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Introduction to the Third Edition

The third edition of “Field Arithmetic” improves the second edition in two
ways. First it removes many typos and mathematical inaccuracies that occur
in the second edition. In particular, it fills out a big gap in the References
of the second edition, where unfortunately all references between “Gilmore
and Robinson” and “Kantor and Lubotzky” are missing. Secondly, the third
edition reports on five open problems of the second edition that were solved
since that edition appeared in 2005.

Janos Kollar solved Problem 2 by proving that if each projective plane
curve defined over a field K has a K-rational point, then K is PAC.

Jénos Kollar also solved Problem 3 and proved that if K is a PAC field,
w is a valuation of K, and V is a variety defined over K, then V(K) is
w-dense in V(K).

Janos Kolldr partially settled Problem 21. He proved that every PAC
field of characteristic 0 is Cj.

Problem 31 was affirmatively solved by Lior Bary-Soroker by establishing
an analog of the diamond theorem for the finitely generated non-Abelian free
profinite groups.

Finally, Eric Rosen suggested to reorganize Corollary 28.5.3 of the second
edition that led to an affirmative solution of Problem 33.

Unfortunately, a full account of the first four solutions is out of the scope
of the present volume.

Much of the improvment made in the present edition is due to Arno
Fehm and Dan Haran. I am really indebted to them for their contribution.

Tel Aviv, Autumn 2007 Moshe Jarden

Introduction to the Second Edition

The first edition of “Field Arithmetic” appeared in 1986. At the end of
that edition we gave a list of twenty-two open problems. It is remark-
able that since then fifteen of them were partially or fully solved. Par-
allel to this, Field Arithmetic has developed in many directions establish-
ing itself as an independent branch of Algebra and Number Theory. Some
of these developments have been documented in books. We mention here
“Groups as Galois groups” [Volklein] on consequences of the Riemann exis-
tence theorem, “Inverse Galois Groups” [Malle-Matzat] with a comprehen-
sive report on finite Galois groups over number fields, “Profinite groups”
[Ribes-Zalesskii] including the cohomology of profinite groups, “Analytic pro-
p Groups” [Dixon-du.Sautoy-Mann-Segal] on closed subgroups of GL(n, Z,),
“Subgroup Growth” [Lubotzky-Segal] on counting the number of subgroups
of finitely generating groups, and “Multi-Valued Fields” [Ershov7] on the
model theory of fields with several valuations. This led to an official recog-
nition of Field Arithmetic by the Mathematical Reviews in the form of MSC
number 12E30.
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The extent which Field Arithmetic has reached makes it impossible for
us to report in one extended volume about all exciting results which have
been achieved. We have therefore made several choices which best suit the
spirit of this book but do not extend beyond the scope of one volume.

The new results and additional topics have made it necessary to reorga-
nize and to enlarge the sections dealing with background material. Of course,
we took the opportunity afforded by editing a second edition to correct flaws
and mistakes which occurred in the first edition and to add more details to
proofs wherever it seemed useful.

We list the major changes and additions we made in the book:

Chapter 2 has been reorganized. Sections 2.5-2.9 of the first edition,
which survey the theory of algebraic function fields of one variable, were
moved to Chapter 3. Sections 2.5-2.8 dealing with linear disjointness, regular
extensions, and separability appeared in the first edition as sections 9.1—
9.3. A nice application of linear disjointness is Leptin’s construction (which
preceded that of Warehouse) of a Galois group isomorphic to a given profinite
group (Proposition 2.6.12).

In addition to the introductory material about the theory of algebraic
function fields of one variable, Chapter 3 now includes a proof of the Riemann-
Hurwitz formula and a discussion of hyperelliptic curves.

The proof of Theorem 4.9 of the first edition, estimating the number of
zeros of an absolutely irreducible polynomial over a finite field, had a flaw.
This has been fixed in the proof of Theorem 5.4.1.

Likewise, the inequality given by [Fried-Jarden3, Prop. 5.16] is inaccu-
rate. This inaccuracy is fixed in Proposition 6.4.8.

We find it more convenient to use the language of algebraic sets as intro-
duced in [Weil5] for model theoretic applications. Section 10.8 translates the
basic concepts of that language to the now more commonly used language of
schemes.

Theorem 10.14 of the first edition (due to Frey-Prestel) says that the
Henselian hull of a PAC field K is K,. Proposition 11.5.3 (due to Prestel)
strengthens this theorem. It says that K is w-dense in K for every valuation
wof K.

What we called “a separably Hilbertian field” in the first edition, is now
called “a Hilbertian field” (Section 12.1). This agrees with the common usage
and seems more appropriate for applications.

Section 13.5 gives an alternative definition of Hilbertianity via cover-
ings leading to the notion of “g-Hilbertianity”. This sets the stage for a
generalization of a theorem of Zannier: Every global field has an infinite nor-
mal extension N which is g-Hilbertian but not Hilbertian (Theorem 13.6.2).
Moreover, there is a unique factorization subring R of N with infinitely many
irreducible elements (Example 15.5.8). This answers negatively Problems
14.20 and 14.21 of the first edition.

Chapter 13 includes now one of the major results of Field Arithmetic
which we call “Haran’s diamond theorem”: Let M; and M, be Galois ex-
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tensions of a Hilbertian field K and M a field between K and M;M; not
contained in M; nor in M,. Then M is Hilbertian (Theorem 13.8.3). In
particular, if N is a Galois extension of K, then N is not the compositum of
two Galois extensions of K neither of which is contained in the other. This
settles Problems 12.18 and 12.19 of the first edition.

The immediate goal of Hilbert’s irreducibility theorem was to realize
the groups S, and A, as Galois groups over Q. Chapter 16 is dedicated to
realizations of Galois groups over arbitrary Hilbertian fields. One of the most
important of these results is due to Harbater (Proposition 16.12.1): Let K
be a complete valued field, ¢ an indeterminate, and G a finite group. Then
G is regular over K, that is, K(t) has a finite Galois extension F', regular
over K, with Gal(F/K(t)) 2 G. Unfortunately, none of the three proofs of
this theorem fits into the scope of this book.

Section 16.6 proves a theorem of Whaples: Let K be a field and p a
prime number. Suppose Z/pZ (resp. Z/AZ if p = 2) occurs as a Galois group
over K. Then Z, is realizable over K.

Section 16.7 generalizes a theorem of Hilbert: Let K be a field and n > 2
an integer with char(K) t (n — 1)n. Then A, is regular over K.

One of the most far-reaching attempts to realize arbitrary finite Galois
groups over Hilbertian fields uses Matzat’s notion of GAR realization of sim-
ple finite groups: Let K be a Hilbertian field and a: G — Gal(L/K) a finite
embedding problem over K. Suppose every composition factor of Ker(a) has
a GAR realization over K. Then the embedding problem is solvable. This
leads in particular to the realization of many finite groups over Q (Remark
16.9.5).

Chapter 17 deals mainly with Melnikov’s formations C (i.e. sets con-
sisting of all finite groups whose composition factors belong to a given set of
finite simple groups). We prove that every free abstract group F' is residually-
C. Thus, if the free pro-C group with a given rank m exists, then the canonical
injection of F into F;,(C) is injective (Proposition 17.5.11 — Ribes-Zalesskii).

Konrad Neumann improved former results of Fried-Geyer-Jarden and
proved that every field is stable (Theorem 18.9.3). This allows the construc-
tion of PAC Hilbertian Galois extensions of arbitrary countable Hilbertian
fields (Theorems 18.10.2 and 18.10.3). We survey Neumann’s proof in Section
18.9. The full proof unfortunately falls outside the scope of this book.

It seemed to be well known that the concept of absolute irreducibility of
a variety is elementary. Unfortunately, we could find no solid proof for it in
the literature. Proposition 19.5.9 fills in the gap by proving that result.

Section 21.2 includes now the classical results about C;-fields and not
only the corresponding results about weakly C;-fields as was the case in
Section 19.2 of the first edition.

Sections 21.8 gives a complete proof of Schur’s Conjecture: If f(X) is a
polynomial with coefficients in a global field K with char(K) { deg(f) and
f permutes Ok /p for infinitely many primes p of K, then each composition
factor of f is linearly related over K to a Dickson polynomial of a prime
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degree. Section 21.7 proves all lemmas about permutation groups which are
used in the proof of Schur’s Conjecture (Theorem 21.8.13). This includes the
classification of subgroups of AGL(1,F;) (Lemma 21.7.2), and the theorems
of Schur (Proposition 21.7.7) and Burnside (Proposition 21.7.8) about doubly
transitive permutation groups.

Section 21.9 contains the Fried-Cohen version of Lenstra’s proof of the
generalized Carlitz’s Conjecture: Let p be a prime number, g a power of p, and
[ € F4[X] a polynomial of degree n > 1 which is not a power of p. Suppose
f permutes infinitely many finite extensions of F,. Then ged(n,q — 1) = 1.

The universal Frattini p-cover of a finite group plays a central role in
Fried’s theory of modular towers. Section 22.11 introduces the former concept
and proves its basic properties. Corollary 22.13.4 shows then that PSL(2,Z,)
is a p-Frattini cover of PSL(2,F,) although it is not the universal p-Frattini
cover.

Chapter 23 puts together material on PAC fields which appeared in
Section 20.5 and Chapter 21 of the first edition.

. The Beckmann-Black Problem is a refinement of the inverse problem of
Galois Theory. Débes proved that the problem has an affirmative solution
over PAC fields (Theorem 24.2.2).

Chapter 25 substantially extends the study of free profinite groups F' of
infinite rank which appeared in Section 24.4 of the first edition. Most of the
material goes back to Melnikov. We characterize closed normal subgroups of
F by their S-ranks, and prove that a closed subgroup of F' is accessible if
and only if it is homogeneous.

The first part of Chapter 25 reproduces the group theoretic version of
Haran’s diamond theorem.

Chapter 26 is completely new. It describes the properties of the closed
subgroup (x) and the closed normal subgroup [x] generated by a random e-
tuple x = (z1,...,.) of elements of a finitely generated free profinite group
F of finite rank n > 2. For example, with probability 1, (x) = F, (Propo-
sition 26.1.7). This solves Problem 16.16 of the first edition. In addition,
with a positive probability, [x] has infinite rank and is isomorphic to F,
(Theorem 26.4.5 and Corollary 26.5.7). The latter result is based on the
Golod-Shafarevich Inequality.

Chapter 28 considers an infinite field K which is finitely generated over
its base field. It proves that for e > 2 the theory of all sentences ¢ which hold
in almost all structures (K,o1,...,0.) with (01,...,0) € Gal(K)® is unde-
cidable. Moreover, the probability that a sentence € hold in (R’ s 01y o O¢)
is in general a nonrational number.

Perhaps the most significant achievement of Field Arithmetic since the
first edition appeared is the solution of Problem 24.41 of that edition: The
absolute Galois group of a countable PAC Hilbertian field is free of rank
No. It was originally proved in characteristic 0 with complex analysis by
Fried-Volklein. Then it was proved in the general case by Pop using rigid
geometry and by Haran-Jarden-Vélklein using “algebraic patching”. The two
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latter methods also lead to the proof that Gal(C(t)) is a free profinite group
if C is an arbitrary algebraically closed field (Harbater, Pop, Haran-Jarden).
The method of Fried-Vélklein led to the theory of modular towers of Fried.

A remote goal in Galois theory is the classification of absolute Galois
groups among all profinite groups. In this framework, one tries to construct
new absolute Galois groups out of existing ones. For example, for all fields
Ki,..., K, there exists a field K with Gal(K) isomorphic to the free product
of Gal(K,),...,Gal(K,) (Pop, Melnikov, Ershov, Koenigsmann). General-
ization of this result to infinite families of closed subgroups generalize the
concepts “projective groups” and “PRC fields” or “PpC fields” to “relatively
projective groups” and “pseudo closed fields” (Haran-Jarden-Pop). They
generalize the classification of projective groups as those profinite groups
appearing as absolute Galois groups of PAC fields.

All of the exciting material mentioned in the preceding two paragraphs
lie unfortunately outside the scope of this volume.

It is my pleasure to thank colleagues and friends who critically read parts
of the manuscript of the present edition of “Field Arithmetic”: Michael Ben-
simhoun, David Brink, Gregory Cherlin, Michael Fried, Wulf-Dieter Geyer,
Peter Miiller, Dan Haran, Wolfgang Herfort, Alexander Lubotzky, Nikolay
Nikolov, Dan Segal, Aharon Razon, and Irene Zimmermann.

Tel Aviv, Spring 2004 Moshe Jarden

Introduction to the First Edition

Our topic is the use of algebraic tools — coming mainly from algebraic geom-
etry, number theory, and the theory of profinite groups — in the study of the
elementary properties of classes of fields, and related algorithmic problems.
(We take the precise definition of “elementary” from first order logic.) This
subject has its more distant roots in Tarski’s observation that, as a conse-
quence of elimination theory, the full elementary theory of the class of all
algebraically closed fields is decidable; this relies on the Euclid algorithm of
finding the greatest common divisor of two polynomials in one variable over
a field. In its first phase this line of thought led to similar results on real
closed fields and p-adic fields.

The subject took a new turn with the work of James Ax [Ax2] on the
elementary theory of the class of finite fields, which represents a radical de-
parture in terms of the algebraic methods used. The analysis is based entirely
on three properties of a finite field K:

(1a) K is perfect.

(1b) K has a unique extension of each degree.

(1c) There is an explicitly computable function g(d,m) such that any abso-
lutely irreducible variety V' defined over K will have a K-rational point
if |[K| > g(dim(V'), deg(V)).
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The validity of the third condition for finite fields is a consequence of
Riemann’s hypothesis for curves over finite fields. Methods of logic, specif-
ically ultraproducts, led Ax to consider this condition for infinite fields as
well, in which case the lower bound afforded by the function ¢ is vacuous,
and the condition becomes:

(2) Every absolutely irreducible variety over K has a K-rational point.

Fields satisfying (2) are said to be pseudo algebraically closed, or PAC.

The second condition may be interpreted as a description of the absolute
Galois group Gal(K) as a profinite group: Gal(K) is the free profinite group
on one generator. In Ax’ approach it was convenient to have an Abelian
absolute Galois group, but a strong trend in later work has been the system-
atic analysis of situations involving progressively more general Galois groups.
One of our central goals here is the presentation of the general theory of PAC
fields in its modern form, and its connections with other branches of algebra.
From what we have said so far, some connections with algebraic geometry
and profinite groups are visible; a number theoretic connection will appear
shortly.

One important feature of PAC fields is that they occur in profusion in
nature and are in fact typical in the following sense. Since the absolute Ga-
lois group Gal(Q) of the rationals is a compact topological group, it carries a
canonical invariant probability measure, the Haar measure. We can therefore
ask for the probability that the fixed field Q(o) of a sequence o = (071, ..., 0¢)
of automorphisms of Q will be PAC; and we find that this occurs with prob-
ability 1. In addition, the absolute Galois group of Q(o) is free on the e
generators o1, ..., 0e, again with probability 1. These facts are consequences
of Hilbert’s irreducibility theorem for Q (Chapter 13), at least in the con-
text of countable fields. We will develop other connections between the PAC
property and Hilbertianity.

There are also remarkable connections with number theory via the Cheb-
otarev density theorem (Chapters 6, 13, 16, 20, 21, 31). For example, the
probability that a given elementary statement 1 holds for the field Q(a) co-
incides with the Dirichlet density of the set of primes for which it holds for
the field IF,, and this density is rational. Thus, the “probability 1” theory of
the fixed fields Q(o) coincides with the theory of “all sufficiently large” finite
fields, which by Ax’ work is an algorithmically decidable theory.

Ax’ results extend to the “probability 1” theory of the fields Q(a) for o
of length e > 1, by somewhat different methods (Chapter 20), although the
connection with finite fields is lost. The elementary theories of such fields are
largely determined by three properties: PAC, characteristic zero, and having
an absolute Galois group which is free on e generators. To determine the full
elementary theory of one such field K, it is also necessary to describe the
intersection K N @

Although the absolute Galois group of a PAC field need not be free,
it can be shown to be projective in a natural sense, and conversely any
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projective profinite group occurs as the Galois group of some PAC field. In
extending the theory from PAC fields with free Galois group to the general
(projective) case, certain obstacles arise: for example, the algorithmic results
do not extend. There is nonetheless a quite general theory, which enables
us to identify some broad classes of projective profinite groups for which the
associated classes of profinite groups behave well, and also to pinpoint unruly
behavior in other case.

One approach to the algorithmic problems associated with PAC fields
leads to the study of profinite groups G with the embedding property (the
terminology reflects a preoccupation with the corresponding fields): for each
pair of continuous epimorphisms ¢: G — A, a: B — A, where B is a finite
quotient of G, we require that ¢ should factor through a. A perfect PAC
field whose absolute Galois group is a group with the embedding property is
called a Frobenius field. The elementary theory of all Frobenius fields can be
computed quite explicitly. The algorithm has some relationship with elimi-
nation theory as used by Tarski. We associate to each elementary statement
in the language of PAC fields a stratification of affine space into basic nor-
mal locally closed algebraic sets, each equipped with a Galois extension of
its function field, and the given statement is reinterpreted as a statement
about conjugacy classes of subgroups of the specified Galois groups. When
the initial statement has no quantifiers this is a fairly trivial procedure, but
addition of quantifiers corresponds to a special kind of “projection” of these
Galois stratifications.

This procedure has not yet been closely examined from the point of
view of computational complexity. Like most procedures which operate by
tracing through a series of projections, it is effective but hopelessly inefficient
in its present form. It is not yet clear whether it is substantially less efficient
than Tarski’s procedure for algebraically closed fields, nor whether, like that
procedure, it can significantly reorganized and sped up.

The Galois stratification algorithm relies on techniques of effective alge-
braic geometry, and also involves substantial algorithmic problems of a new
type connected with the theory of profinite groups. Specifically, it is nec-
essary to determine, given two collections Ay, ..., A,, and By, ..., B, of finite
groups, whether or not there is a projective group with the embedding prop-
erty which has each A; as (continuous) image, but none of the groups B;.
The solution to this problem depends on recent work on projective covers
(Chapter 22) and embedding covers (Chapter 24). Ultimately our decision
problem reduces to the determination of the finite quotients of the projective
cover of the embedding cover of a single finite group.

The theory of projective covers leads also to the undecidability results
alluded to earlier. A fairly natural encoding of graphs into profinite groups
is lifted by this theory into the class of projective profinite groups, and then
by looking at the corresponding PAC fields we see that their elementary
theories encode algorithmically undecidable problems (the analogous results
for graphs are well known).
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In the final chapter we return to our point of departure, the theory of
finite fields. The zeta function of a Galois formula over a finite field is defined,
and using a result of Dwork and Bombieri we show that some integral power
of each such function is a product of an exponential and a rational function
over Q.

One of the goals of this book is to serve as a bridge between algebraists
and logicians. For the algebraist there is a self contained introduction to
the logic and model theory background for PAC fields (Chapter 7). Chapter
14 gives the “nonstandard” framework that suffices for Weissauer’s proof
of Hilbert’s irreducibility theorem (Chapter 15), and Chapters 8 and 28
include basic recursion theory. On the other hand, for logicians with ba-
sic algebraic background (e.g. Lang’s book “Algebra”) Chapter 4 has the
Stepanov-Bombieri elementary proof of the Riemann hypotheses for curves,
and Chapter 6 gives an elementary proof of the Chebotarev density theorem.
Both groups of readers may find the extensive treatment of profinite groups
(Chapters 1, 17, 18, 22, 24, 25 and 26) and of Hilbertian fields (Chapters 12,
13, 15, and 16) valuable.

Although PAC fields arise over arithmetically rich fields, they themselves
lack properties that we associate with the arithmetic, say, of the rationals.
For example, a PAC field F' admits no orderings and all Henselizations of
F are separably closed (Section 11.5). Many PAC field results generalize to
pseudo real closed (PRC) fields.

A field F is PRC if each absolutely irreducible variety defined over F
has an F-rational point provided it has a nonsingular F-rational point in
each real closure F' of F. Thus, a PRC field without orderings is PAC. This,
and the development of the theory of pseudo p-adically closed PpC fields
are outside the scope of this book. We refer to [Prestell], to [Jarden12],
[Haran-Jarden2], and to [Haran-Jarden3] for literature about PRC fields and
to [Haran-Jardend] for PpC fields. Similarly, we give no account of the theo-
ries of real closed fields and p-adically closed fields that preceded the devel-
opment of the theory of PAC fields. In particular, for Hilbert’s 17th problem
and the Ax-Kochen-Ershov p-adic theory, we refer the reader to [Prestel2],
[Ax-Kochen1, Ax-Kochen2, and Ax-Kochen3], and [Prestel-Roquette].

ACKNOWLEDGEMENT: We are indebted to several colleagues who corrected
errors in the process of critically reading the manuscript. In particular, Wulf-
Dieter Geyer, Gregory L. Cherlin, and Dan Haran made crucial contributions.

Michael D. Fried, Gainesville, Florida
Moshe Jarden, Tel Aviv, Israel
Summer 1986



Notation and Convention

Z = the ring of rational integers.

Z, = the ring of p-adic integers.

Q = the field of rational numbers.

R = the field of real numbers.

C = the field of complex numbers.

F, = the field with g elements.

K, = the separable closure of a field K.

Kins = the maximal purely inseparable extension of a field K.

K = the algebraic closure of a field K.

Gal(L/K) = the Galois group of a Galois extension L/K. &

We call a polynomial f € K[X] separable if f has no multiple root in K.

Gal(f, K) = the Galois group of a separable polynomial f € K[X] over a
field K viewed as a permutation group of the roots of f.

Gal(K) = Gal(K,/K) = the absolute Galois group of a field K.

irr(z, K) = the monic irreducible polynomial of an algebraic element z over
a field K.

Whenever we form the compositum EF of field extensions of a field K we
tacitly assume that E and F' are contained in a common field.

|A] = #A = the cardinality of a set A.

R* = the group of invertible elements of a ring R.

Quot(R) = the quotient field of an integral domain R.

A C B means “the set A is properly contained in the set B”.

a® = zlaz, for elements a and z of a group G.

H?® = {h®| h € H}, for a subgroup H of G.

Given subgroups A, B of a group G, we use “A < B” for “A is a subgroup
of B” and “A < B” for “A is a proper subgroup of B”.

Given an Abelian (additive) group A and a positive integer n, we write A,
for the subgroup {a € A| na = 0}. For a prime number p we let
Ap = U2, Aps-

For a group B that acts on a group A from the right, we use B x A to denote
the semidirect product of A and B.

Bold face letters stand for n-tuples, e.g. x = (z1,...,%y).

ord(z) is the order of an element z in a group G.

For a positive integer n and an integer a with ged(a,n) = 1, we use ord,a
to denote the order of a modulo n. Thus, ord,a is the minimal positive
integer d with a? =1 mod n.

In the context of groups, S, (resp. A,) stands for the full permutation group
(resp. alternative group) of {1,...,n}.

In the context of groups, C, stands for the cyclic multiplicative group of
order n. Likewise we use Z/nZ for the additive multiplicative group of
order n.

In the context of fields, (,, stands for a primitive root of unity of order n.

(Jier Bi is the disjoint union of sets B;, i € I.



Table of Contents

Chapter 1. Infinite Galois Theory and Profinite Groups . . . . . . 1
AR L R A N LTI B g e 1
FPaolnite Groups = = + <0 1 4 4 s g moiim E 55 pa g s p 4
T3 Hfinite Galols Theory- =i & 36 Sotm . Seft 5 b8 irvs #7s p 9
1.4 The p-adic Integers and the Priifer Group . . . . . . . . . 12
1.5 The Absolute Galois Group of a Finite Field . . . . . . . . 15
SRRRTOIRBBDICIE BRIE." %, U p . s 5 o8 w3 ATw s ow B e 16
MNOTEE SRS |, o & s o0 3 3 T BT 5 s e e e 18

Chapter 2. Valuations and Linear Disjointness . . . . . . . . . 19
2.1 Valuations, Places, and Valuation Rings . . . . . . . . . . 19
2.2 Discrete Valuations - v . 4954 1adpiys JovV0 Jounive QA 283, 21
2.3 Extensions of Valuations and Places. . . . . . . . . . .. 24
2.4 Integral Extensions and Dedekind Domains . . . . . . . . 30
2.5 Linear Disjointnessof Fields . . . . . . . . . .. 0. .. 34
2.6 Separable, Regular, and Primary Extensions . . . . . . . . 38
2.7 The Imperfect Degree of a Field . . . . . . . . . . . % 44
28 Detivatives =0 F=iptraraty URBSE TUERE | -0, 5 e sovse s 48
SREIHOR £ 6305 o ok v 3 v a om 6 e T e G e e 50
DIOVeBeGUCIpH 3 toaBe LAANDE | o o st R et Sk N A 51

Chapter 3. Algebraic Function Fields of One Variable . . . . . . 52
3.1 Function Fields of One Variable . . . . . . . . .. . .. 52
S22 The'Riemana-Roeh " Theorem ™ = ~ 15 050 o o & a5 aqusesmrs 54
&:3-Holombrphy Righ = T8 S 508, | 1 5 9 aoe oo s 56
34 Extensions-of Function Fields - + . . . + &« 4. u. s n wre 59
AP COMPIEHIORS '« -5 A TR Bk s A e e Ty 61
0T heDlerent-" 7 g ae = e L e 67
FrRyDerelpRICi IRl tr . v ik AW e e A e 70
3.8 Hyperelliptic Fields with a Rational quadratic Subfield . . . 73
EXxCTUIBeR=1 Suie Jinaar Nepalahin SugNTIme ERERRNNS L o ios s o 75
NotelBrsly NsFRalpt@ ELtEngiis. | o 4 o o oS sl % % 76

Chapter 4. The Riemann Hypothesis for Function Fields . . . . . 77
41 Class Numbers-. .. . . . » . <EsDad ] apsgelskime) Tintod 7
4.2 Zeta Punctions - .. . . » ; . EWEHas] ayinupes avidinias 79
4.3 Zeta Functions under Constant Field Extensions . . . . . . 81
4:4 The'Panctional!Equation: .. . . . « . . 8oid@Ed avingagh, 82
4.5 The Riemann Hypothesis and Degree 1 Prime Divisors . . . 84
4.6 Reduction:Steps - sgubeoqrt wilidehioall ol qadg ooogbyil A 86
WTEARUPDIRBOMIEL . . . - vis e e e R 87

S A TowBrBOuRdS L 0VEiiEs. & oo v e e e e e O 89



ii Table of Contents

BIRETCIBRE - s wbs it o, 6 o1 3 =37 size i ot IO 36500 91
OB = T T o o o g BT e WA e R e % 93
Chabter b P lane e iin o 95
5.1 Affine and Projective Plane Curves ~ . . . . . .. . . . .. 95
52 Pomtaand pritde TiVIBOES .. - . L 0 T e g 97
53 Fhe'Grnus of a PIHECINVG: . 7 - " o e n i ey 99
5.4 Points on a Curve over a Finite Field . . . , . . . . . .. 104
1 0770 o e i e i ikl ear i e i R e 105
WoleE =i ) ¢ T S e T A Ak e 106
Chapter 6. The Chebotarev Density Theorem . . . . . . . . . . 107
6.1 Decomposition Groups s«wiff. moivuiad has seaal. upaitarind. 107
6.2 The Artin Symbol over Global Fields . . . . . . . . . . . 111
6.3 Dirichlet Density = . | . “issoaisiing caniteuia o snouiasiz 5 113
6.4 Function Fields. sriseinfl.bebishefd hus aacisssizd skt 115
6:5 Number Fields . . . « . . v v « 200 Yo seonntiomid iashil 121
Exercises . . . . . avolegeixd smari:d by slins SHew@s 129
INOLEB™ - a7ee o a v o« - oDl 30 sptaaCl Rvittecink ol 130
Clispber - TREFRPIOAUCES ', « .« 0 0 05 a0 f oy v e e i e 132
7.1 First Order Predicate Calculus . . . . . . . . .. .. .. 132
A S U S R X A 134
ERENADEOIS: -7 R T e R e M e e R 135
T4 Elomtentary SUbstbuctures = 5 05 s o iy e e 137
T UABREYE" * 70 500 L0 o e e e e S e 138
G Regilar Ultralilters ” & - o 0 sl ST N o 139
BT INBOEaOIEEE. * 7 00 S F ) LT e e e e e e 141
EERESURr- Ulrabroducts "=, = 7 ¢ 50 0 0 0 0 eati st 145
7.9 Nonprincipal Ultraproducts of Finite Fields . . . . . . . . 147
R e S il o b e e 147
Notes SR s sou b b esos o ke et Al ey, b 148
Chapter 8: Decision Procedures - .. . . . . . . « . « ' s'%e o « & 149
8:1 Deduction The@ii seinud] 308 sisadtogyil musowmif 90T (b 149
8.2 Godel’s Completeness Theorem . . . . . . . . . . . ., . 152
8.3 Primitive Recursive Functions . . . . . . . . . .. . .. 154
8.4 Primitive Recursive Relations . . . . . ... . . . . ... 156
8.5 Recursive Fanctions - = . . . . « .« soitere® hoeiseny ™ odT. 157
8.6 Recursive and Primitive Recursive Procedures . . . . . . . 159
8.7 A Reduction Step in Decidability Procedures . . . . . . . 160
PIXOICISEE -, o e o ol a e o - DEDOR Bagilal 161

P R S e S R S LS o8 ewo A 162



Table of Contents iii

Chapter 9. Algebraically Closed Fields . ... . . . . . . . . .. 163
9.1 Elimination‘of Quantifiers™ . . . o:dio1S Sipavd/ DandeT 163
9.2 A Quantifiers Elimination Procedure . . . . . . . . . . . 165
9.3 Effectivenedst o U55E g AR | v cmumeil T Misnsesis ¥ ¢ 168
@4 Applitationsste ., Freg DRl TP D v oty L - aeelnd 169
ExoreiRe ey ding It LT T U s T EEY R T e 170
PROAREE v v v v v o e Ry R T Ay e TR 170

Chapter 10. Elements of Algebraic Geometry . . . . . . . . . . 172
10:1 MlgebraiC Betalensin® | o oL ¢ o0 s &7 sdneoiegiadel & 172
10.2 Vatietieg | ot A e SRRl S U8  snoidsei wsnigaaol) | 175
10.3 Substitutions in Irreducible Polynomials . . . . . . . . . 176
D4 BationakMaps. : . - ov v ¢ ¢ 5§ 1§ o5« s oRlcETRES o 178
10.5-Hyperplahe Sectiohgi=cy 565009, , ¢ © 0 0 ¢ o+ #oar 180
0.8 Bedcent Niznsure oL tie AVSQERC DR S, 0L 0 182
10. 7 RrojectiveVarihionsis .- o o v o d avie ¢ o d S e 185
10.8 About the Language of Algebraic Geometry . . . . . . . 187
Bxereises i iliapnd i ilaiitent e B BET L v oTs oo E e 190
Notas: Too Diahiitiv g FICR 0 o o oo winmitmdii st aivaiinty 191

Chapter 11. Pseudo Algebraically Closed Fields . . . . . . . . . 192
LB PAC Fields © o o« « « ¢ o & « smismotl st besHassgasy 1 192
1122 Reduction to Plane Curves - . . . . o . . o o .slecnsd s 193
11.3 The PAC Property is an Elementary Statement . . . . . . 199
11.4 PAC Fields of Positive Characteristic . . . . . . . . . . 201
11.57°PAC EieldswitheMaluations .- .- ..o 7 50 v o o v e 0 203
11.6 The Absolute Galois Group of a PAC Field . . . . . . . . 207
11.7 Ainon-PAC Field K 'with Kins PAC. oo iee muprerios whinnid o 211
Excréises izl iin dpnl SSrer B LRI S RS R E T N 217
POteR: =it B AlCERmeBANSEE st 36 nodasitnsn auhmntt § 218

Ghapter 12. ‘Hilbertian Fields $hi spaiedarxdt oltethan(Q sighbadardd § 219
12.1 Hilbert Sets and Reduction Lemmas . . . . . . . . . . . 219
12.2 Hilbert Sets under Separable Algebraic Extensions . . . . . 223
12.3 Purely Inseparable Extensions . . . . ... ... ... .. 224
32.4 Impeifect fields sl Taaiusd il oo funnidiT unibtoom § 228
Exerciges:iiraiet 3 Ntk taanoy aaite T inigensty vhtig 1 229
Notes = Cirosnsry el D sl lo sinizeninX waisd A [ 230

Chapter 13. The Classical Hilbertian Fields . . . . . . . . . . . 231
F K FartlorReduetion 2. . o Jon it et e i ot RalYy 231
13.2 Function Fields over Infinite Fields . . . . . . . . . . . 236
133 Globablields Txestie of &, SREBEART - 20 7 L LR R 237
334 Hilbertign RingB =1 . . oo <. & tgnot) eiieResToaeth 3T 45 241

13.5 Hilbertianity via Coverings  wisoid s osimaos@o s dooduatl o (0 244



iv Table of Contents

13.6 Non-Hilbertian g-Hilbertian Fields . . . . . . . . . . ..
13- 7 Twisted Wreath Produets. - - . . ZSHCARNES S0 ORI,
13.8 The Diamond Theorem #:%092¢1 ] GO tsunll 2ipaiinell A
13,9 Weissaner’'s Theorem — « + . ¢ v & v 4+« . SuFraail,
T R ST T IR R R I s
NN TN I RS N e .

Chapter 14. Nonstandard Structures . . . . . . . . . . . . ..
14.1 Higher Order Predicate Caleulus . . . . . . . . . . ..
M2 Enlargements - v ;- - i v osv s v e o5 J2PGISINAZER
14.3 Concurrent Relations: - . . + - « « ¢« « o «» . SOUSISY 3
14.4 The Existence of Enlargements . . . . . . .. . . ...
B4:6 Efamples -souitargs Shpmaliy (4545, ¢ » o SSBNL BOUJaR S
BXOICINER P s LRSSy 5 v a e e e S BRGIINOT SRR
BGLesC 255 Sritis o el s SRR | ¢ e SO0

Chapter 15. Nonstandard Approach

to Hilbert’s Irreducibility Theorem L
15:1:Criteria for Hilbertianity - - - = %55 o ¢ v oov o 5
15.2 Arithmetical Primes Versus Functional Primes . . . . . .
15.3 Fields with the Product Formula . . . . . . . . . . ..
¥5.4 Generalized Krull Domains . . . « « « « « . 89804 Q&3
O 0 BXalaDIEE oo s = e i« . POREHED DRECD O3 RGREMIDIH 3
EXerciges - . . . wiwnoIRle LIRIRMmpLY {18 B vngeny AT il
INOBBE. -~ o v v e o o o IRGISFRIRAS Qe Jiy apuaty N3 |

Chapter 16. Galois Groups over Hilbertian Fields . . . . . . . .
16.1 Galois Groups of Polynomialg ;7\ */'"7 & 705 400000 &
18.2 Stable Polymomials- - . . - + 0 d sov v oosg o WY
16.3 Regular Realization of Finite Abelian Groups . . . . . . .
16.4 Split Embedding Problems with Abelian Kernels . . . . .
16.5 Embedding Quadratic Extensions in Z/2"Z-extensions 5
16.6 Z,-Extensions of Hilbertian Fields . . . . . . . . . . ..
16.7 Symmetric and Alternating Groups over Hilbertian Fields :
16.8 GAR-Realizations - . . . . .sjofesigd sidgregssnt (m |
16.9 Embedding Problems over Hilbertian Fields . . . . . . .
16.10 Finitely Generated Profinite Groups . . . . . . . . . .
16.11 Abelian Extensions of Hilbertian Fields . . . . . . . . .
16.12 Regularity of Finite Groups

over Complete Discrete Valued Fields %
RERCTSIREE e AT S00E o o o v e e e e RSO BRI
OEE = = o s use Depmigapd shalndmsp shisll gaidnd

Chapter 17. Free Profinite Groups . . . . . . .oda gl
1T7:1°The Rank-of a Profinite Group - &znisovg ), s{vpiagiipaigt |



