Perl Cookbook (ZEMR)

O’REILLY"

% k% it Tom Christiansen & Nathan Torkington &



P

Perl Cookbook &)
Pe_rl Cookbook

om Christiansen &
Nathan Torkington

O’REILLY*

Beijing » Cambridge » Farnham « Kéln « Sebastopol « Taipei » Tokyo
O’Reilly Media, Inc. R4U# dy K % MRt R

FRAFHEAE



Foreword

They say that it’s easy to get trapped by a metaphor. But some metaphors are so
magnificent that you don’t mind getting trapped in them. Perhaps the cooking meta-
phor is one such, at least in this case. The only problem I have with it is a personal
one—] feel a bit like Betty Crocker’s mother. The work in question is so monumen-
tal that anything I could say here would be either redundant or irrelevant.

However, that never stopped me before.

Cooking is perhaps the humblest of the arts; but to me humility is a strength, not a
weakness. Great artists have always had to serve their artistic medium—great cooks
just do so literally. And the more humble the medium, the more humble the artist
must be in order to lift the medium beyond the mundane. Food and language are
both humble media, consisting as they do of an overwhelming profusion of seem-
ingly unrelated and unruly ingredients. And yet, in the hands of someone with a bit
of creativity and discipline, things like potatoes, pasta, and Perl are the basis of works
of art that “hit the spot” in a most satisfying way, not merely getting the job done,
but doing so in a way that makes your journey through life a little more pleasant.

Cooking is also one of the oldest of the arts. Some modern artists would have you
believe that so-called ephemeral art is a recent invention, but cooking has always
been an ephemeral art. We can try to preserve our art, make it last a little longer, but
even the food we bury with our pharoahs gets dug up eventually. So too, much of
our Perl programming is ephemeral. This aspect of Perl cuisine has been much
maligned. You can call it quick-and-dirty if you like, but there are billions of dollars
out there riding on the supposition that fast food is not necessarily dirty food. (We
hope.)

Easy things should be easy, and hard things should be possible. For every fast-food
recipe, there are countless slow-food recipes. One of the advantages of living in Cali-
fornia is that I have ready access to almost every national cuisine ever invented. But
even within a given culture, There’s More Than One Way To Do It. It’s said in Rus-
sia that there are more recipes for borscht than there are cooks, and 1 believe it. My

xix



mom’s recipe doesn’t even have any beets in it! But that’s okay, and it’s more than
okay. Borscht is a cultural differentiator, and different cultures are interesting, and
educational, and useful, and exciting.

So you won'’t always find Tom and Nat doing things in this book the way I would do
them. Sometimes they don’t even do things the same way as each other. That’s
okay—again, this is a strength, not a weakness. I have to confess that I learned quite
a few things I didn’t know before I read this book. What’s more, I'm quite confident
that I still don’t know it all. And I hope I don’t any time soon. I often talk about Per]
culture as if it were a single, static entity, but there are in fact many healthy Perl sub-
cultures, not to mention sub-subcultures and supercultures and circumcultures in
every conceivable combination, all inheriting attributes and methods from each
other. It can get confusing. Hey, I'm confused most of the time.

So the essence of a cookbook like this is not to cook for you (it can’t), or even to
teach you how to cook (though it helps), but rather to pass on various bits of culture
that have been found useful, and perhaps to filter out other bits of “culture” that
grew in the refrigerator when no one was looking. You in turn will pass on some of
these ideas to other people, filtering them through your own experiences and tastes,
your creativity and discipline. You’ll come up with your own recipes to pass to your
children. Just don’t be surprised when they in turn cook up some recipes of their
own, and ask you what you think. Try not to make a face.

1 commend to you these recipes, over which I've made very few faces.

Larry Wall
June, 1998

xx | Foreword



Preface

The investment group eyed the entrepreneur with caution, their expressions flickering
from scepticism to intrigue and back again.

“Your bold plan holds promise,” their spokesman conceded. “But it is costly and
entirely speculative. Our mathematicians mistrust your figures. Why should we
entrust our money into your hands? What do you know that we do not?”

“For one thing,” he replied, “I know how to balance an egg on its point without out-
side support. Do you?” And with that, the entrepreneur reached into his satchel and
delicately withdrew a fresh hen’s egg. He handed over the egg to the financial tycoons,
who passed it amongst themselves trying to carry out the simple task. At last they gave
up. In exasperation they declared, “What you ask is impossible! No man can balance
an egg on its point.”

So the entrepreneur took back the egg from the annoyed businessmen and placed it
upon the fine oak table, holding it so that its point faced down. Lightly but firmly, he
pushed down on the egg with just enough force to crush in its bottom about half an
inch. When he took his hand away, the egg stood there on its own, somewhat messy,
but definitely balanced. “Was that impossible?” he asked.

“It’s just a trick,” cried the businessmen. “Once you know how, anyone can do it.”

“True enough,” came the retort. “But the same can be said for anything. Before you
know how, it seems an impossibility. Once the way is revealed, it’s so simple that you
wonder why you never thought of it that way before. Let me show you that easy way,
so others may easily follow. Will you trust me?”

Eventually convinced that this entrepreneur might possibly have something to show
them, the skeptical venture capitalists funded his project. From the tiny Andalusian
port of Palos de Moguer set forth the Nifia, the Pinta, and the Santa Maria, led by an
entrepreneur with a slightly broken egg and his own ideas: Christopher Columbus.

Many have since followed.
Approaching a programming problem can be like balancing Columbus’s egg. If no
one shows you how, you may sit forever perplexed, watching the egg—and your pro-
gram—fall over again and again, no closer to the Indies than when you began. This is
especially true in a language as idiomatic as Perl.




This book isn’t meant to be a complete reference book for Perl. Keeping a copy of
Programming Perl handy will let you look up exact definitions of operators, key-
words, functions, pragmata, or modules. Alternatively, every Perl installation comes
with a voluminous collection of searchable, online reference materials. If those aren’t
where you can easily get at them, see your system administrator if you have one, or
consult the documentation section at http://www.perl.com.

Neither is this book meant to be a bare-bones introduction for programmers who
have never seen Perl before. That's what Learning Perl, a kinder and gentler intro-
duction to Perl, is designed for. (If you’re on a Microsoft system, you might prefer
the Learning Perl for Win32 Systems version.)

Instead, this is a book for learning more Perl. Neither a reference book nor a tutorial
book, Perl Cookbook serves as a companion book to both. It’s for people who
already know the basics but are wondering how to mix all those ingredients together
into a complete program. Spread across 22 chapters and more than 400 focused
topic areas affectionately called recipes, this task-oriented book contains thousands
of solutions to everyday challenges encountered by novice and journeyman alike.

We tried hard to make this book useful for both random and sequential access. Each
recipe is self-contained, but has a list of references at the end should you need fur-
ther information on the topic. We’ve tried to put the simpler, more common recipes
toward the front of each chapter and the simpler chapters toward the front of the
book. Perl novices should find that these recipes about Perl’s basic data types and
operators are just what they’re looking for. We gradually work our way through topic
areas and solutions more geared toward the journeyman Perl programmer. Now and
then we include material that should inspire even the master Perl programmer.

Each chapter begins with an overview of that chapter’s topic. This introduction is
followed by the main body of each chapter, its recipes. In the spirit of the Perl slogan
of TMTOWTDI, There’s more than one way to do it, most recipes show several dif-
ferent techniques for solving the same or closely related problems. These recipes
range from short-but-sweet solutions to in-depth mini-tutorials. Where more than
one technique is given, we often show costs and benefits of each approach.

As with a traditional cookbook, we expect you to access this book more or less at
random. When you want to learn how to do something, you’ll look up its recipe.
Even if the exact solutions presented don’t fit your problem exactly, they’ll give you
ideas about possible approaches.

Each chapter concludes with one or more complete programs. Although some reci-
pes already include small programs, these longer applications highlight the chapter’s
principal focus and combine techniques from other chapters, just as any real-world
program would. All are useful, and many are used on a daily basis. Some even helped
us put this book together.

wii | Preface



What'’s in This Book

Spread over five chapters, the first portion of the book addresses Perl’s basic data
types. Chapter 1, Strings, covers matters like accessing substrings, expanding func-
tion calls in strings, and parsing comma-separated data; it also covers Unicode
strings. Chapter 2, Numbers, tackles oddities of floating-point representation, plac-
ing commas in numbers, and pseudo-random numbers. Chapter 3, Dates and Times,
demonstrates conversions between numeric and string date formats and using tim-
ers. Chapter 4, Arrays, covers everything relating to list and array manipulation,
including finding unique elements in a list, efficiently sorting lists, and randomizing
them. Chapter 5, Hashes, concludes the basics with a demonstration of the most use-
ful data type, the associative array. The chapter shows how to access a hash in inser-
tion order, how to sort a hash by value, how to have multiple values per key, and
how to have an immutable hash.

Chapter 6, Pattern Matching, includes recipes for converting a shell wildcard into a
pattern, matching letters or words, matching multiple lines, avoiding greediness,
matching nested or recursive patterns, and matching strings that are close to but not
exactly what you’re looking for. Although this chapter is one of the longest in the
book, it could easily have been longer still—every chapter contains uses of regular
expressions. It's part of what makes Perl Perl.

The next three chapters cover the filesystem. Chapter 7, File Access, shows opening
files, locking them for concurrent access, modifying them in place, and storing file-
handles in variables. Chapter 8, File Contents, discusses storing filehandles in vari-
ables, managing temporary files, watching the end of a growing file, reading a
particular line from a file, handling alternative character encodings like Unicode and
Microsoft character sets, and random access binary 1/O. Finally, in Chapter 9, Direc-
tories, we show techniques to copy, move, or delete a file, manipulate a file’s times-
tamps, and recursively process all files in a directory.

Chapters 10 through 13 focus on making your program flexible and powerful.
Chapter 10, Subroutines, includes recipes on creating persistent local variables, pass-
ing parameters by reference, calling functions indirectly, crafting a switch statement,
and handling exceptions. Chapter 11, References and Records, is about data struc-
tures; basic manipulation of references to data and functions are demonstrated. Later
recipes show how to create elaborate data structures and how to save and restore
these structures from permanent storage. Chapter 12, Packages, Libraries, and Mod-
ules, concerns breaking up your program into separate files; we discuss how to make
variables and functions private to a module, customize warnings for modules, replace
built-ins, trap errors loading missing modules, and use the h2ph and h2xs tools to
interact with C and C++ code. Lastly, Chapter 13, Classes, Objects, and Ties, covers
the fundamentals of building your own object-based module to create user-defined
types, complete with constructors, destructors, and inheritance. Other recipes show
examples of circular data structures, operator overloading, and tied data types.

Preface | il



The next two chapters are about interfaces: one to databases, the other to users.
Chapter 14, Database Access, includes techniques for manipulating DBM files and
querying and updating databases with SQL and the DBI module. Chapter 15, Inter-
activity, covers topics such as clearing the screen, processing command-line switches,
single-character input, moving the cursor using termcap and curses, thumbnailing
images, and graphing data.

The last portion of the book is devoted to interacting with other programs and ser-
vices. Chapter 16, Process Management and Communication, is about running other
programs and collecting their output, handling zombie processes, named pipes, sig-
nal management, and sharing variables between running programs. Chapter 17,
Sockets, shows how to establish stream connections or use datagrams to create low-
level networking applications for client-server programming. Chapter 18, Internet
Services, is about higher-level protocols such as mail, FTP, Usenet news, XML-RPC,
and SOAP. Chapter 19, CGI Programming, contains recipes for processing web
forms, trapping their errors, avoiding shell escapes for security, managing cookies,
shopping cart techniques, and saving forms to files or pipes. Chapter 20, Web Auto-
mation, covers non-interactive uses of the Web, such as fetching web pages, auto-
mating form submissions in a script, extracting URLs from a web page, removing
HTML tags, finding fresh or stale links, and parsing HTML. Chapter 21, mod_perl,
introduces mod_perl, the Perl interpreter embedded in Apache. It covers fetching
form parameters, issuing redirections, customizing Apache’s logging, handling
authentication, and advanced templating with Mason and the Template Toolkit.
Finally, Chapter 22, XML is about the ubiquitous data format XML and includes rec-
ipes such as validating XML, parsing XML into events and trees, and transforming
XML into other formats.

What's New in This Edition

The book you’re holding is thicker than its previous edition of five years ago—about
200 pages thicker. New material is spread across more than 80 entirely new recipes
plus over 100 existing recipes that were substantially updated since the first edition.
You'll also find two new chapters: one on mod_perl, Perl’s interface to the popular
Apache web server; the other on XML, an increasingly important standard for
exchanging structured data.

Growth in this book reflects growth in Perl itself, from Version 5.004 in the first edi-
tion to v5.8.1 in this one. Syntactic changes to the core language are nevertheless
comparatively few. Some include the spiffy our keyword to replace the crufty use vars
construct for declaring global variables, fancier forms of open to disambiguate filena-
mes with strange characters in them, and automatic allocation of anonymous filehan-
dles into undefined scalar variables. We've updated our solutions and code examples
to reflect these changes where it made sense to make use of the new features.

xaiv | Preface



Several of Perl’s major subsystems have been completely overhauled for improved
functionality, stability, and portability. Some of these are relatively isolated, like the
subsystems for threading (see Recipe 17.14) and for safe signals (see Recipe 16.17).
Their applications are usually confined to systems programming,.

More sweeping are the changes to Perl and to this book that stem from integrated
support for Unicode characters. The areas most profoundly affected are strings (now
with multibyte characters) and I/O (now with stackable encoding layers), so Chap-
ters 1 and 8 include new introductory material to orient you to these sometimes con-
fusing topics. These chapters also provide the bulk of recipes dealing with those
specific topics, but this fundamental shift touches many more recipes thronghout the
book.

Another growth area for this book and Perl has been the welcome proliferation of
many highly used and highly useful modules now released standard with the Perl
core. Previously, these modules had to be separately located, downloaded, config-
ured, built, tested, and installed. Now that they’re included in the standard distribu-
tion, that’s all taken care of when installing Perl itself.

Some new core modules are really pragmas that alter Perl’s compilation or runtime
environment, as demonstrated in Recipes like 1.21 (“Constant Variables”), 12.3
(“Delaying use Until Runtime”), and 12.15 (“Customizing Warnings”). Some are
programmer tools to aid code development and debugging, like modules shown in
Recipes 11.11 (“Printing Data Structures”), 11.13 (“Storing Data Structures to
Disk”), 11.15 (“Coping with Circular Data Structures Using Weak References”), and
22.2 (“Parsing XML into a DOM Tree”). Others augment basic operations available
on core data types, like those shown in Recipes 2.1 (“Checking Whether a String Is
a Valid Number”), 4.13 (“Finding the First List Element That Passes a Test”), 4.18
(“Randomizing an Array”), 5.3 (“Creating a Hash with Immutable Keys or Values”),
8.7 (“Randomizing All Lines”), and 11.15 (“Coping with Circular Data Structures
Using Weak References”). Finally, the networking modules have at last made their
way into the core distribution, as seen throughout Chapter 18. We’ve probably not
seen the last of this inward migration of modules.

Platform Notes

This book was developed using Perl release v5.8.1. That means major release 5,
minor release 8, and patch level 1. We tested most programs and examples under
BSD, Linux, and SunOS, but that doesn’t mean they’ll work only on those systems.
Perl was designed for platform independence. When you use Perl as a general-pur-
pose programming language, employing basic operations like variables, patterns,
subroutines, and high-level 1/0, your program should work the same everywhere
that Perl runs—which is just about everywhere. The first two-thirds of this book uses
Perl for general-purpose programming,.

Preface | o



Perl was originally conceived as a high-level, cross-platform language for systems
programming, Although it has long since expanded beyond its original domain, Perl
continues to be heavily used for systems programming, both on its native Unix sys-
tems and elsewhere. Most recipes in Chapters 14 through 18 deal with classic sys-
tems programming. For maximum portability in this area, we’ve mainly focused on
open systems as defined by the Portable Operating System Interface (POSIX), which
includes nearly every form of Unix and numerous other systems as well. Most reci-
pes should run with little or no modification on any POSIX system.

You can still use Perl for systems programming work even on non-POSIX systems by
using vendor-specific modules, but these are not covered in this book. That’s
because they’re not portable—and to be perfectly forward, because we have no such
systems at our disposal. Consult the documentation that came with your port of Perl
for any proprietary modules that may have been included. The perlport(1) manpage
is a good start; its SEE ALSO section points to per-platform documentation, such as
perlmacos(1) and perlvms(1).

But don’t worry. Many recipes for systems programming should work on non-POSIX
systems as well, especially those dealing with databases, networking, and web inter-
action. That’s because the modules used for those areas hide platform dependencies.
The principal exception is those few recipes and programs that rely upon multitask-
ing constructs, notably the powerful fork function, standard on POSIX systems, but
seldom on others. Mac OS X now supports fork natively, however, and even on
Windows systems Perl now emulates that syscall remarkably well.

When we needed structured files, we picked the convenient Unix /etc/passwd data-
base; when we needed a text file to read, we picked /etc/motd; and when we needed a
program to produce output, we picked who(1). These were merely chosen to illus-
trate the principles—the principles work whether or not your system has these files
and programs.

Other Books

If you'd like to learn more about Perl, here are some related publications that we
(somewhat sheepishly) recommend:

Programming Perl, by Larry Wall, Tom Christiansen, and Jon Orwant; O'Reilly &
Associates (Third Edition, 2000). This book is indispensable for every Perl pro-
grammer. Coauthored by Perl’s creator, this classic reference is the authoritative
guide to Perl’s syntax, functions, modules, references, invocation options, and
much more.

Mastering Algorithms with Perl, by Jon Orwant, Jarkko Hietaniemi, and John Mac-
donald; O’Reilly & Associates (2000). All the useful techniques from a CS algo-
rithms course, but without the painful proofs. This book covers fundamental
and useful algorithms in the fields of graphs, text, sets, and more.

xxvi | Preface



Mastering Regular Expressions, by Jeffrey Friedl; O’Reilly & Associates (Second Edi-
tion, 2002). This book is dedicated to explaining regular expressions from a
practical perspective. It not only covers general regular expressions and Perl pat-
terns well, it also compares and contrasts these with those used in other popular
languages.

Object Oriented Perl, by Damian Conway; Manning (1999). For beginning as well as
advanced OO programmets, this book explains common and esoteric tech-
niques for writing powerful object systems in Perl.

Learning Perl, by Randal Schwartz and Tom Phoenix; O’Reilly & Associates (Third
Edition, 2001). A tutorial introduction to Perl for folks who are already program-
mers and who are interested in learning Perl from scratch. It’s a good starting
point if this book is over your head. Erik Olson refurbished this book for Win-
dows systems, called Learning Perl for Win32 Systems.

Programming the Perl DBI, by Tim Bunce and Alligator Descartes; O’Reilly & Asso-
ciates (2000). The only book on Perl’s relational database interface, by the
author of the DBI module.

CGI Programming with Perl, by Scott Guelich, Shishir Gundavaram, and Gunther
Birznieks; O’Reilly & Associates (Second Edition, 2000). This is a solid introduc-
tion to the world of CGI programming.

Writing Apache Modules with Perl and C, by Lincoln Stein and Doug MacEachern;
O’Reilly & Associates (1999). This guide to web programming teaches you how
to extend the capabilities of the Apache web server, especially using the turbo-
charged mod_perl for fast CGI scripts and via the Perl-accessible Apache APIL.

Practical mod_perl, by Stas Bekman and Eric Cholet; O'Reilly & Associates (2003). A
comprehensive guide to installing, configuring, and developing with mod_perl.
This book goes into corners of mod_perl programming that no other book dares
to touch.

The mod_per] Developer’s Cookbook, by Geoff Young, Paul Lindner, and Randy
Kobes; SAMS (2002). Written in a similar style to the Cookbook you hold in
your hand, this book belongs on every mod_perl developer’s desk. It covers
almost every task a mod_perl developer might want to perform.

Beyond the Perl-related publications listed here, the following books came in handy
when writing this book. They were used for reference, consultation, and inspiration.

The Art of Computer Programming, by Donald Knuth, Volumes I-IIl: “Fundamental
Algorithms,” “Seminumerical Algorithms,” and “Sorting and Searching”; Addi-
son-Wesley (Third Edition, 1998).

Introduction to Algorithms, by Thomas H. Cormen, Charles E. Leiserson, and Ronald
L. Rivest; MIT Press and McGraw-Hill (1990).

Preface | cvif



Algorithms in C, by Robert Sedgewick; Addison-Wesley (1992).
The Art of Mathematics, by Jerry P. King; Plenum (1992).

The Elements of Programming Style, by Brian W. Kernighan and P.J. Plauger;
McGraw-Hill (1988).

The UNIX Programming Environment, by Brian W. Kernighan and Rob Pike;
Prentice-Hall (1984).

POSIX Programmer’s Guide, by Donald Lewine; O’Reilly & Associates (1991).

Advanced Programming in the UNIX Environment, by W. Richard Stevens; Addison-
Wesley (1992).

TCP/IP Illustrated, by W. Richard Stevens, et al., Volumes I-II; Addison-Wesley
(1992-1996).

HTML: The Definitive Guide, by Chuck Musciano and Bill Kennedy; OReilly &
Associates (Third Edition, 1998).

Official Guide to Programming with CGLpm, by Lincoln Stein; John Wiley & Sons
(1997).

Web Client Programming with Perl, by Clinton Wong; O’Reilly & Associates (1997).

The New Fowler’s Modern English Usage, edited by R.W. Burchfield; Oxford (Third
Edition, 1996).

Conventions Used in This Book

Programming Conventions

We give lots of examples, most of which are pieces of code that should go into a
larger program. Some examples are complete programs, which you can recognize
because they begin with a #! line. We start nearly all of our longer programs with:

#!/ust/bin/perl -w
use strict;

or else the newer:

#!/usx/bin/perl
use strict;
use warnings;

still other examples are things to be typed on a command line. We’ve used % to show
the shell prompt:

% perl -e 'print "Hello, world.\n"’
Hello, world.

This style represents a standard Unix command line, where single quotes represent the
“most quoted” form. Quoting and wildcard conventions on other systems vary. For

xxviii | Preface



example, many command-line interpreters under MS-DOS and VMS require double
quotes instead of single ones to group arguments with spaces or wildcards in them.

Typesetting Conventions

The following typographic conventions are used in this book:

Bold
is used exclusively for command-line switches. This allows one to distinguish for
example, between the -w warnings switch and the -w filetest operator.

Italic
is used for URLs, manpages, pathnames, and programs. New terms are also itali-
cized when they first appear in the text.

Constant Width
is used for function and method names and their arguments; in examples to
show text that you enter verbatim; and in regular text to show literal code.

Constant Width Bold Italic
is used in examples to show output produced.

@ Indicates a warning or caution.

Documentation Conventions

The most up-to-date and complete documentation about Perl is included with Perl
itself. If typeset and printed, this massive anthology would use more than a thou-
sand pages of printed paper, greatly contributing to global deforestation. Fortu-
nately, you don’t have to print it out, because it’s available in a convenient and
searchable electronic form.

When we refer to a “manpage” in this book, we're talking about this set of online
manuals. The name is purely a convention; you don’t need a Unix-style man program
to read them. The perldoc command distributed with Perl also works, and you may
even have the manpages installed as HTML pages, especially on non-Unix systems.
Plus, once you know where they're installed, you can grep them directly.” The
HTML version of the manpages is available on the Web at http:/www.perl.com/
CPAN/doc/manual/html/.

When we refer to non-Perl documentation, as in “See kill(2) in your system manual,”
this refers to the kill manpage from section 2 of the Unix Programmer’s Manual (sys-
tem calls). These won’t be available on non-Unix systems, but that’s probably okay,

* If your system doesn’t have grep, use the tcgrep program supplied at the end of Chapter 6.

Preface | xxix



because you couldn’t use them there anyway. If you really do need the documenta-
tion for a system call or library function, many organizations have put their manpages
on the Web; a quick search of Google for crypt(3) manual will find many copies.

We'd Like to Hear from You

We have tested and verified the information in this book to the best of our ability,
but you may find that features have changed (which may in fact resemble bugs).
Please let us know about any errors you find, as well as your suggestions for future
editions, by writing to:

O’Reilly & Associates, Inc.

1005 Gravenstein Highway North
Sebastopol, CA 95472

(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (FAX)

You can also send us messages electronically. To be put on the mailing list or request
a catalog, send email to:

info@oreilly.com
To ask technical questions or comment on the book, send email to:
bookquestions@oreilly.com

There is a web site for the book, where we’ll list errata and plans for future editions.
Here you’ll also find source code for the book’s examples available for download so
you don’t have to type them in yourself. You can access this page at:

http://www.oreilly.com/catalog/perlckbk2/
For more information about this book and others, see the O’Reilly web site:

http:/fwww.oreilly.com/

Acknowledgments for the First Edition

This book wouldn’t exist but for a legion of people standing, knowing and unknow-
ing, behind the authors. At the head of this legion would have to be our editor, Linda
Mui, carrot on a stick in one hand and a hot poker in the other. She was great.

As the author of Perl, Larry Wall was our ultimate reality check. He made sure we
weren’t documenting things he was planning to change and helped out on wording
and style." If now and then you think you’re hearing Larry’s voice in this book, you
probably are.

* And footnotes.

xo | Preface



Larry’s wife, Gloria, a literary critic by trade, shocked us by reading through every
single word—and actually liking most of them. Together with Sharon Hopkins, resi-
dent Perl Poetess, she helped us rein in our admittedly nearly insatiable tendency to
produce pretty prose sentences that could only be charitably described as lying
somewhere between the inscrutably complex and the hopelessly arcane, eventually
rendering the meandering muddle into something legible even to those whose native
tongues were neither PDP-11 assembler nor Medizval Spanish.

Our three most assiduous reviewers, Mark-Jason Dominus, Jon Orwant, and Abig-
ail, have worked with us on this book nearly as long as we've been writing it. Their
rigorous standards, fearsome intellects, and practical experience in Perl applications
have been of invaluable assistance. Doug Edwards methodically stress-tested every
piece of code from the first seven chapters of the book, finding subtle border cases
no one else ever thought about. Other major reviewers include Andy Dougherty,
Andy Oram, Brent Halsey, Bryan Buus, Gisle Aas, Graham Barr, Jeff Haemer, Jeffrey
Friedl, Lincoln Stein, Mark Mielke, Martin Brech, Matthias Neeracher, Mike Stok,
Nate Patwardhan, Paul Grassie, Peter Prymmer, Raphaél Manfredi, and Rod Whitby.

And this is just the beginning. Part of what makes Perl fun is the sense of community
and sharing it seems to engender. Many selfless individuals lent us their technical
expertise. Some read through complete chapters in formal review. Others provided
insightful answers to brief technical questions when we were stuck on something
outside our own domain. A few even sent us code. Here’s a partial list of these help-
ful people: Aaron Harsh, Ali Rayl, Alligator Descartes, Andrew Hume, Andrew Stre-
bkov, Andy Wardley, Ashton MacAndrews, Ben Gertzfield, Benjamin Holzman,
Brad Hughes, Chaim Frenkel, Charles Bailey, Chris Nandor, Clinton Wong, Dan
Klein, Dan Sugalski, Daniel Grisinger, Dennis Taylor, Doug MacEachern, Douglas
Davenport, Drew Eckhardt, Dylan Northrup, Eric Eisenhart, Eric Watt Forste, Greg
Bacon, Gurusamy Sarathy, Henry Spencer, Jason Ornstein, Jason Stewart, Joel
Noble, Jonathan Cohen, Jonathan Scott Duff, Josh Purinton, Julian Anderson, Keith
Winstein, Ken Lunde, Kirby Hughes, Larry Rosler, Les Peters, Mark Hess, Mark
James, Martin Brech, Mary Koutsky, Michael Parker, Nick Ing-Simmons, Paul Mar-
quess, Peter Collinson, Peter Osel, Phil Beauchamp, Piers Cawley, Randal Schwartz,
Rich Rauenzahn, Richard Allan, Rocco Caputo, Roderick Schertler, Roland Walker,
Ronan Waide, Stephen Lidie, Steven Owens, Sullivan Beck, Tim Bunce, Todd Miller,
Troy Denkinger, and Willy Grimm.

And let’s not forget Perl itself, without which this book could never have been writ-
ten. Appropriately enough, we used Perl to build endless small tools to help produce
this book. Petl tools converted our text in pod format into troff for displaying and
review and into FrameMaker for production. Another Perl program ran syntax
checks on every piece of code in the book. The Tk extension to Perl was used to
build a graphical tool to shuffle around recipes using drag-and-drop. Beyond these,
we also built innumerable smaller tools for tasks like checking RCS locks, finding

Preface | oxi



duplicate words, detecting certain kinds of grammatical errors, managing mail fold-
ers with feedback from reviewers, creating program indices and tables of contents,
and running text searches that crossed line boundaries or were restricted to certain
sections—just to name a few. Some of these tools found their way into the same
book they were used on.

Tom

Thanks first of all to Larry and Gloria for sacrificing some of their European vaca-
tion to groom the many nits out of this manuscript, and to my other friends and fam-
ily—Bryan, Sharon, Brent, Todd, and Drew—for putting up with me over the last
couple of years and being subjected to incessant proofreadings.

I'd like to thank Nathan for holding up despite the stress of his weekly drives, my
piquant vegetarian cooking and wit, and his gerting stuck researching the topics I so
diligently avoided.

I'd like to thank those largely unsung titans in our field—Dennis, Linus, Kirk, Eric,
and Rich—who were all willing to take the time to answer my niggling operating sys-
tem and troff questions. Their wonderful advice and anecdotes aside, without their
tremendous work in the field, this book could never have been written.

Thanks also to my instructors who sacrificed themselves to travel to perilous places
like New Jersey to teach Perl in my stead. I'd like to thank Tim O’Reilly and Frank
Willison first for being talked into publishing this book, and second for letting time-
to-market take a back seat to time-to-quality. Thanks also to Linda, our shamelessly
honest editor, for shepherding dangerously rabid sheep through the eye of a release
needle.

Most of all, I want to thank my mother, Mary, for tearing herself away from her
work in prairie restoration and teaching high school computer and biological sci-
ences to keep both my business and domestic life in smooth working order long
enough for me to research and write this book.

Finally, I'd like to thank Johann Sebastian Bach, who was for me a boundless font of
perspective, poise, and inspiration—a therapy both mental and physical. I am cer-
tain that forevermore the Cookbook will evoke for me the sounds of BWV 849, now
indelibly etched into the wetware of head and hand.

Nat

Without my family’s love and patience, I'd be baiting hooks in a 10-foot swell
instead of mowing my lawn in suburban America. Thank you! My friends have
taught me much: Jules, Amy, Raj, Mike, Kef, Sai, Robert, Ewan, Pondy, Mark, and
Andy. I owe a debt of gratitude to the denizens of Nerdsholm, who gave sound tech-
nical advice and introduced me to my wife (they didn’t give me sound technical

xxii | Preface



advice on her, though). Thanks also to my employer, Front Range Internet, for a day
job I don’t want to quit.

Tom was a great co-author. Without him, this book would be nasty, brutish, and
short. Finally, I have to thank Jenine. We’d been married a year when I accepted the
offer to write, and we’ve barely seen each other since then. Nobody will savour the
final full-stop in this sentence more than she.

Acknowledgments for the Second Edition

We would like to thank our many tech reviewers, who gave generously of their time
and knowledge so that we might look better. Some were formal reviewers who pain-
stakingly plodded through endless drafts and revisions, while others were casual
comrades roped into reading small excerpts related to their own particular expertise
or interest. The bugs you don’t find in this book are thanks to them. Those you do
find were probably introduced after they reviewed it.

Just a few of these selfless people were Adam Maccabee Trachtenberg, Rafael Garcia-
Suarez, Ask Bjorn Hansen, Mark-Jason Dominus, Abhijit Menon-Sen, Jarkko Hiet-
aniemi, Benjamin Goldberg, Aaron Straup Cope, Tony Stubblebine, Michel Rod-
riguez, Nick Ing-Simmons, Geoffrey Young, Douglas Wilson, Paul Kulchenko,
Jeffrey Friedl, Arthur Bergman, Autrijus Tang, Matt Sergeant, Steve Marvell, Damian
Conway, Sean M. Burke, Elaine Ashton, Steve Lidie, Ken Williams, Robert Spier,
Chris Nandor, Brent Halsey, Matthew Free, Rocco Caputo, Robin Berjon, Adam
Turoff, Chip Turner, David Sklar, Mike Sierra, Dave Rolsky, Kip Hampton, Chris
Fedde, Graham Barr, Jon Orwant, Rich Bowen, Mike Stok, Tim Bunce, Rob Brown,
Dan Brian, Gisle Aas, and Abigail.

We’d also like to thank our patient and persistent editor, Linda Mui, who ran seri-
ous risk of getting herself committed as she tried to wrestle “the final edits” from us.

Tom

I would like to thank Larry Wall for making the programming world (and several
others) a better place for all of us, Nathan for documenting the undocumented, and
our editor, Linda Mui, for her indefatigable patience at herding her author cats of the
Schrodinger clan ever onward. This book would not exist but for all three of them.

1 would especially like to thank someone who is no longer here to read these words
in print, words he would otherwise himself have shepherded: O’Reilly’s longtime
editor-in-chief and my friend, Frank Willison, gone from us two years now. His
many erudite epistles are a thing of legend, carefully crafted treasures more dear to
any writer than finest gold. Over our years of working together, Frank was a con-
stant source of personal inspiration and encouragement. His easygoing cheer and
charm, his broad learning and interests, and his sparkling wit—sometimes subtle,

Preface | oudii



