PEARSON

EIFERNFESRALZHREA LRI

Data Structures and
Other Objects Using C++

(Fourth Edition)

——C++hR (mmm)

Michael Main ...
Walter Savitch

(JESTHREEMAR)

EsME ERFEBARZHES R

IR 51

CH++hR (xmam)

(B RR)

Data Structures and Other Objects
Using C++
(Fourth Edition)

Michael Main Walter Savitch 2

M4 4 & K &

it X

E=F: 01-2012-4732
A A E N

AR —AEET Creit B MR LR STIER R E B, TARAERIRD N E I K7 A B0 454 DR A A
Pt ABLLCraBEFIENEIIE S, FIRIE 0 X G 7E, MHURE GO tH A, A Sl 0 2500 S TRt R e B) ¢
WEEH. BhEEARARE: RETROEAMNE, MBHIEARE C+%, REX, B 53R, R K
B SRARASAN STL WEATHAFIF AR, Hetk, BAZI, bJFUBAR, A, P, Bk, HF, IRAERSGK, EER. HiLE
A4, AIEEE R BIERANAE S, FRFIM L ORI R, LR SE I AT R

AR R HIERL. AR AR (S SR BB E R, AT TREA A 3%,
Original edition, entitled Data Structures and Other Objects Using C++,4E, 978-0-13-212948-0 by Main,Michael; Savitch, Water,
published by Pearson Education, Inc, publishing as Pearson, Copyright © 2011 by Pearson Education,Inc.
All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording or by any information storage retrieval system, without permission from Pearson Education,
Inc.
China edition published by PEARSON EDUCATION ASIA LTD., and CHINA SCIENCE PUBLISHING & MEDIA
LTD.(SCIENCE PRESS) Copyright © 2012
Authorized for sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR and Macau
SAR). ARAXAIZES EHS (BRE®. SR HESAT.
A54534 T Wi 45 Pearson Education(HHAE#H A) ROGHI thpR . Tobrs# A1

B+ A4 B (CTP) 338

¥ELEH): C++hii= Data Structures and Other Objects Using C++: 4 fiR: 2&3C/(3€) HE[F(Main, M.),
() BEYERFAT(Savitch, W)F. —SBEIA. —Jbat: FlefthhRAt, 2012

(BAME BRI SHEARZ I E R 51)

ISR 978-7¢03-035024-4

[.O% 11.OM @F%- M. O¥IELH-C HXOC EH-FRFRI-%L V. OTP3ILI2
@312

of [R AS B 08 CTP $0i#% 7-(2011) 58 133346 5
FriERiE: MM E 8K/ wAERE: B &/ #HEikah KERPBE

@4 3 & BB K
AFREIRAAET 165
MR 46 : 100717

http: //www.sciencep.com

BEFT 4 8L IHA KA HIR
RREHRRGERAT AT E 28

*
20124E6 A% — R JFA: 787X1092 1/16
201246 A% —IKEDRI ENgk: 53
FH: 1160 000
Efr: 108.00 7T
CUnF EPE & o) @, FRAL S TR

13

Chapter List

CHAPTER 1 THE PHASES OF SOFTWARE DEVELOPMENT 31
CHAPTER 2 ABSTRACT DATA TYPES AND C++ CLASSES 63
CHAPTER 3 CONTAINER CLASSES 126

CHAPTER 4 POINTERS AND DYNAMIC ARRAYS 184
CHAPTER 5 LINKED LISTS 250

CHAPTER 6 SOFTWARE DEVELOPMENT WITH TEMPLATES, ITERATORS, AND THE STL 320
CHAPTER 7 STACKS 382

CHAPTER 8 QUEUES 423

CHAPTER 9 RECURSIVE THINKING 466

CHAPTER 10 TRees 504

CHAPTER 11 BALANCED TREES 569

CHAPTER 12 SEARCHING 613

CHAPTER 13 SORTING 659

CHAPTER 14 DERIVED CLASSES AND INHERITANCE 713
CHAPTER 15 GRAPHS 762

APPENDIXES 811

INDEX 841

Contents 15

Contents

CHAPTER 1 THE PHASES OF SOFTWARE DEVELOPMENT

1.1 Specification, Design, Implementation 33

Design Concept: Decomposing the Problem 34
Preconditions and Postconditions 36
Using Functions Provided by Other Programmers 38
Implementation Issues for the ANSI/ISO C++ Standard 38
C++ Feature: The Standard Library and the Standard Namespace 39
Programming Tip: Use Declared Constants 41
Clarifying the Const Keyword

Part 1: Declared Constants 42
Programming Tip: Use Assert to Check a Precondition 42
Programming Tip: Use EXIT_SUCCESS in a Main Program 44
C++ Feature: Exception Handling 44
Self-Test Exercises for Section 1.1 44

1.2 Running Time Analysis 45

The Stair-Counting Problem 45

Big-O Notation 51

Time Analysis of C++ Functions 53

Worst-Case, Average-Case, and Best-Case Analyses 55
Self-Test Exercises for Section 1.2 55

1.3 Testing and Debugging 56

Chapter Summary 60

Choosing Test Data 56

Boundary Values 57

Fully Exercising Code 58

Debugging 58

Programming Tip: How to Debug 58
Self-Test Exercises for Section 1.3 59

Solutions to Self-Test Exercises 61

CHAPTER 2 ABSTRACT DATA TYPES AND C++ CLASSES

21 Classes and Members 64

Programming Example: The Throttle Class 64
Clarifying the Const Keyword
Part 2: Constant Member Functions 68

' Using a Class 69

A Small Demonstration Program for the Throttle Class 70
Implementing Member Functions 72

Member Functions May Activate Other Members 74
Programming Tip: Style for Boolean Variables 74
Self-Test Exercises for Section 2.1 75

16 Contents

2.2

2.3

24

2.5

2.6

Constructors

75

The Throttle's Constructor 76

What Happens If You Write a Class with No Constructors? 79
Programming Tip: Always Provide Constructors 79

Revising the Throttle’'s Member Functions 79

Inline Member Functions 79

Programming Tip: When to Use an Inline Member Function 80
Self-Test Exercises for Section 2.2 81

Using a Namespace, Header File, and Implementation File 81

Creating a Namespace 81

The Header File 82

Describing the Value Semantics of a Class Within the Header File 86
Programming Tip: Document the Value Semantics 87

The Implementation File 87

Using the Items in a Namespace 89

Pitfall: Never Put a Using Statement Actually in a Header File 90
Self-Test Exercises for Section 2.3 92

Classes and Parameters 93

Operator Overloading

117

Programming Example: The Point Class 93
Default Arguments 95

Programming Tip: A Default Constructor Can Be Provided by Using Default
Arguments 96

Parameters 97
Pitfall: Using a Wrong Argument Type for a Reference Parameter 100
Clarifying the Const Keyword
Part 3: Const Reference Parameters 102
Programming Tip: Use const Consistently 103
When the Type of a Function's Return Value Is a Class 103
Self-Test Exercises for Section 2.4 104

104
Overloading Binary Comparison Qperators 105
Overloading Binary Arithmetic Operators 106
Overloading Output and Input Operators 107
Friend Functions 110
Programming Tip: When to Use a Friend Function 111
The Point Class—Putting Things Together 112
Summary of Operator Overloading 115
Self-Test Exercises for Section 2.5 115

The Standard Template Libary and the Pair Class 116
Chapter Summary

Solutions to Self-Test Exercises 118

Programming Projects

120

Contents

CHAPTER 3 CONTAINER CLASSES

3.1 The Bag Class

3.2 Programming Project:

127

The Bag Class—Specification 128
C++ Feature: Typedef Statements Within a Class Definition 129
C++ Feature: The std::size_t Data Type 130
Clarifying the Const Keyword
Part 4: Static Member Constants 134
Older Compilers Do Not Support Initialization of Static Member Constants 135
The Bag Class—Documentation 135
Documenting the Value Semantics 137
The Bag Class—Demonstration Program 137
The Bag Class—Design 139
Pitfall: The value_type Must Have a Default Constructor 140
The Invariant of a Class 140
The Bag Class—Implementation 141
Pitfall: Needing to Use the Full Type Name bag::size_type 142
Programming Tip: Make Assertions Meaningful 142
C++ Feature: The Copy Function from the C++ Standard Library 146
The Bag Class—Putting the Pieces Together 147
Programming Tip: Document the Class Invariant in the Implementation File 147
The Bag Class—Testing 151
Pitfall: An Object Can Be an Argument to Its Own Member Function 151
The Bag Class—Analysis 152
Self-Test Exercises for Section 3.1 153

The Sequence Class 154

The Sequence Class—Specification 154

The Sequence Class—Documentation 157

The Sequence Class—Design 157

The Sequence Class—Pseudocode for the Implementation 160
Self-Test Exercises for Section 3.2 162

3.3 Interactive Test Programs 163

C++ Feature: Converting Input to Uppercase Letters 164
C++ Feature: The Switch Statement 168
Self-Test Exercises for Section 3.3 168

34 The STL Multiset Class and Its Iterator 169

Chapter Summary 176

The Multiset Template Class 169
Some Multiset Members 170
Iterators and the [...) Pattern 170
Pitfall: Do Not Access an lterator’'s ltem After Reaching end() 172
Testing lterators for Equality 173
Other Multiset Operations 173
Invalid Iterators 174
Clarifying the Const Keyword
Part 5: Const Ilterators 174
Pitfall: Changing a Container Object Can Invalidate Its Iterators 174
Self-Test Exercises for Section 3.4 175

Solutions to Self-Test Exercises 176

Programming Projects

179

17

18 Contents

CHAPTER 4 POINTERS AND DYNAMIC ARRAYS

4.1

4.2

4.3

4.4

Pointers and Dynamic Memory 185

Pointer Variables 186

Using the Assignment Operator with Pointers 188
Dynamic Variables and the new Operator 189
Using new to Allocate Dynamic Arrays 190

The Heap and the bad_alloc Exception 193

The delete Operator 193

Programming Tip: Define Pointer Types 194
Self-Test Exercises for Section 4.1 195

Pointers and Arrays as Parameters 196

Clarifying the Const Keyword
Part 6: Const Parameters That Are Pointers or Arrays 201
Self-Test Exercises for Section 4.2 203

The Bag Class with a Dynamic Array 206

Pointer Member Variables 206
Member Functions Allocate Dynamic Memory as Needed 207

Prograr’_pr.rlring Tip: Provide Documentation about Possible Dynamic Memory
ailure

Value Semantics 211

The Destrucior 214

The Revised Bag Class—Class Definition 215

The Revised Bag Class—Implementation 217

Programming Tip: How to Check for Self-Assignment 218
Programming Tip: How to Allocate Memory in a Member Function 221
The Revised Bag Class—Putting the Pieces Together 222

Self-Test Exercises for Section 4.3 224

Prescription for a Dynamic Class 225

Four Rules 225
Special Importance of the Copy Constructor 225

Pitfall: Using Dynamic Memory Requires a Destructor, a Copy Constructor, and an
Overloaded Assignment Operator 226

Self-Test Exercises for Section 4.4 227

Contents

4.5 The STL String Class and a Project 227
Null-Terminated Strings 227
Initializing a String Variable 228
The Empty String 228
Reading and Writing String Variables 229
Pitfall: Using = and == with Strings 229
The strcpy Function 229
The strcat Function 230
Pitfall: Dangers of strcpy, strcat, and Reading Strings 230
The strlen Function 231
The strcmp Function 231
The String Class—Specification 231
Constructor for the String Class 233
Overloading the Operator [] 234
Some Further Overloading 234
Other Operations for the String Class 235
The String Class—Design 235
The String Class—Implementation 236
Demonstration Program for the String Class 238
Chaining the Output Operator 240
Declaring Constant Objects 240
Constructor-Generated Conversions 240
Using Overloaded Operations in Expressions 241
Our String Class Versus the C++ Library String Class 241
Self-Test Exercises for Section 4.5 241

46 Programming Project: The Polynomial 242
Chapter Summary 246

Solutions to Self-Test Exercises 246

Programming Projects 248

CHAPTER 5 LINKED LISTS

5.1 A Fundamental Node Class for Linked Lists 251
Declaring a Class for Nodes 251
Using a Typedef Statement with Linked-List Nodes 252
Head Pointers, Tail Pointers 253
The Null Pointer 254
The Meaning of a Null Head Pointer or Tail Pointer 254
The Node Constructor 254
The Node Member Functions 255
The Member Selection Operator 256
Clarifying the Const Keyword

Part 7: The Const Keyword with a Pointer to a Node, and the Need for Two
Versions of Some Member Functions 257

Programming Tip: A Rule for a Node's Constant Member Functions 258
Pitfall: Dereferencing the Null Pointer 260
Self-Test Exercises for Section 5.1 260

19

20 Contents

5.2 A Linked-List Toolkit 261
Linked-List Toolkit—Header File 262
Computing the Length of a Linked List 262
Programming Tip: How to Traverse a Linked List 265
Pitfall: Forgetting to Test the Empty List 266
Parameters for Linked Lists 266
Inserting a New Node at the Head of a Linked List 268
Inserting a New Node That Is Not at the Head 270
Pitfall: Unintended Calls to delete and new 273
Searching for an Item in a Linked List 275
Finding a Node by Its Position in a Linked List 276
Copying a Linked List 277
Removing a Node at the Head of a Linked List 280
Removing a Node That Is Not at the Head 281
Clearing a Linked List 282
Linked-List Toolkit—Putting the Pieces Together 283
Using the Linked-List Toolkit 284
Self-Test Exercises for Section 5.2 288

63 The Bag Class with a Linked List 289
Our Third Bag—Specification 289
Our Third Bag—Class Definition 289
How to Make the Bag value_type Match the Node value_type 290
Following the Rules for Dynamic Memory Usage in a Class 293
The Third Bag Class—Implementation 294
Pitfall: The Assignment Operator Causes Trouble with Linked Lists 295
Programming Tip: How to Choose Between Approaches 297
The Third Bag Class—Putting the Pieces Together 301
Self-Test Exercises for Section 5.3 302

54 Programming Project: The Sequence Class with a Linked List 305
The Revised Sequence Class—Design Suggestions 305
The Revised Sequence Class—Value Semantics 306
Self-Test Exercises for Section 5.4 307

5.5 Dynamic Arrays vs. Linked Lists vs. Doubly Linked Lists 307
Making the Decision 309
Self-Test Exercises for Section 5.5 309

5.6 STL Vectors vs. STL Lists vs. STL Deques 310
Self-Test Exercises for Section 5.6 312

Chapter Summary 313

Solutions to Self-Test Exercises 313

Programming Projects 317

Contents

CHAPTER 6 SOFTWARE DEVELOPMENT WITH TEMPLATES,
ITERATORS, AND THE STL

6.1

6.2

6.3

6.4

6.5

Template Functions 321

Syntax for a Template Function 323

Programming Tip: Capitalize the Name of a Template Parameter 323
Using a Template Function 324

Pitfall: Failed Unification Errors 324

A Template Function to Swap Two Values 326

Programming Tip: Swap, Max, and Min Functions 326
Parameter Matching for Template Functions 326

A Template Function to Find the Biggest Item in an Array 327
Pitfall: Mismatches for Template Function Arguments 329

A Template Function to Insert an Item into a Sorted Array 329
Self-Test Exercises for Section 6.1 331

Template Classes 331

Syntax for a Template Class 331

Programming Tip: Use the Name Item and the typename Keyword 333
Pitfall: Do Not Place Using Directives in a Template Implementation 334
More About the Template Implementation File 334

Parameter Matching for Member Functions of Template Classes 339
Using the Template Class 339

Details of the Story-Writing Program 342

Self-Test Exercises for Section 6.2 342

The STL's Algorithms and Use of Iterators 343

STL Algorithms 343

Standard Categories of lterators 344
lterators for Arrays 346

Self-Test Exercises for Section 6.3 347

The Node Template Class 347

Functions That Return a Reference Type 348

What Happens When a Reference Return Value Is Copied Elsewhere 350
The Data Member Function Now Requires Two Versions 350

Header and Implementation Files for the New Node 351

Self-Test Exercises for Section 6.4 351

An lterator for Linked Lists 358

The Node lterator 358

The Node lterator Is Derived from std::iterator 360
Pitfall: std::iterator Might Not Exist 361

The Node lterator’s Private Member Variable 361
Node Iterator—Constructor 361

Node Iterator—the * Operator 361

Node Iterator—Two Versions of the ++ Operator 362
Programming Tip: ++p |s More Efficient Than p++ 364
Iterators for Constant Collections 364

Programming Tip: When to Use a Const Iterator 366
Self-Test Exercises for Section 6.5 366

21

22 Contents

6.6 Linked-List Version of the Bag Template Class with an Iterator 367
How to Provide an Iterator for a Container Class That You Write 367
The Bag lterator 368
Why the lterator Is Defined Inside the Bag 369
Self-Test Exercises for Section 6.6 369
Chapter Summary and Summary of the Five Bags 377
Solutions to Self-Test Exercises 378
Programming Projects 380

CHAPTER 7 STACKS

71 The STL Stack Class 383
The Standard Library Stack Class 384
Programming Example: Reversing a Word 385
Self-Test Exercises for Section 7.1 386

7.2 Stack Applications 387
Programming Example: Balanced Parentheses 387
Programming Example: Evaluating Arithmetic Expressions 389
Evaluating Arithmetic Expressions—Specification 389
Evaluating Arithmetic Expressions—Design 390
Evaluating Arithmetic Expressions—Implementation 396
Functions Used in the Calculator Program 397
Evaluating Arithmetic Expressions—Testing and Analysis 397
Evaluating Arithmetic Expressions—Enhancements 398
Self-Test Exercises for Section 7.2 398

7.3 Implementations of the Stack Class 399
Array Implementation of a Stack 399
Linked-List Implementation of a Stack 403
The Koenig Lookup 404
Self-Test Exercises for Section 7.3 404
7.4 More Complex Stack Applications 407
Evaluating Postfix Expressions 407
Translating Infix to Postfix Notation 409
Using Precedence Rules in the Infix Expression 411
Correctness of the Conversion from Infix to Postfix 413
Self-Test Exercises for Section 7.4 417
Chapter Summary 417
Solutions to Self-Test Exercises 417
Programming Projects 419

CHAPTER 8 QUEUES

8.1 The STL Queue 424
The Standard Library Queue Class 425
Uses for Queues 425
Self-Test Exercises for Section 8.1 427

8.2

8.3

8.4

8.5

Queue Applications

Contents

428

Programming Example: Recognizing Palindromes 428

Self-Test Exercises for Middle of Section 8.2 430

Programming Example: Car Wash Simulation 431

Car Wash Simulation—Specification 431

Car Wash Simulation—Design 432

Car Wash Simulation—Implementing the Car Wash Classes 435
Car Wash Simulation—Implementing the Simulation Function 440
Self-Test Exercises for End of Section 8.2 441

Implementations of the Queue Class 443

Array Implementation of a Queue 443

Programming Tip: Use Small Helper Functions to Improve Clarity 446
Discussion of the Circular Array Implementation of a Queue 448
Linked-List Implementation of a Queue 450

Implementation Details 451

Programming Tip: Make Note of “Don’t Care” Situations 453

Pitfall: Which End Is Which 453

Self-Test Exercises for Section 8.3 456

Implementing the STL Deque Class 456

Calling the Destructor and Constructor for the Deque’s value_type ltems 459
Other Variations on Stacks and Queues 460
Self-Test Exercises for Section 8.4 460

Reference Return Values for the Stack, Queue, and Other Classes 460
Chapter Summary 460
Solutions to Self-Test Exercises 462
Programming Projects 463

CHAPTER 9 RECURSIVE THINKING

9.1

9.2

Recursive Functions

Studies of Recursion:

467

A First Example of Recursive Thinking 467

Tracing Recursive Calls 469

Programming Example: An Extension of write_vertical 471
A Closer Look at Recursion 472

General Form of a Successful Recursive Function 475
Self-Test Exercises for Section 9.1 476

Fractals and Mazes 477

Programming Example: Generating Random Fractals 477

A Function for Generating Random Fractals—Specification 478
Design and Implementation of the Fractal Function 480

How the Random Fractals Are Displayed 481

Programming Example: Traversing a Maze 483

Traversing a Maze—Specification 483

Traversing a Maze—Design 485

Traversing a Maze—Implementation 486

The Recursive Pattern of Exhaustive Search with Backtracking 488
Programming Example: The Teddy Bear Game 489

Pitfall: Forgetting to Use the Return Value from a Recursive Call 489
Self-Test Exercises for Section 9.2 490

23

24 Contents

9.3 Reasoning About Recursion 491
How to Ensure That There Is No Infinite Recursion 493
Inductive Reasoning About the Correctness of a Recursive Function 496
Self-Test Exercises for Section 9.3 497

Chapter Summary 498

Solutions to Self-Test Exercises 498

Programming Projects 500

CHAPTER 10 TREES

10.1 Introduction to Trees 505
Binary Trees 505
Binary Taxonomy Trees 508
General Trees 509
Self-Test Exercises for Section 10.1 510

10.2 Tree Representations 510
Array Representation of Complete Binary Trees 510
Representing a Binary Tree with a Class for Nodes 513
Self-Test Exercises for Section 10.2 515

10.3 Binary Tree Nodes 515
Pitfall: Not Connecting All the Links 518
Programming Example: Animal Guessing 519
Animal Guessing Program—Design and Implementation 521
Animal Guessing Program—Improvements 526
Self-Test Exercises for Section 10.3 530

104 Tree Traversals 530
Traversals of Binary Trees 530
Printing the Data from a Tree's Node 535
The Problem with Our Traversals 536
A Parameter Can Be a Function 537
A Template Version of the Apply Function 539
More Generality for the Apply Template Function 540
Template Functions for Tree Traversals 541
Self-Test Exercises for Section 10.4 542

10.5 Binary Search Trees 548
The Binary Search Tree Storage Rules 548
Our Sixth Bag—Class Definition 552
Our Sixth Bag—Implementation of Some Simple Functions 552
Counting the Occurrences of an Item in a Binary Search Tree 553
Inserting a New ltem into a Binary Search Tree 554
Removing an Item from a Binary Search Tree 555
The Union Operators for Binary Search Trees 559
Time Analysis and an lterator 561
Self-Test Exercises for Section 10.5 561
Chapter Summary 561
Solutions to Self-Test Exercises 562
Programming Projects 564

Contents

CHAPTER 11 BALANCED TREES

111 Heaps 570
The Heap Storage Rules 570
The Priority Queue ADT with Heaps 571
Adding an Entry to a Heap 572
Removing an Entry from a Heap 573

11.2 The STL Priority Queue and Heap Algorithms 576
Self-Test Exercises for Sections 11.1and 11.2 577

11.3 B-Trees 577
The Problem of Unbalanced Trees 577
The B-Tree Rules 578
An Example B-Tree 579
The Set ADT with B-Trees 580
Searching for an Item in a B-Tree 585
Inserting an ltem into a B-Tree 587
The Loose Insertion into a B-Tree 587
A Private Member Function to Fix an Excess in a Child 590
Back to the Insert Member Function 591
Employing Top-Down Design 593
Removing an Iltem from a B-Tree 593
The Loose Erase from a B-Tree 594
A Private Member Function to Fix a Shortage in a Child 596
Removing the Biggest Item from a B-Tree 599
Programming Tip: Write and Test Small Pieces 599
Programming Tip: Consider Using the STL Vector 600
External B-Trees 600
Self-Test Exercises for Section 11.2 601
114 Trees, Logs, and Time Analysis 602
Time Analysis for Binary Search Trees 603
Time Analysis for Heaps 603
Logarithms 605
Logarithmic Algorithms 606
Self-Test Exercises for Section 11.3 607
11.5 The STL Map and Multimap Classes 607
Map and Multimap Implementations 608
Chapter Summary 609
Solutions to Self-Test Exercises 609
Programming Projects 612

25

26 Contents

CHAPTER 12 SEARCHING

121 Serial Search and Binary Search 614
Serial Search 614
Serial Search—Apalysis 614
Binary Search 616
Binary Search—Design 617
Pitfall: Common Indexing Errors in Binary Search Implementations 619
Binary Search—Analysis 620
Standard Library Search Functions 624
Functions for Sorted Ranges 624
Functions for Unsorted Ranges 626
The STL search Function 626
Self-Test Exercises for Section 12.1 628
12.2 Open-Address Hashing 628
Introduction to Hashing 628
The Table Class—Specification 631
The Table Class—Design 633
Programming Tip: Using size_t Can Indicate a Value's Purpose 636
The Table ADT—Implementation 636
C++ Feature: Inline Functions in the Implementation File 642
Choosing a Hash Function to Reduce Collisions 642
Double Hashing to Reduce Clustering 643
Self-Test Exercises for Section 12.2 644
12.3 Chained Hashing 645
Self-Test Exercises for Section 12.3 647
12.4 Time Analysis of Hashing 647
The Load Factor of a Hash Table 647
Self-Test Exercises for Section 12.4 650
12.5 Programming Project: A Table Class with STL Vectors 650
A New Table Class 650
Using Vectors in the New Table 651
Template Parameters That Are Constants 651
Template Parameters That Are Functions 651
Implementing the New Table Class 652
Self-Test Exercises for Section 12.5 653
12.6 Hash Tables in the TR1 Library Extensions 654
Chapter Summary 654
Solutions to Self-Test Exercises 655
Programming Projects 658

Contents

CHAPTER 13 SORTING

13.1 Quadratic Sorting Algorithms 660

Selectionsort—Specification 660
Selectionsort—Design 660
Selectionsort—Implementation 662

‘ Selectionsort—Analysis 664
Programming Tip: Rough Estimates Suffice for Big-O 666
Insertionsort 666
Insertionsort—Analysis 670
Self-Test Exercises for Section 13.1 672

13.2 Recursive Sorting Algorithms 672
Divide-and-Conquer Using Recursion 672
C++ Feature: Specifying a Subarray with Pointer Arithmetic 673
Mergesort 675
The merge Function 676
Dynamic Memory Usage in Mergesort 681
Mergesort—Analysis 681
Mergesort for Files 683
Quicksort 683
The partition Function 685
Quicksort—Analysis 689
Quicksort—Choosing a Good Pivot Element 691
Self-Test Exercises for Section 13.2 691

13.3 An O(n log n) Algorithm Using a Heap 692
Heapsort 692
Making the Heap 697
Reheapification Downward 700
Heapsort—Analysis 701
Self-Test Exercises for Section 13.3 702

13.4 Sorting and Binary Search in the STL 702
The Original C gsort Function 702
The STL sort Function 703
Heapsort in the STL 704
Binary Search Functions in the STL 704
The Comparison Parameter for STL Sorting Functions 705
Writing Your Own sort Function That Uses Iterators 706
Chapter Summary 707
Solutions to Self-Test Exercises 708
Programming Projects 709

CHAPTER 14 DERIVED CLASSES AND INHERITANCE

141 Derived Classes 714
How to Declare a Derived Class 716
The Automatic Constructors of a Derived Class 717
Using a Derived Class 718
The Automatic Assignment Operator for a Derived Class 720
The Automatic Destructor of a Derived Class 720
Overriding Inherited Member Functions 721
Programming Tip: Make the Overriding Function Call the Original 722
Self-Test Exercises for Section 14.1 722

27

