our string object,
user_name. How do we do that? Just the same as with the other types:

cout << user_name;

Chapter 1 Basic C++ Programming 5
Finally, we finish our greeting by saying goodbye (notice that a string literal can
be made up of both printing and nonprinting characters):
cout << " ... and goodbye!\n";
In general, all the built-in types are output in the same way — that is, by placing
the value on the right-hand side of the output operator. For example,
cout << "3 + 4 = ";
cout << 3 + 4;
cout << '\n';
generates the following output:
3+4-=17
As we define new class types for use in our applications, we also provide an in-
stance of the output operator for each class. (We see how to do this in Chapter 4.) This
allows users of our class to output individual class objects in exactly the same way as
the built-in types.
Rather than write successive output statements on separate lines, we can concat- HwEMEE
enate them into one compound output statement: B I {2 1 o B 2B 5
cout << '\n' &i&ﬁiﬂtﬁﬁﬁ@f
<< "Hello, " AMME, main() &%
<< user_name ﬁ%%i&fﬂ&’}zﬂﬂ

<< " ..., and goodbye!\n";

Finally, we can explicitly end main () with the use of a return statement:

return 0;

return is a C++ keyword. The expression following return, in this case 0, represents
the result value of the function. Recall that a return value of 0 from main() indicates

that the program has executed successfully
Putting the pieces together, here is our first complete C++ program:

#include <iostream>
#include <string>
uging namespace std; // haven’t explained this yet ...

int main(}
{
string user_name;
cout << "Please enter your first name: ®;
cin >> user_name;
cout << '\n'
<< "Hello, *

1 If we don't place an explicit return statement at the end of main(), a return 0; statement is inserted
automatically. In the program examples in this book, I do not place an explicit return statement.

<

{488 Treturn 0;
BARAER, BiF
BASLOHEEM
£,]EﬁﬂT‘ﬁiiﬂ?E?
B, BEBSADN
PREEAIX KIEH].

6 Essential C++

<< Uger_name
<< " ... and goodbye!\n";

return 0;

}
When compiled and executed, this code produces the following output (my input

is highlighted in bold):
Please enter your first name: anna
Hello, anna ... and goodbye!

There is one statement I haven't explained:

using namespace std;

REEEIRERe — Let’s see if I can explain this without scaring you off. (A deep breath is recom-
n— mended at this point!) Both using and namespace are C++ keywords. std is the name of
the standard library namespace. Everything provided within the standard library
(such as the string class and the iostream class objects cout and cin) is encapsulated
within the sta namespace. Of course, your next question is, what is a namespace?

A namespace is a method of packaging library names so that they can be introduced
within a user’s program environment without also introducing name clashes. (A name
clash occurs when there are two entities that have the same name in an application so
that the program cannot distinguish between the two. When this happens, the pro-
gram cannot run until the name clash is resolved.) Namespaces are a way of fencing in
the visibility of names.

To use the string class and the iostream class objects cin and cout within our pre-
gram, we must not only include the string and iostream header files but also make the
names within the std namespace visible. The using directive

uging namespace std;

 ABEEIEERT

is the simplest method of making names within a namespace visible. (To read about
namespaces in more detail, check out either Section 8.5 of [LIPPMAN98] or Section
8.2 of [STROUSTRUP97].)

BRI AR 7 Exercise 1.1

Be Enter the main() program, shown earlier. Either type it in directly or download the program;
see the Preface for how to acquite the source programs and solutions to exercises. Compile and
execute the program on your system.

Exercise 12

Comment out the string header file:
// #include <string>

Chapter 1° Basic C++ Programming

7

Now recompile the program. What happens? Now restore the string header and comment out
//using namespace std;

What happens?

Exercise 1.3

Change the name of main() to my_main() and recompile the program. What happens?

Exercise 14

Try to extend the program: (1) Ask the user to enter both a first and last name and (2) modify
the output to write out both names.

1.2 Defining and Initializing a Data Object

Now that we have the user’s attention, let’s challenge her to a quiz. We display two
numbers representing a numerical sequence and then request our user to identify the
next value in the sequence. For example,

The values 2,3 form two consecutive

elements of a numerical sequence.
What is the next value?

These values are the third and fourth elements of the Fibonacci sequence: 1,1, 2, 3, 5,
8,13, and so on. A Fibonacci sequence begins with the first two elements set to 1. Each
subsequent element is the sum of its two preceding elements. (In Chapter 2 we write a
function to calculate the elements.)

If the user enters 5, we congratulate her and ask whether she would like to try an-
other numerical sequence. Any other entered value is incorrect, and we ask the user
whether she would like to guess again.

To add interest to the program, we keep a running score based on the number of
correct answers divided by the number of guesses.

Our program needs at least five objects: the string class object to hold the name of
the user; three integer objects to hold, in turn, the user's guess, the number of guesses,
and the number of correct guesses; and a floating point object to hold the user’s score.

To define a data object, we must both name it and provide it with a data type. The
name can be any combination of letters, numbers, and the underscore. Letters are case-
sensitive. Each one of the names user_name, User_name, useR_nAmE, and user Name Te-
fers to a distinct object. '

A name cannot begin with a number. For example, 1_name is illegal but name_1 is
OK. Also, a name must not match a language keyword exactly. For example, delete is
a language keyword, and so we can't use it for an entity in our program. (This explains

& BRRLLF
Bk, FRU&BT,
Tt M g 1B LA b 5
¥, FRIARTHRR
BRI A
REE), MHBFE
LK £ 88 T RIZH
£ F &K K RS AT i
%, PRl R
AT HRFA LT,

