PEARSON

Addison
Wesley

K LB EShE 22 7 5L B EDAR)

Numerical Analysis
and Scientific Computation

B {E 5
5%t 5

Jeffery J. Leader Z

AR MR

KFEWHANBTEINF L BMRT (R WA

~ Numerical Analysis and Scientific Computation

HESHMSRFIHE

Jefery J. Leader
Rose—Hulman Insatute of Technology

5k 2 R At
it =

English reprint edition copyright © 2008 by PEARSON EDUCATION ASIA LIMITED and TSINGHUA
UNIVERSITY PRESS.

Original English language titlé from Bropriefot’s edition of the Work.

Original English language title: Numerical Analysis and Scientific Computation by Jeffery J. Leader, Copyright © 2008
All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Prentice Hall, Inc.

This edition is authorized for sale and distribution only in the People’s Republic of China (excluding the Special
Administrative Region of Hong Kong, Macao SAR and Taiwan).

A AR ENHR Pearson Education(35 A HE Hi it 8 F1) AL 4K 2 AR AL HH RRURAT -

For sale and distribution in the People’s Republic of China exclusively (except Taiwan,
Hong Kong SAR and Macao SAR).

URFHREARKEMEREA (FEFEPFEEFE. RIVEFNITERRNGPESTHX) HERT.
ERWRBURZEEREREILS BT 01-2007-2622

ABHENEE Pearson Education FEHBHMER) HAMBHIRE, THREETHBHE.

REARER, RALF. RANEEIRAIE: 010-62782989 13701121933

E B R4 B (CIP) i

BUE T SRR 0/ (38) HfE (Leader, JJ.) ¥F. —REIA. —dbnl: W4 KZHRA, 2008.5
CREFHHEE B E L EM R
F54 A3 : - Numerical Analysis and Scientific Computation

ISBN 978-7-302-17274-1

[% I B L OWEHUHEBIHE: BUE v — R SR B 78 — B, MATLAB— 3¢
IV. 0241 TP391.75

op [AR A B A5 CIP $dE#% 7 (2008) 5 042083 =
RITENH). Z4

HARATT: EHRAE R H dk: JERUEEREETIRE A BB
http:/ /www.tup.com.cn BB 4%: 100084
& #Hl: 010-62770175 BB T: 010-62786544

i 5IEHERS: 010-62776969, c-service@tup. tsinghua. edu. cn
R 8 & {&%: 010-62772015, zhiliang@tup. tsinghua. edu. cn
H: R ERE
&: b E = B RschlAgar
T %&: &EFERIE
A: 185X230 EMaK: 38 _
e 2008 5 A 1R ED R 2008 4E 5 A8 1 IRENRI
ER #: 1~3000
E i 59.00 C

KAUAFESCFEARE . IRED. SRTT, BITT. BETUSEN IS IR), 5 S5 4R K2 R ARG B 2
P, BERHIE: 010-62770177 #3103 - P45 024349-01

To my parents,
Dennis and Jeanne Leader

Preface

Numerical analysis is the study of algorithms for the problems of continuous
mathematics. Lloyd Trefethen (1992)

Elementary numerical analysis is a marvelously exciting subject. With a little
energy and algebra you can derive significant algorithms, code them up, and
watch them perform. G. W. Stewart (1998)

HIS BOOK REPRESENTS the numerical analysis course I have taught for the past nine
years, first as a required course for sophomore engineering majors and currently
as an elective course for juniors and seniors in mathematics, computer science,
physics, and engineering. It has been strongly influenced by my summertime compu-
tational consulting work at the U.S. Army Research Laboratory (Adelphi, MD), Naval
Surface Warfare Center (Dahlgren, VA), and Air Force Research Laboratory (Dayton,
OH), and other consulting and research experience; it has also been influenced by con-
versations with my colleagues and of course by other texts I have turned to over the years.
I hope that what sets my text apart from other introductory numerical analysis texts
are the following features:

B Quickintroduction to numerical methods, with roundoff error and computer arithmetic
deferred until students have gained some experience with real algorithms

B Modern approach to numerical linear algebra

B Explanation of the numerical techniques used by the major computational programs
students are likely to use in practice (especially MATLAB, but also Maple and the
Netlib library)

B Appropriate mix of numerical analysis theory and practical scientific computation
principles

B Greater than usual emphasis on optimization

1]

v

Preface

B Numerical experiments so students can gain experience
B Efficient and unobtrusive introduction to MATLAB

The MATLAB material is introduced in optional subsections at the end of each section.
If you’d like your students to learn MATLAB as part of this course, these subsections
provide a way to slowly introduce them to it and a chance for them to engage in actual
numerical experimentation to build their intuition about scientific computing. If you’re
not using MATLAB in your course, you may encourage your students to skim these
subsections for the extra material and foreshadowing they sometimes contain, but you
may use the text without using MATLAB. I have used this approach to teach MATLAB
in my classes and have had success with it.

My experience in scientific computing has been that almost every problem reduces,
at some level, to a problem in root-finding, nonlinear optimization, or numerical linear
algebra, and that the first two cases frequently involve the solution of a linear system. The
text starts with root-finding (chapter 1), principally in one dimension, because students
will be familiar with it from the calculus. It then moves straight into numerical linear
algebra (chapters 2 and 3) because of its crucial importance and so that this material will
be available as needed in later chapters. Chapter 4 introduces polynomial interpolation
as a tool for deriving other methods and splines as a tool for representing curves given
in terms of data. Chapter S introduces the basic techniques of numerical quadrature,
emphasizing those algorithms employed by MATLAB and Maple. Quadrature of ODEs
is given a similar treatment in chapter 6. Nonlinear optimization is covered in chapter 7,
and some basic ideas and methods of approximation theory are discussed in chapter 8.

1 try to avoid falling into the trap of first introducing a completely new mathematical
idea and then teaching computational techniques for it. If students don’t already know
the mathematical problems—root-finding, finding maxima and minima, differentiation,
and integration from the calculus, and first-order ODEs from the calculus or an ODEs
course—it will be hard for them to appreciate why they need to know numerical methods
for them. Hence I have avoided teaching the Fourier transform, then its discrete version
the DFT, and then the computational method known as the FFT, for example. However, I
have strayed from this principle to introduce the QR and singular value decompositions,
as these are not yet standard in a matrix or linear algebra course.

In class, I ask students for ideas about approaching a problem like root finding or
about improving a method we have already seen. To mimic that approach in the text,
in several sections I briefly discuss alternate methods to the main one I introduce and
develop in that section. These brief discussions offer students alternatives I want them
to know about, even if we do not discuss them in detail in class or in the text. By the
end of the course, these are the kinds of ideas I want them to start suggesting, such as
replacing linear approximations with quadratic ones, for example. If you prefer to skip
these brief discussions, of course you may.

In emphasizing the ideas behind methods and the mixing of methods I hope to en-
courage students to feel that they “own” these methods. Too often students feel that
they cannot tweak existing algorithms or software, when in fact, adding heuristics is
often necessary. In my experience students need to be told that it’s OK to fiddle with the
methods. That’s actually one of the big reasons that people who are only going to use,
not write, numerical software need a course like this; they need to know enough of the

Preface v

ideas to be able to pick good initial guesses, to approximate needed derivatives, to select
the right method or the right parameters.

Over the past decade or so the practice and teaching of numerical analysis have
undergone a number of changes. Fewer people write significant amounts of code; they
rely more on packages like MATLAB, the similar Octave, GAUSS, and more specialized
packages. Also, people are solving bigger and bigger problems, thanks to advances in
computer hardware and the availability of powerful software from Netlib, NAG, and so
on. This leads to a need for a greater understanding of the ideas behind algorithms and
how to tweak them to get them to converge in a timely fashion—choosing proper initial
guesses, mixing methods intelligently, adjusting algorithmic parameters—but less need
for understanding the algorithms in sufficient detail to write professional level code.
(In fact, I believe that writing code should be left to teams of experts.) There is greater
emphasis on scientific computation as opposed to numerical analysis.

On the pedagogical side, at many institutions, the theoretical content of calculus
courses has been reduced and computer algebra systems have been introduced. This
creates a two-fold challenge: First, instructors must work around the students’ lesser
analytical background, and second, students used to seeing a computer algebra system
spit out the answers to all their problems must be convinced of the need for numerical, as
opposed to symbolic, techniques. Students today come to a numerical analysis course with
less numerical computing experience than before, thanks to computer algebra systems.
This book aims to respond to these pedagogical changes by emphasizing ideas in a way
that appeals to geometric thinking (linear and quadratic approximations, for example)
and by providing examples of the types of things that cannot be done by computer algebra
systems and hence the need for numerical methods.

I mention the possibility of parallelization for several methods but do not develop
parallel algorithms in detail. I do not believe a first course in numerical analysis is the
place for emphasizing parallel computing, although students should be made aware of
its existence. Even if students have access to such a machine, programming it is likely
beyond their ability. :

This text is not intended to be a reference. It is meant to be worked through by
students so they learn the subject. I try to avoid dry statements of theorems in favor
of rigorous derivations that show the ideas behind the methods. I do not believe that
students can appreciate many of the theoretical aspects of the material until they have
some experience with numerical computing—all the more because of their experience
with computer algebra systems. This text aims to produce students who can competently
use standard computational software, including choosing the right method for the job
and advising others on the major benefits and pitfalls of various methods. I have had
success with this in my current position and hope it works for you in yours.

Each section is meant to be one lecture, although you may find that you need more
or less time. The Problems sections contain basic problems that can be used to ensure
understanding and do not require new computational resources beyond those required
in the preceding sections. The MATLAB subsections introduce MATLAB commands
and explore the material through numerical experimentation. Students can use these
subsections as self-teaching MATLAB tutorials. I ask students to hand in their output
from the diary command and to annotate it with brief comments on the results. Some
of the Additional Problems may require new computing tools equivalent to those cov-
ered in the MATLAB subsections. Additional Problems numbered 10 and above may

vi

Preface

be more challenging; the last two or three Additional Problems usually are relatively
difficult. 3

The text contains more material than can be covered in a single quarter or semester.
In a ten-week quarter I typically cover the following sections: 1.1-1.9; 2.1-2.9; 3.1-3.6;
4.1-4.4; 5.1-5.3, plus ideas from 5.6 and 5.7; 6.1-6.3, plus ideas from 6.5 and 6.6;
and 7.1-7.3 (plus 7.4 and 7.5 if time permits). The course I teach is oriented somewhat
toward numerical linear algebra because I believe so many other problems, such as
the numerical solution of PDEs, rely on a knowledge of this material, and that many of
the problems in those other areas involve getting a linear system solver to work well.
More material from chapters 5 and 6 could be included at the expense of material from
the latter half of chapter 2. Because of dependencies it will probably be necessary to
cover 1.1-1.4, 1.7, 2.1-2.3, and 4.1 in any event.

Prerequisites are a year-long course in the calculus, the basics of matrix algebra, and
for chapter 6 the basics of first-order ODEs. Some of the material in chapter 8 is at a more
advanced level and requires additional mathematical maturity. Programming experience
is not required (if MATLAB is to be used).

My father-in-law wrote in the preface to one of his books that ‘The making of a book
is the work of many hands.’ I have found this to be true. I want to thank Addison-Wesley
for publishing this book and to acknowledge in particular Cindy Cody, Joe Vetere,
and RoseAnne Johnson at Addison-Wesley; Chris Miller and her group at TechBooks;
Louise Gache, the copyeditor; Michael Brown, who wrote the solutions, and the several
accuracy checkers; and the many other individuals who have helped make this book.

I also want to acknowledge the helpful comments I have received from a number of
anonymous reviewers who suggested changes to the order of presentation, commented on
the clarity of various passages, and pointed out errors and omissions. Four years’ worth
of numerical analysis students at Rose-Hulman Institute of Technology have used the
manuscript and were of great help in refining the material, and I gratefully acknowledge
their assistance. I wish I could name them all here. Any errors that remain are of course
my own.

My colleagues at Rose-Hulman Institute of Technology were very supportive during
the time I wrote this book; I want to thank in particular S. Allen Broughton, Ralph P.
Grimaldi, and Robert Lopez (now at Maplesoft) for their encouragement and advice.

Over the years I've benefitted from the chance to study and work with a number
of numerical analysts who have helped me grow in my understanding of the field. I
especially want to acknowledge my advisor, Philip J. Davis, of Brown University; David
Gottlieb, also of Brown University; and Bill Gragg, of the Naval Postgraduate School.

I also gratefully thank two people who have been very helpful to me in a great many
ways over the course of my career: Robert L. Borrelli and Courtney S. Coleman, both
of Harvey Mudd College.

Last but not least I thank my wife, Meg, for her help on this project, and I also thank
her and our children Derek and Corrinne for their patience while their father worked
long hours on this book.

Jeffery J. Leader
Terre Haute, IN

Contents

- Nonlinear Equations 3

§ 55
| 7
1.3
14
1.5
1.6
1.7
1.8
1.9

Bisection and Inverse Linear Interpolation

Newton’s Method 11
The Fixed Point Theorem 21

Quadratic Convergence of Newton’s Method 31

Variants of Newton’s Method 43
Brent’s Method 55

Effects of Finite Precision Arithmetic
Newton’s Method for Systems 73
Broyden’s Method 83

Linear Systems 90

2.1
22
23
24
25
2.6
2:7

28

29

Gaussian Elimination with Partial Pivoting 90

The LU Decomposition 102

The LU Decomposition with Pivoting
The Cholesky Decomposition 128
Condition Numbers 140

The QR Decomposition 153

62

113

Householder Triangularization and the

QR Decomposition 165

Gram-Schmidt Orthogonalization and the

QR Decomposition 177
The Singular Value Decomposition

190

1

vil

viil

Contents

Iterative Methods 196

3.1 Jacobi and Gauss-Seidel Iteration 196
32 Sparsity 208

33 Iterative Refinement 214

34 Preconditioning 219

35 Krylov Space Methods 226

3.6 Numerical Eigenproblems 238

Polynomial Interpolation 247

4.1 Lagrange Interpolating Polynomials 247

4.2 Piecewise Linear Interpolation 261

43 Cubic Splines 274

44 Computation of the Cubic Spline Coefficients 284

Numerical Integration 298

S, Closed Newton-Cotes Formulas . 298

52 Open Newton-Cotes Formulas and Undetermined
Coefficients 316

5:3 Gaussian Quadrature 330

54 Gauss-Chebyshev Quadrature 342

55 Radau and Lobatto Quadrature 351

5.6 Adaptivity and Automatic Integration 361

§t7 Romberg Integration 371

Differential Equations 381

6.1 Numerical Differentiation 381

6.2 Euler’s Method 392

6.3 Improved Euler’s Method 402

6.4 Analysis of Explicit One-Step Methods 411
6.5 Taylor and Runge-Kutta Methods 419

6.6 Adaptivity and Stiffness 428

6.7 Multi-Step Methods 437

Nonlinear Optimization 446

Tl One-Dimensional Searches 446
T2 The Method of Steepest Descent 455

7.3
74
e
7.6
¢

Contents

Newton Methods for Nonlinear Optimization 467
Multiple Random Start Methods 477

Direct Search Methods 485

The Nelder-Mead Method 493

Conjugate Direction Methods 500

Approximation Methods 508

8.1
8.2
83
8.4

Linear and Nonlinear Least Squares 508

The Best Approximation Problem 517

Best Uniform Approximation 525

Applications of the Chebyshev Polynomials 538

Afterword 545

Answers 549

Bibliography 571

Index

577

Nonlinear Equations

11

Bisection and Inverse Linear Interpolation

Root-Finding

IME AND TIME AGAIN the solution or simulation of a scientific or engineering

problem results in the need to solve either a root-finding problem or an optimization

problem. In the former case we seek the solution of an equation or set of equations;
in the latter case we seek the point(s) where a function takes on its maximum or minimum
value. Even when our goal is to fit a curve to some experimental data or numerically
solve a differential equation, for example, we almost always reduce the problem to one
of the two types listed above. In this chapter we look at the problem of finding a root of
a nonlinear equation; in Chapters 2 and 3 we will look at linear systems of equations,
and optimization problems in Chapter 7.

The root-finding problem is to find a solution x* of f(x) = 0. (There may be many
solutions, but we are only seeking any one of them.) The solution is called a root of the
equation or a zero of the function f. For special cases there are often special approaches:
The quadratic formula applies if f is a quadratic, and the zeroes of sin(x) are common
knowledge. Sooner or later, however, it becomes necessary to solve a problem that does
not fit into a known special case. The simplest examples are equations like

cos(x) —x=0

and polynomials of degree 5 or higher. (There is a cubic formula for degree 3 polynomials
and a quartic formula for degree 4 polynomials, but it has been shown that there can
be no similar formula for polynomials of degree 5 or higher. Unless a factorization is
obvious, numerical methods must be employed.) A more complicated but quite common
case is that of finding where the solution of a differential equation passes through zero,
when the differential equation itself must be solved numerically.

Exhaustive
Search

Chapter 1 Nonlinear Equations

.Using trial and error is one possibility. There is nothing inherently wrong with this
approach, but it lacks a theory that predicts how rapidly it will find a solution (to within a
given tolerance), and it is difficult to automate. In practice, different root-finding problems
may need to be solved tens or hundreds of times within a single run of a program. (For
example, this might be true of a computer-aided design package that must determine
where various curves intersect.) Because of this we will need to find methods that are
fast, reliable, and easily implemented, ideally without the need for a human to make a
judgment at any stage of the process.

The first method we will consider is the method of exhaustive search (also called
direct, graphical, or incremental search). Suppose that f is continuous on some (not
necessarily finite) interval. By the Intermediate Value Theorem, if we can find two points
a, b such that f(a) and f(b) have opposite signs, then a zero of f must lie in (a, b). One
way to find such a pair of points is to pick some x, an initial guess as to the location of
a root, and successively evaluate the function at

X0, X1=Xxo+h, xp=x9+2h, x3=x9+3h,...,

where i > 0 is called the step size (or grid size). When a change of sign is detected,
we say that we have bracketed a root in this interval of width A. (The interval [x;, x; 1]
over which the change of sign occurs is called a bracket; see Fig. 1.1.) At this point we
may repeat the process over the smaller interval [x;, x;] with a smaller 4 to bracket the
root more precisely.

The exhaustive search method is equivalent to plotting the function and looking for
an interval in which it crosses the x-axis. This is very inefficient, so let’s look for a better
approach.

Suppose that we have found, by any means, a bracket [a, b] for a zero of a continuous
function. Rather than searching the entire interval with a finer step size, we might reason
that the midpoint

bt a+b
R
is a better estimate of the location of the true zero x* of f than either a or b. After all,

Figure 1.1 Bracketing a Zero.

Bisection

Example 1.1.1

1.1 Bisection and Inverse Linear Interpolation 3

la — x*| could be as large as the width w = (b — a) of the interval if x* is near b, and
similarly for |b — x*|, but

1
[m —x*| < Ew

since x* lies either in the interval to the right or to the left of m (except in the extremely
unlikely case that x* = m). This is the idea behind the bisection method (or binary
search): If f is continuous in the region of interest and [xo, x;] is a bracket, that is,
f(x0)f(x1) < O, then we set

_ X +x
fow 4

and compute f(x;). If f(x;) = 0, we are done; otherwise either f(x;) and f(xo) have
opposite signs, in which case [xo, x7] is a new bracket half the size of the previous one,
or f(x;) and f(x;) have opposite signs, in which case [x3, x;] is a new bracket half the
size of the previous one. In either case we have reduced our uncertainty as to the location
of the true zero x* by 50% at the cost of a single new function evaluation (namely the
computation of f(x;)). We may now repeat this process on the new interval, finding
its midpoint x3 and then a smaller bracket with x3 as an endpoint, and so on, until a
sufficiently narrow bracket is obtained.

X2

Consider the function f(x) = cos(x), which has a zero at m/2 = 1.5708. (The
symbol = means that the indicated value is correctly rounded to the number of sig-
nificant figures given.) Since f(1) = 0.5403, f(2) = —0.4161, and f is continuous, the
interval [1, 2] is a bracket. Its midpoint is x, = 1.5. Since

£(1.5) = 0.0707,

we have f(1.5)f(2) < 0 and so we replace xo = 1 with x, = 1.5, meaning that [1.5, 2]
is our improved bracket. The next midpoint is x3 = 1.75, giving

f(1.75) = —0.1782

so that [1.5, 1.75] is the new bracket. If we had to stop now, our estimate of the location
of the true zero could be any value in [1.5, 1.75]; choosing its midpoint x4 = 1.625
minimizes the worst-case error.]

Unless we have the misfortune to choose the wrong interval at some step because a
rounding error makes a positive value negative, or vice versa, this method must converge
to some zero of f in the initial bracket. That is, as the iteration count k increases, we
must have

Im x = x*
k—00

for some x* that lies in the initial bracket and for which f(x*) = 0. Furthermore, since
the width of the bracket is halved at each step, we can predict how long it will take to
achieve any desired precision. If the width of the initial interval is w, then after the first
bisection step the width of the new bracket is w/2, and after the second step it is w/4.

Chapter 1 Nonlinear Equations

In general, after n steps the width of the resulting interval is equal to w/2". So to reduce
an interval of initial width 1 to an interval of width 10~4, we would need n to be large
enough that

1
e 35 =4
9 1=

10* < 2"
n > log,(10%)
= 13.2877.

So, n = 14 iterations would suffice. Since the error is at most 10~4, the answer should
have four correct figures after the decimal place (possibly off by one unit in the fourth
decimal place). Of course, although this guarantees that the width of the final interval
is 2714 (note that 274 < 10™* < 2713) and that its midpoint will be an estimate good
to within 2713, the actual error may be much smaller. In fact, performing 14 iterations
of the method on f(x) = cos(x) with the initial bracket [1, 2] and using the midpoint
x16 = 1.57077 of the final interval as our estimate of the true zero w/2 = 1.57079...
gives an actual error of 2.6 x 10~ as compared to the bound of 3.1 x 1073, The error
bound represents a worst-case scenario. Often our results will be considerably better.

The sequence generated by the bisection method is guaranteed to converge to a root;
exhaustive search is not (after all, it could step right over a pair of closely spaced roots
if A is not sufficiently small; see Fig. 1.2). Bisection will also be much faster in general.
However, we have paid a price for these advantages: Bisection requires us to find an
initial bracket, whereas exhaustive search requires only a single initial guess lying to the
left of the presumed root. Finding that initial bracket may well require an initial graphical
search (or trial and error).

Consider again the function f(x) = cos(x), but now suppose that we have found the
initial bracket [0, 1.6] instead, for which we have f(0) = 1.0000and f(1.6) = —0.0292.
Bisection will work, but noting that | £(1.6)| is very much smaller than | f(0)| might

y
A
P P =
A 1 A 1 > X
X0 X x2 X3 X4
= U

Figure 1.2 Exhaustive Search Misses a Blip.

Inverse Linear
Interpolation

1.1 Bisection and Inverse Linear Interpolation 5

>

(xy, fx1))

Figure 1.3 Inverse Linear Interpolation.

incline us to choose a new point much nearer x; = 1.6 than xy = 0. If we choose, say,
x = 1.4, then f(x;) = 0.1700 and so [1.4, 1.6] is a new, smaller bracket; the bisection
bracket would have been [0.8, 1.6] which is four times as wide. This suggests another
method, which is known as (inverse) linear interpolation (also called false position or
regula falsi): Given a continuous function f and a bracket [xo, x;] for a zero of f, fita
straight line to the points (xo, f(xo)) and (x;, f(x1)) (see Fig. 1.3). This line is said to
interpolate f at these points, and if f is approximately linear over the interval, then the
zero of the line should be a good estimate of the zero of the function. (The method is
called inverse interpolation because we are using the interpolated line to find an x value,
not a y value as usual; we write x as a linear function of y.) Since the y-values are of
opposite sign, f(xo) is not equal to f(x;) and so the equation of the line may be written
in slope-intercept form as

A= 50 X1 — Xo
~ FGn) - Fxo) i 1.1
. A f(x‘))y a (x1 fx) — f(xo)f(XI)> 1.0

and may be solved for the x-intercept x; simply by setting y = 0:

X1 X0
fx) — f(xo)

As before, either [xg, x2] or [x2, x1] is a new, smaller bracket. We now iterate until some
convergence criterion is achieved, that is, until we meet some specified criterion for
deciding that we are sufficiently close to the true answer. The width of the interval may
not go to zero (if the approach to the root of the equation is one-sided; see Problem 1),
so we cannot use that as the only convergence criterion. For the same reason, unless
the width of the bracket is very small, the last computed endpoint is generally the best
estimate of the location of the root, not the midpoint as before.

Inverse linear interpolation will converge to some zero of the function in the bracket;
however, the rate at which it converges will depend on how nearly linear f(x) is near its
zero. We know from the calculus that if f(x) is sufficiently differentiable then it is well
approximated by a straight line over small intervals. For the type of functions usually

X2 = x1 — f(x1) (1.2)

6 Chapter 1 Nonlinear Equations

b
A

|

|

|

i

3 Ron . Xy o
X i i) ;\Q

Figure 1.4 Tough Function for Inverse Linear Interpolation.

encountered in practice this means that inverse linear interpolation will usually be faster
than bisection. (A function and bracket as in Fig. 1.4 will result in excruciatingly slow
convergence until the bracket is very small.) We have given up the guaranteed, slow-
but-steady-wins-the-race speed of bisection for a likely but neither guaranteed nor easily
predictable improvement. :

In the next section we consider a much faster algorithm known as Newton’s method.
Once again we pay a price for using the method: We require that the function be differ-
entiable as well. Faster methods require more assumptions and offer fewer guarantees.

- PROBLEMS 1.1

1. Use four iterations of bisection with the initial bracket in fact a bracket) to find a zero to at least three decimal

[0.5,1] to approximate the sole positive root of
cos(x) — x = 0. Repeat with inverse linear interpola-
tion, using the same initial bracket; note the one-sided
approach to the solution.

. Show that there is a unique real solution of 5x7 =
1 — 2x. Use bisection to approximate it to four dec-
imal places. Repeat with inverse linear interpolation.

. The function f(x) = cos(5x) has seven zeroes in the
interval [0, 4.5]. Use bisection and then inverse linear
interpolation with that initial bracket (verify that it is

MATLAB 1.1

places. Find the actual error in your estimates using the
known locations of the zeroes of the cosine function.
Comment on your results.

. Use bisection on f(x) =x%—5to approximate V5 to

at least four decimal places. Compare your error esti-
mate to the actual error.

. Use inverse linear interpolation with the initial bracket

[0.25, 2] to approximate a zero of f(x) = 1/x* —10to
three decimal places. Repeat with bisection. Comment.

Numerical analysis is the study and design of methods that may be used to solve the
mathematical problems of engineering and the sciences by iterative algorithms in a
reasonable time and with desirable error properties.! This can be done without access
to a computer, as is clear from the names attached to some of these methods—such as

! Lloyd Trefethen writes: “Numerical analysis is the study of algorithms for the problems of continuous
mathematics.”

