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PREFACE TO THE SECOND EDITION

Since the first edition was written, a vast amount of further work has been
done. This has been covered by the end-of-chapter notes. In most instances, re-
strictions on space have prohibited the inclusion of full proofs, but I have tried to
give an indication of the methods used wherever possible. (Proofs of quite a few of
the recent results described in the end of chapter notes may be found in the book by
Ivic [3].) I have also corrected a number of minor errors, and made a few other
small improvements to the text. A considerable number of recent references have
been added.

In preparing this work I have had help from Professors J. B. Conrey, P. D.
T. A. Elliott, A. Ghosh, S. M. Gonek, H. L. Montgomery and S. J. Patterson.

It is a pleasure to record my thanks to them.

D. R. H. B.
OXFORD
1986



PREFACE TO THE FIRST EDITION

This book is a successor to my Cambridge Tract The Zeta-Function of Riemann
1930, which is now out of print and out of date. It seems no longer practicable to
give an account of the subject in such a small space as a Cambridge Tract, so that
the present work, though on exactly the same lines as the previous one, is on a
much larger scale. As before, I do not discuss general prime-number theory, though
it has been convenient to include some theorems on primes.

Most of this book was compiled in the 1930’s, when I was still researching on
the subject. It has been brought partly up to date by including some of the work of
A. Selberg and of Vinogradov, though a great deal of recent work is scantily repre-
sented.

The manuscript has been read by Dr. S. H. Min and by Prof. D. B. Sears,
and my best thanks are due to them for correcting a large number of mistakes. I
must also thank Prof. F. V. Atkinson and Dr. T. M. Fleet for their kind assistance

in reading the proof-sheets.

E. G, T.
OXFORD
1951
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THE FUNCTION {(s) AND THE DIRICHLET
SERIES RELATED TO IT

1.1. Definition of {(s). The Riemann zeta-function {(s)

has its origin in the identity expressed by the two formulae

g(g:]’_[# (1.1.1)

where n runs through all integers, and

=)

2(s) = I1 (1—;}7) (1.1.2)

P

where p runs through all primes. Either of these may be taken as
the definition of {(s); s is a complex variable, s = ¢ +it. The
Dirichlet series (1.1.1) is convergent for o > 1, and uniformly
convergent in any finite region in which =1 +§, § >0. It there-
fore defines an analytic function {(s) , regular for o > 1.

The infinite product is also absolutely convergent for o > 1;

for so is

[ 191dey)

1
p!

b

p

=Y 1
p p°
this being merely a selection of terms from the series Z ot I

we expand the factor involving p in powers of p ™, we obtain

1 1
H (1 +T+7+“')
P P

»

On multiplying formally, we obtain the series (1.1.1),
since each integer n can be expressed as a product of prime-pow-
ers p” in just one way. The identity of (1.1.1) and (1.1.2) is
thus an analytic equivalent of the theorem that the expression of an

integer in prime factors is unique.




A rigorous proof is easily constructed by taking first a finite number of factors. Since

we can multiply a finite number of absolutely convergent series, we have

1 1 1 1
(l +T+_u+"') =l+—+—+-
p<P P n, n,
where n,, n,,++, are those integers none of whose prime factors exceed P. Since

all integers up to P are of this form, it follows that, if {(s) is defined by (1.1.1)

'C(s) -1 (1 -#)W:

p<P

< + + o
(P+1)" (P+2)°
This tends to 0 as P—o , if ¢ >1; and (1.1.2) follows.

This fundamental identity is due to Euler, and (1.1.2) is known as Euler’s
product. But Euler considered it for particular values of s only, and it was Riemann
who first considered {(s) as an analytic function of a complex variable.

Since a convergent infinite product of non-zero factors is not zero, we deduce

that {(s) has no zeros for o >1 . This may be proved directly as follows. We have

for o > 1
1 1 1 1 1
el [ i) ol ] st =
(1-27) (1 -5) (1 -m)e bt
where m,, m,, -+, are the integers all of whose prime factors exceed P. Hence
1 1

—->0

=1

(- 8)-{1-p o

if P is large enough. Hence [{(s) | >0.

T(P+1)" (P+2)°

The importance of {(s) in the theory of prime numbers lies in the fact that it
combines two expressions, one of which contains the primes explicitly, while the
other does not. The theory of primes is largely concerned with the function 7 (x),
the number of primes not exceeding x. We can transform (1.1.2) into a relation
between {(s) and 7(x) ; for if o > 1

log {(s) = - zp: log(l—pl—,)= - ..2:5 {m(n) —w(n—l)}log(l-;l;)

= g; w(n){log(l —57) —log(l —(n-ll-l)’)}
= ;w(n) "Ix(x‘s—_l)dx=sz;€:—’({—)l-)—dx (1.1.3)

The rearrangement of the series is justified since 77(n) <n and
log(1-n"*) =0(n"")
THE THEORY OF THE RIEMANN
ZETA-FUNCTION



Chapter | THE FUNCTION {(s) AND THE
DIRICHLET SERIES RELATED TO IT

Again

1 1
=TI (1- —,)
(s) l:[ ( p
and on carrying out the multiplication we obtain

c(13)=”2=1/‘(n—7) (o>1) (1.1.4)

where u(1) =1, u(n) = ( =1)* if n is the product of k different primes, and

u(n) =0 if n contains any factor to a power higher than the first. The process is
easily justified as in the case of {(s).

The function u(n) is known as the Mébius function. It has the property
2 u(d) =1(g=1) 0(g>1) (1:1.5)
dig

where d|g means that d is a divisor of q. This follows from the identity
o 1 ¢ n - 1
1= 3 T a3 LY u@
m=1 M =1 n ¢g=1 q dig

It also gives the Mobius inversion formula

g(q) = . f(d) (1.1.6)

o) = T )e(@ (1.1.7)

connecting two functions f(n), g(n) defined for integral n. If fis given and g de-
fined by (1.1.6), the right-hand side of (1.1.7) is

> u(d) X An
dlgq rd
The coefficient of f(q) isu(1) =1. If r<q, then d =kr, where klq/r. Hence the
coefficient of f(r) is
> u(E)= 3wk =0
klg/r k'q/r
by (1.1.5). This proves (1.1.7). Conversely, if g is given, and f is defined by
(1.1.7), then the right-hand side of (1.1.6) is

> 3 w(Hetn

dilg rld
and this is g(¢q) , by a similar argument. The formula may also be derived formally

from the obviously equivalent relations

F(s)((s) = Z] &(r—tﬂ F(s) =§(ls) 21 8_(nl)_

where



o e

I
|
™M
<3
s 5}
=
M
""EI_ ~

= prAlE) (1.1.8)

where A(n) =log p if n is p or a power of p, and otherwise A(n) =0. On integra-
ting we obtain

log {(s) = i Alssn) (o>1) (1.1.9)

n=2

where A, (n) =A(n)/log n, and the value of log {(s) is that which tends to 0 as
o— , for any fixed t.
1.2. Various Dirichlet series connected with {(s). In the first place
2(s)= 3 4B (551) (1.2.1)
n=1 n
where d(n) denotes the number of divisors of n (including 1 and n itself). For
£(s) = Z 2 1.y 1lv,
n=1 n p=n
and the number of terms in the last sum is d( n). And generally

adi(n
i = Z*% (e>1) £1.2.9)

n=1
where k=2, 3, 4,---, and d,(n) denotes the number of ways of expressing n as a
product of k factors, expressions with the same factors in a different order being
counted as different. For

€<>—Z* >l-31 5,

v =1 v=1 Vi sel vyvp=n
and the last sum is d,(n).
Since we have also

c’(s)=H(l-;—,)—2=]'[(1+1%+;—23+---) (1.2.3)

P P
on comparing the coefficients in (1.2.1) and (1.2.3) we verify the elementary

formula
d(n) =(m; +1)--(m, +1) (1.2.4)
THE THEORY OF THE RIEMANN
ZETA-FUNCTION 4



Chapter | THE FUNCTION ¢(s) AND THE
DIRICHLET SERIES RELATED TO IT

for the number of divisors of
n=pi'py - p;” (1.2.5)

Similarly from (1.2.2)
(k+m,-1)! (k+m,-1)!

) = D1 m T (-1 kS
We next note the expansions
é%:i@ (o>1) (1.2.7)
where ) 48 ths ooelficiant i (1, 14) ?
g(%)f 22;) CasT) (1.2.8)
whice vl G Hie mmbes of Hiftbonss e B of 1
%:2}‘%@ (o>1) (1.2.9)
i
%%:n';{d—(’:ﬁﬁ loo1) (1.2.10)
T prove (1.2, 7). 300 Mave
cé((zss)) _ I;[ 11'_1;2’= ];I (1 +;)17)

and this differs from the formula for 1/{(s) only in the fact that the signs are all

positive. The result is therefore clear. To prove (1.2.8), we have
£(s) _ 1-p7* _ yylep”
£(2s) 1:I (1-p™)* I:[ 1-p~
= H (1+2p° +2p 7% +--)
P
and the result follows. To prove (1.2.9)
£(s) _ 11 1-p™ Lwp

£(2s) ~ Lt (1-p7)* T L (1-p7)?
IT {(+p™)(1+2p7* +3p ™% +-+) |

[T i1+43p ++Cm+1)p™ +-}
P

and the result follows, since, if nis (1.2.5)
d(n*) =(2m, +1)---(2m, +1)
Similarly
() _ Bdp™™ 1+p~
£(2s) I1 (1-p™)* Il (1-p™)°

P »




1:[ {(1+p™) {1 +3p~" + - +-;—(m+l)(m+2)p'"“+~--}

[T {1+4p~ 4+ (m+1)p ™™ 4o}
P
“and (1.2.10) follows.

Other formulae are

fids) 5 MB) g0y 1.2.11
0) ..Z'l o (o>1) (1.2.11)
where A(n) =( —1)" if n has r prime factors, a factor of degree k being counted k&
times
(-1 _ ¥ ¢(n)
= >2 1.2.12
0 Zl - (0>2) ( )
where ¢(n) is the number of numbers less than n and prime to n; and
) S - a(n)
-1) = s 2 1.2.13
=2 -1 = 3 40 (g52) (1.2.13)

where a(n) is the greatest odd divisor of n. Of these, (1.2.11) follows at once

from
£(2s) _ (1_‘L)= ( 1 )= ey ap
;(8) 1:[ l_p—ZJ l:[ 1+P—J U (1 p +p )
Also
L(s=1) _ (l:l’__)z {(1_L)(1+L+L2+...)}
t(s) I:[ 1-p'~* l:I P’ PP
2
SR
) P/\p p
and (1.2.12) follows, since, if n=p{"---p™
1 1
{1-3)-41-3)
d)(n) n( pl pr
Finally
] =2 ] =2 1
1) =
12"“ ) 1—2"H1~p“‘
1 1 1
= -5 1-s l-sx.
1-2 1-3 1-5
(4L, 3 3
=( +_;+7+'“)(1+—;+ 2J+.--)...
2" 2 3 3

and (1.2.13) follows.

Many of these formulae are, of course, simply particular cases of the general

formula

THE THEORY OF THE RIEMANN
ZETA-FUNCTION



Chapter | THE FUNCTION ¢(s) AND THE
DIRICHLET SERIES RELATED TO IT

x 2
§ Mgy 1) G,
n=1 n p p p

where f(n) is a multiplicative function, i. e. is such that, if n =p{"py?-:+, then

f(n) =f(p7" )f(p3?) -

Again, let f, (n) denote the number of representations of n as a product of &
factors, each greater than unity when n > 1, the order of the factors being essential.
Then clearly

zf" f)=1g(s)-1}* (o>1) (1.2.14)

n=2 I

Let f(n) be the number of representations of n as a product of factors greater than

unity, representations with factors in a different order being considered as distinct

and let f(1) =1. Then

ﬂw=;mm

Hence

IR SIS YR TTO IS
n=1 N k=1
el yomble) =1
S EITORST
_ 1
“2-1(s)
It is easily seen that {(s) =2 for s = a, where a is a real number greater than 1;
and 1{(s)| <2 for o >a, so that (1.2.15) holds for o > a.

1.3. Sums involving o,(n). Let o,(n) denote the sum of the ath powers of

(1-2.15)

the divisors of n. Then

(G- = F L F L= T L3

¢ 0.(n)

{(s)¢(s—a) = Z—n,— (0>1,0>R(a) +1)  (1.3.1)

n=1

Since the left-hand side is, if a #0

» P P P
=H(I+I+P 1+p°+p )
- P’ P’
1-p™ 1
=H(1+ e § )
P I—P P



we have

R N e
1=pi Liagls
if nis (1.2.5), as is also obvious from elementary considerations.
The formula®
- - —a- og,(n)o,(n
L()¢(s &)zi(falﬁ)f)(s a-b) _ > <_>n_<_> (1.3.3)
is valid for o > max{1, R(a) +1, R(b) +1, R(a+b) +1}. The left-hand side
is equal to

1 __p—2:+a+b

asHamamam—

Putting p ~* =z, the partial-fraction formula gives

I_Pa+bzl

(1-2)(1-p'5) (1 -p'2) (1 -p"*2)

1 1 a b a+b
_ { PP P }
(1-p)(1-p")11=-2 1-p2 1-p'z 1-p**

l ” m+l)a m+ m+ a+ m
ST gy & (e e

1 - m+1)a m+ m

Y, (1=p™ Do) (1 -p™Dh)z

T(1-p)(1-p) &

Hence

£(s)f(s -a)f(s -b)t(s —a -b)
{(2s —a -b)

(m+1)a _ o (m+1)b
-7 3! e

m=0 1 =P P
and the result follows from (1.3.2). Ifa=b=0, (1.3.3) reduces to (1.2.10).

Similar formulae involving ¢'” (n) , the sum of the ath powers of those divisors

of n which are gth powers of integers, have been given by Crum (1).

1.4. Tt is also easily seen that, if f(n) is multiplicative, and

iﬂ_n)_

s
n=1 N
is a product of zeta-functions such as occurs in the above formulae, and k is a given

positive integer, then

@ Ramanujan (2), B. M. Wilson (1).
THE THEORY OF THE RIEMANN
ZETA-FUNCTION 8



Chapter [ THE FUNCTION ¢(s) AND THE
DIRICHLET SERIES RELATED TO IT

i f(kn)
- n'
can also be summed. An example will illustrate this point. The function o, (n) is

‘ multiplicative”’ , i. e. if m is prime to n

o,(mn) =o,(m)o,(n)

Hence
- o,(n) - o,(p")
nz;'l no l:[ rnz=:o p"
and, if k= H p'
5 o) 5 0.0
n=1 n-‘ p m=0 Pm
Hence
- U(’m) a,(p'"™) 0( ")
b —c<s>c<s—a>H{2 = /2 <
n=1
Now if a0
i g'u(pl+m) ® l_p(1+m+1)a 1—p*" _P(I+l)a +P(l+1)a-x
m=0 Pm R m=0 (I—PG)P’M _(l_pa)(l_P‘s)(l_p“_’)
Hence
i (kn) a-s _ _(l+l)a (I+1)a-s
>, ={(s){(s-a) 1‘[ TP *P (1.4.1)
n=0 l-—p
Making a #0
(1.4.2)

1.5. Ramanujan’s sums®. Let
a(n)= Y e =% cos 2”:’“ (1.5.1)
h h

where h runs through all positive integers less than and prime to k. Many formulae

involving these sums were proved by Ramanujan.

We shall first prove that

&=

¢,(n) = d,kZJ.n“( )d (1.5.2)

The sum
k-1

nk(n) = Z e-2nm1ri/k

m=0

@ Ramanujan (3), Hardy (5).



is equal to k if £In and O otherwise. Denoting by (r, d) the highest common factor
of r and d, so that (r, d) =1 means that r is prime to d

; c,(n) = Z z e ™4 =m.(n)

@k (rd)y=1,r<d
Hence by the inversion formula of Mobius (1.1.7)

Ry T
¢(n) = ; I-b( d)m( )
and (1.5.2) follows. In particular
e (1) =u(k) (1.5.3)

The result can also be written

e(n)= Y u(r)d

dek,din
Hence

¢, (n) _ Mdl-s

k! s
dr=k,din T

Summing with respect to £, we remove the restriction on r, which now assumes all

positive integral values. Hence®
- ck(n) y,(r) 1<p a',_,(n)
dr = (1.5.4)
D T (s
the series being absolutely convergent for o > 1 since l¢,(n) | <o, (n), by
{15:5: 2 ).
We have also

M s

i c,(n) e

1 k
~ )d
n=1 n n nxdl: 'u’(d)

din

2 () ) (mld)’

k s
=) 3 u(g)d‘ (1.5.5)
We can also sum series of the form®

e (n)f(n)
y alnin)

s
n=1 n

1]
‘s:

where f(n) is a multiplicative function. For example

X R )

n=1 n n=1 n

@® Two more proofs are given by Hardy, Ramanujan, 137-141.
® Crum (1).
THE THEORY OF THE RIEMANN

ZETA-FUNCTION
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Chapter | THE FUNCTION ¢(s) AND THE
DIRICHLET SERIES RELATED TO IT

- (35
=0 (s) > a‘m(%) H (1+1-Bp™*)

if = Hp[. Ifk= HpAthesumis

#OTL et -apT) - (%) (A-(A-1)p~] -
[T a+1-2"")+ ¥ ( ) fA-(A-1)p~*} -
doss i
A==Dp ) T e1=ap") =

=k"’ll-! {()t+1—/\p_; —(A—l)Pﬂ}}

=T 1= #2157 (1 -59)]

Hence
5 M g bl i) as

We can also sum
i ¢, (gn)f(n)
n=1 n-‘

For example, in the simplest case f(n) =1, the series is

%z (3)

For given §, n runs through those multiples of /¢ which are integers. If §/q in its

lowest terms is §,/q, , these are the numbers §,, 28, ,:-- Hence the sum is

S a(§) Tyt T )

8l k r=1 8l k

Since 8, =6/(q, &), the result is

5 2 oi() 3 8 7u( %) (0.0 (1.5.7)

n=1

1.6. There is another class of identities involving infinite series of zeta-func-

tions. The simplest of these is®

@® See Landau and Walfisz (1), Estermann (1) (2).

11



