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Preface

The guiding principle in this monograph is to develop a theory of (Calabi- Yau) mod-
ular forms parallel to the classical theory of (elliptic) modular forms. It is originated
from many period manipulations of the B-model Calabi-Yau variety of mirror sym-
metry in Topological String Theory and the earlier works of the author in which the
theory of (quasi) modular forms is introduced using a larger moduli space of ellip-
tic curves, and the Ramanujan differential equations between Eisenstein series have
been derived from the corresponding Gauss-Manin connection. We have in mind
an audience with a basic knowledge of Complex Analysis, Differential Equations,
Algebraic Topology and Algebraic Geometry. Although the text is purely mathe-
matical and no background in String Theory is required, some of our computations
are inspired by mirror symmetry, and so the reader who wishes to explore the mo-
tivations, must go to the original Physics literature. The text is mainly written for
two primary target audiences: experts in classical modular and automorphic form-
s who wish to understand the g-expansions of physicists derived from Calabi-Yau
threefolds, and mathematicians in enumerative Algebraic Geometry who want to un-
derstand how mirror symmetry counts rational curves in compact Calabi-Yau three-
folds. Experts in modular forms are warned that they will not find so much Number
Theory in the present text, as this new theory of modular forms lives its infancy, and
yet many problems of complex analysis nature are open. We have still a long way to
deal with more arithmetic oriented questions. For our purpose we have chosen a par-
ticular class of such g-expansions arising from the periods of a Calabi-Yau threefold
called mirror quintic, and in general, periods which satisfy fourth-order differential
equations. The applications of classical modular forms are huge and we are guided
by the fact that this new type of modular forms might have similar applications in
the near future, apart from counting rational curves and Gromov-Witten invariants.
The main goal is to describe in detail many analogies and differences between clas-
sical modular forms and those treated here. The present text is a complement to the
available books on the mathematical aspects of mirror symmetry such as “Mirror
Symmetry and Algebraic Geometry” of D. A. Cox and S. Katz and “Mirror Sym-
metry” of C. Voisin. We hope that our text makes a part of mirror symmetry, which
is relevant to Number Theory, more accessible to mathematicians.
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Frequently used notations

(C",0)

w,n

H3(X,Z)

&, i=1,23,4
-

S

01,05

A small neighborhood of 0 in C".

A field of characteristic zero and its algebraic closure.

The transpose of a matrix M. We also write M = [M;;], where M;;
is the (i, j) entry of M. The indices i and j always count the rows
and columns, respectively.

The dual of an R-module V, where R is usually the ring Z or the
field k. We always write a basis of a free R-module of rank r as a
r x 1 matrix. For a basis § of V and o of V" we denote by

(8, "] := [a;(&)];,j

the corresponding r X r matrix.

The differential operator or a natural number, being clear in the
text which one we mean.

A mirror quintic Calabi-Yau threefold, mirror quintic for short,
or an elliptic curve defined over the field k, being clear in the
text which we mean, §3.1. We will also use X as one of the
Yamaguchi-Yau variables in §2.17. Another usage of X is as a
fundamental system of a linear differential equation, §7.4.

The set of k-rational points of X defined over the field k. In par-
ticular for k C C, X (C) is the underlying complex manifold of X.
Sometimes, for simplicity we write X = X (C), being clear in the
context that X is a complex manifold.

A differential 3-form on X. In many cases it is a holomorphic
(3,0)-form.

The third homology of X = X(C).

A symplectic basis of H3(X,Z).

Moduli of enhanced mirror quintics over k, §2.3.

A moduli of mirror quintics over k, §3.2.

The k-algebra of regular functions on T and S, T = Spec(&7),
etc.
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Xvi
fo; i='0:5159

o
X—=T, X/T

X, teT
Hi(X)
HiR(X/T)
F*Hip(X)
F*Hgr(X/T)
0, i=1,....%

('1')

8P4 € Hix (X)

G,g
Lie(G), g
8i, = 1,...,6

T 1=0,1,2,3
6;,i=0,1,2,3
F;'B’ Fgon’ Fgol
L

Vo, Y1

x,-j

Yij
A
ai(z)
u;

X, U, V1,V V3

Frequently used notations

Regular functions in T, §3.2, §3.6.

Vector fields on T.

The &r-module of differential i-forms on T.

The universal family of enhanced mirror quintics. A single variety
is denoted by X, §3.6.

A fiberof X —» T.

Algebraic de Rham cohomology, §3.6.

Relative algebraic de Rham cohomology, §3.6.

The pieces of Hodge filtration, §3.6.

The pieces of Hodge filtration, §3.6.

A basis of H3(X) or H3(X/T), §2.3.

The intersection form in de Rham cohomology and singular ho-
mology, §3.4, §4.1.

The Poincaré dual of § € H3(X,Z), §4.1.

0 001 0 010
0 010 0 001

=19 _100]" ¥=]|-10 00 (0:1)
1000 0 -100

An algebraic group and its element, §3.10.

The Lie algebra of G and its element, §3.10.

A parametrization of g € G, §3.10.

Gauss-Manin connection, §3.3, §3.8.

The Gauss-Manin connection matrix, §3.3, §3.8.

Yukawa coupling, §2.3.

Eisenstein series of weight k, §2.5

The derivation z%, §2.7, or a special period matrix, §4.12.
Monodromy matrices, §2.7.

The monodromy group, §2.7

Upper half plane or the monodromy covering, §4.6.

The canonical coordinate of the upper half plane or a special pe-
riod matrix, §4.2.

Meromorphic functions on H, §2.10, §10.2.

Meromorphic functions on H, §4.12, §10.2.

Genus g topological string partition functions, §2.13.

A fourth-order linear differential equations, §2.15.
Holomorphic and logarithmic solutions of L =0, §2.7, §7.1.
Particular solutions of L = 0 and their derivatives, §2.7, §7.4. We
denote by X := [x;;] the corresponding matrix.

General solutions of L = 0 and their derivatives, §4.15.

A linear system attached to L = 0, §7.3.

Coefficients of L, §2.15.

Expressions in terms of the solutions of L, §2.15.
Yamaguchi-Yau variables, §2.17, §6.1, §8.4.



Frequently used notations xvii

P Period map or period matrix, §4.1.

I Generalized period domain, §4.4.

F,G,E Intersection matrices, §7.4.

4 The Euler number of the underlying Calabi-Yau threefolds of L =
0, §7.3.

h*! The (2, 1) Hodge number of the underlying Calabi-Yau threefolds

of L = 0. The text mainly deals with 2! = 1.



Online supplemental items

Many arguments and proofs of the present text rely on heavy computer computa-
tions. For this purpose, we have used Singular, [GPSO01], a computer programming
language for polynomial computations. Throughout the text I have used notations
in the form [Supp Item x], where x=1, 2, 3, etc. Each of these notations refers to a
supplemental item, such as computer data or code, etc., that can be accessed online
from my web page:

http://w3.impa.br/~hossein/singular/GMCD-MQCY 3-Suppltems.html

The web page serves as a hot-linked index to all of this book’s online supplemental
items. These supplemental items are mainly for two purposes. First, they are mainly
for the reader who does not want to program by her or himself and wants to check
the statements using our computer codes. Second, we only present a small amount
of computer data in the text, and the reader can use the supplemental item in order
to access to more data, for instance more coefficients of a g-expansion of a series.
We have also written a library in Singular [Supp Item 1] which has been useful for
our computations.
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