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Preface

In recent times increasing numbers of high-rate GNSS
stations have been installed around the world and set-up to
provide data in real-time. These networks provide a great
opportunity to quickly capture surface displacements, which
makes them important as potential constituents of earthquake/
tsunami monitoring and warning systems. The appropriate GPS
real-time data analysis with sufficient accuracy for this purpose is
a main focus of the current GNSS research. The objective of this
book is to develop high-precision GNSS algorithms for better
seismological applications. The core research and the contributions of
this book are summarized as following;

With the availability of real-time high-rate GNSS observations
and precise satellite orbit and clock products, the interest in the
real-time Precise Point Positioning ( PPP) technique has greatly
increased to construct displacement waveforms and to invert for
source parameters of earthquakes in real time. Furthermore, PPP
ambiguity resolution approaches, developed in the recent years,
overcome the accuracy limitation of the standard PPP float
solution and achieve comparable accuracy with relative positioning.
In this book, we introduce the real-time PPP service system and
the key techniques for real-time PPP ambiguity resolution. We
assess the performance of the ambiguity-fixed PPP in real-time
scenarios and confirm that positioning accuracy in terms of root
mean square (RMS) of 1.0 cm-1.5 ecm can be achieved in horizontal
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components. For the 2011 Tohoku-Oki (Japan) and the 2010 El
Mayor-Cucapah (Mexico) earthquakes, the displacement waveforms,
estimated from ambiguity-fixed PPP and those provided by the
accelerometer instrumentation are consistent in the dynamic
component within few centimeters. The PPP fixed solution not
only can improve the accuracy of coseismic displacements, but
also provides a reliable recovery of earthquake magnitude and of
the fault slip distribution in real time.

We propose an augmented point positioning method for GPS
based hazard monitoring, which can achieve fast or even
instantaneous precise positioning without relying on data of a
specific reference station. The proposed method overcomes the
limitations of the currently mostly used GPS processing approaches
of relative positioning and global precise point positioning. The
advantages of the proposed approach are demonstrated by using
GPS data, which was recorded during the 2011 Tohoku-Oki
earthquake in Japan.

We propose a new approach to quickly capture coseismic
displacements with a single GNSS receiver in real-time. The new
approach can overcome the convergence problem of precise point
positioning ( PPP), and also avoids the integration process of the
variometric approach. Using the results of the 2011 Tohoku-Oki
earthquake, it is demonstrated that the proposed method can
provide accurate displacement waveforms and permanent
coseismic offsets at an accuracy of few centimeters, and can also
reliably recover the moment magnitude and fault slip distribution.
We investigate three current existing single-receiver approaches
for real-time GNSS seismology, comparing their observation
models for equivalence and assessing the impact of main error
components. We propose some refinements to the variometric
approach and especially consider compensating the geometry
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error component by using the accurate initial coordinates before
the earthquake to eliminate the drift trend in the integrated
coseismic displacements.

We propose an approach for tightly integrating GPS and
strong motion data at raw observation level to increase the quality
of the derived displacements. The performance of the proposed
approach is demonstrated using 5 Hz high-rate GPS and 200 Hz
strong motion data collected during the EI Mayor-Cucapah
earthquake (Mw 7.2, 4 April, 2010) in Baja California, Mexico.
The new approach not only takes advantages of both GPS and
strong motion sensors, but also improves the reliability of the
displacement by enhancing GPS integer-cycle phase ambiguity
resolution, which is very critical for deriving displacements with
highest quality. We also explore the use of collocated GPS and
seismic sensors for earthquake monitoring and early warning. The
GPS and seismic data collected during the 2011 Tohoku-Oki
(Japan) and the 2010 El Mayor-Cucapah ( Mexico) earthquakes
are analyzed by wusing a tightly-coupled integration. The
performance of the integrated results are validated by both time
and frequency domain analysis. We detect the P-wave arrival and
observe small-scale features of the movement from the integrated
results and locate the epicenter. Meanwhile, permanent offsets
are extracted from the integrated displacements highly accurately
and used for reliable fault slip inversion and magnitude estimation.
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Chapter 1 Introduction

Recent destructive earthquakes that struck Sumatra,
Indonesia (Mw 9.2) in 2004, Wenchuan, China (Mw 7.9) in
2008, Maule, Chile (Mw 8.8) in 2010 and Tohoku, Japan (Mw 9.0)
in 2011 have once again brought us to focus the urgent need for
earthquake monitoring and early warning. Rapid source and
rupture inversion for large earthquakes is critical for seismic and
tsunamigenic hazard mitigation ( Allen and Ziv, 2011; Ohta et al.,
2012), and earthquake-induced site displacement is key information
for such source and rupture inversions. For earthquake early
warning ( EEW) systems, the estimation of accurate coseismic
displacements and waveforms is needed in real-time. Traditionally,
displacements are obtained by double integration of observed
accelerometer signals or single integration of velocities observed
with broadband seismometers ( Kanamori, 2007; Espinosa-Aranda et
al., 1995; Allen and Kanamori, 2003). The broadband seismometers
are likely to clip the signal in case of large earthquakes. Although
strong-motion accelerometer instruments do not clip, the
displacement converted from acceleration could be degraded
significantly by drifts caused by tilts and the non-linear behavior
of the accelerometer ( Trifunac and Todorovska, 2001; Boore,
2001).

Since Remondi ( 1985) first demonstrated cm-level accuracy
of kinematic GPS, Hirahara et al. (1994) labeled kinematic GPS
as GPS seismology, which has since attracted more and more
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attention and applications in seismology (see, e.g., Ge et al
2000; Larson et al., 2003). High-rate GNSS (e.g., 1 Hz or higher
frequency ) measures displacements directly and can provide
reliable estimates of broadband displacements, including static
offsets and dynamic motions of arbitrarily large magnitude
(Larson et al., 2003; Bock et al., 2004 ). GPS-based seismic
source characterization has been demonstrated in near-and far-
field with remarkable results ( Nikolaidis et al., 2001; Larson et
al., 2003; Bock et al., 2004; Ohta et al., 2008; Yokota et al.,
2009; Avallone et al., 2011; Melgar et al., 2012; Crowell et al.,
2012). GNSS-derived displacements can be used to quickly
estimate earthquake magnitude, model finite fault slip, and also
play an important role in earthquake/tsunami early warning
( Blewitt et al., 2006; Wright et al., 2012; Hoechner et al., 2013).
Consequently in the recent years, dense GPS monitoring networks
have been built in seismically active regions, e. g., Japan's
GEONET (the GPS Earth Observation Network System, http.//
www. gsi. go. jp/) and UNAVCO’s Plate Boundary Observatory
(PBO, http://pbo.unavco.org/ ). These networks are complementary
to seismic monitoring networks and contribute significantly to
earthquake/tsunami early warning and hazard risk mitigation
( Blewitt et al., 2006; Crowell et al., 2009).

Currently, two processing strategies are mainly used in most
of the studies related to GPS seismology and tsunami warning
relative baseline/network positioning ( e. g., Nikolaidis et al.,
2001; Larson et al., 2003; Bock et al., 2004, Blewitt et al., 2006)
and precise point positioning ( PPP) (Zumberge et al., 1997). For
relative kinematic positioning, at least one nearby reference
station should be used for removing most of biases and recovering
integer feature of ambiguity parameters by forming double-
differenced ambiguities. Consequently, ambiguities can always be
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fixed to integers even instantaneously for achieving high
positioning accuracy of few cm (Bock et al., 2011; Ohta et al.,
2012). Therefore, it is already applied in real-time displacement
monitoring ( e. g., Crowell et al., 2009 ). The technique of
instantaneous positioning ( Bock et al., 2000) is one typical real-
time relative positioning method and is integrated into EEW
system ( Crowell et al., 2009) and is demonstrated by applying
the result for centroid moment tensors ( CMT ) computation
(Melgar et al., 2012), finite fault slip inversion ( Crowell et al.,
2012) and P-wave detection by combining collocated accelerometer
data and the GPS displacements using a Kalman filter ( Bock et
al., 2011; Tu et al., 2014). The real-time kinematic ( RTK)
technique is also utilized by Ohta et al. (2012) to analyze the
displacement of the 2011 Tohoku-Oki earthquake. All of the
previously mentioned studies used the relative positioning
technique, which is able to guarantee a high accuracy at 1 cm
level. However, for the relative positioning technique, GPS data
from a network is analyzed simultaneously to estimate station
positions. It is complicated by the need to assign baselines,
overlapping Delaunay triangles, or overlapping sub-networks. This
is a significant limitation for the challenging simultaneous and
precise real-time analysis of GPS data from hundreds or
thousands of ground stations. Furthermore, intermittent station
dropouts complicate the network-based relative positioning.
Relative positioning also requires a local reference station, which
might itself be displaced during a large seismic event, resulting in
misleading GPS analysis results. In the case of large earthquakes,
such as the Mw 9.0 Tohoku-Oki event in Japan, the reference
station may also be significantly displaced, even when it is several
hundred kilometers away from the event. The reference station
should be sufficiently far from the focal region, but must also be



