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Preface

Entry-exit decisions apply to numerous practical problems. For example,
when to extract oil and when to stop the extraction, when to issue a new policy
and when to end it, and when to let a kind of product enter a market and
when to let the product exit the market, etc. Therefore, entry-exit decision
problems attract a lot of researchers.

There are three approaches to study entryv-exit decisions, namely, real op-
tion, pure probability and optimal stopping. In this monograph, we appeal
to optimal stopping to deal with entry-exit decisions. The main reasons are
as follows. On the one hand, in the real option framework, the regularity
of payoff functions is a priori assumed, while the optimal stopping approach
intends to prove it. On the other hand, although the pure probability and
optimal stopping approaches are both to solve a optimal stopping problem,
we have to calculate density functions of some stopping times if applying the
pure probability approach, which is not easy, whereas the optimal stopping
one avoids such calculations.

We aim to obtain closed-form solutions of optimal entry-exit decisions
for the cases: costs depending on underlying processes, implementation with
delay, and underlying processes following geometric Lévy processes. In addi-
tion, we provide a complete theory for optimal stopping problems with regime
switching, and use it to solve an exit problem.

Many thanks are due to Zheng You-quan and Zhou Qing-long for helpful
conversations. The authors greatly appreciate the help with regard to LaTeX
provided by Pan Jian-yu and Wan Fu-yong . The authors are also grateful to
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the editors of Northeastern University Press for their highly professional and
excellent work.

The publication of the monograph is financed by the Fundamental Re-
search Funds for the Central Universities (Grant No. N142303010).

Errors surely still remain and the authors would deeply appreciate readers’
assistance concerning these.

Zhang Yong-chao Zhang Na
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Overview

Consider an investment as follows.

A firm has an option to invest in a project as well as stop it. To
start the project activity, the firm needs an initial investment cost
to produce a single commodity at a running cost. For simplicity,
let us assume that the firm produces one unit commodity per unit
time when the project is active. Besides, it may also abandon the
project at a terminal investment cost.

What time is optimal to enter the project and what time is optimal to exit
the project? The above problem is the so-called “entry-exit decision” problem
in literature.

Dixit!*® explored this problem under the framework of real option theory,
assuming that the price process of one unit commodity obeys a geometric
Brownian motion. He derived a system of ordinary differential equations by
following a no arbitrage argument and then obtained a semi-closed solution.
However, he did not prove the existence and uniqueness of the solution of the
system before doing numerical analysis.

Shirakawal*®! showed a more explicit solution by employing pure probabilis-
tic analysis under the same assumptions as Dixit’s. In his discussions, density
functions of some stopping times need to be calculated, which is not an easy
thing. Kongsted®™ established a general deterministic limit that corresponds
to Dixit’s model of entry-exit decisions under uncertainty.

Dixit*® considered some extensions without explicit calculations. Tsekre-
kos!*¥ intensively studied one of these extensions that the price process follows
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a geometric mean-reverting process. Another mean-reverting process used in
literature is the exponential Ornstein-Uhlenbeck process. Under the assump-
tion that the price process satisfies an exponential Ornstein-Uhlenbeck pro-
cess, Levendorskii®®! dealt with an entry decision problem and an exit decision
problem after discussing perpetual American options.

Duckworth and Zervos'® and Sgdal“!! modeled the price process via gen-
eral autonomous It diffusions. Duckworth and Zervos!' allowed running
payoff functions to take nonlinear forms and then addressed the problem from
the programming approach. However, in order to get explicit solutions, they
assumed that the initial investment cost and terminal investment cost are
some constants. Sgdal®! used a discount factor approach to investment to
analyse entry-exit decisions. For obtaining explicit solutions, both Duckworth
and Zervos'*® and Sgdal*!! assumed that the price process follows a geometric
Brownian motion.

Boyarchenko and Levendorskii®® studied entry decision problems and exit
decision decision problems in general Lévy process settings via the real option
approach. They adopted Wiener-Hopf factorization, which is a perfect result
in the probability theory, in their discussions.

Under the assumption that the price process satisfies a geometric Brownian
motion whose mean and variance switch between a finite number of regimes,
Hainaut®® investigated entry-exit decisions and obtained a semi-closed solu-
tion subject to determinate times.

The references mentioned above mainly focus on different price processes.
There are some other directions of extending Dixit’s model, for instance, un-
certain costs, multiple entry-exit decisions, investment lags, etc.

Pindyck®” derived an entry decision rule for an irreversible investment
subject to an uncertain running cost (without any initial investment cost and
terminal investment cost), assuming that the value of the project is known with
certainty. In some sense, Choi and Lee™® established a more general model
than Pindyck’s. Then, through the real option approach, they provided a
semi-closed solution of entry-exit decisions.

Brekke and @ksendal” explored multiple entry-exit decisions via solving
an impulse control problem. They obtained an explicit solution by assuming



Overview 3

that the price process obeys a geometric Brownian motion and the costs are
some constants. Johnson and Zervos®” intensively studied multiple entry-exit
decisions. They allowed running payoff functions to take nonlinear forms.
However, in order to get explicit solutions, they assumed that the initial in-
vestment cost and terminal investment cost are some constants and the price
process satisfies a geometric Brownian motion.

Under the same provisos as Dixit’s, investment lags were considered by
Bar-Ilan and Strange®®. They derived a system of ordinary differential equa-
tions by a no arbitrage argument and then obtained a semi-closed solution.
However, they did not prove the existence and uniqueness of the solution
of the system before showing numerical analysis. Applying the probabilistic
approach to the entry-exit decisions with the Parisian implementation delay,
Costeniuc et al.'”! presented an analytic solution to the optimal starting and
stopping levels.

In this monograph, which is based on [45, Chapter 3] and [46-49], we study
entry-exit decisions from the perspective of optimal stopping, and provide ex-
plicit solutions to them. Chapter 1 disposes of entry-exit decisions with linear
costs which may be viewed as a class of uncertain costs. Implementation de-
lay is examined in Chapter 2. In Chapter 3, we deal with the cases where
underlying precesses obey geometric Lévy processes. The last chapter attends
to optimal stopping problems with regime switching. We appeal to the veri-
fication argument, viscosity solution technique and Wiener-Hopf factorization
to solve optimal stopping problems.
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1

Entry-exit decisions with linear costs

Summary: Instead of assuming that costs are constant in classical
research, we assume that they are linear with respect to the price of the
commodity produced by a project. Under this assumption, we obtain
a condition which guarantees that investing in the project is worthless;
additionally, the project may be terminated when the commodity price
is greater than a certain value. In contrast, there are no such results
provided that the costs are constant. Moreover, we provide an explicit
solution of entry-exit decisions if the project is worthy to be invested

in.

1.1 Introduction

We do not assume that costs are constants as in classical literature, but
that they are some linear functions of the commodity price. Therefore, each
cost consists of two parts. One part is fixed, and the other part is proportional
to the commodity price. Consequently, the costs are uncertain. As usual, we
accept that the price process follows a geometric Brownian motion and, for
some integrability reason, the discount rate is greater than the drift of the
geometric Brownian motion.

If the costs are constant, there is always a certain time at which the firm
should enter the project. However, if the costs are some linear functions of
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the commodity price, we obtain a condition which guarantees that the firm
should never enter the project (Theorem 1.5.1 or the conclusion (I) of Theorem
1.5.10). We also obtain an explicit solution of entry-exit decisions provided
that the project is worthy to be invested in (the conclusions @) and 3 of
Theorem 1.5.10).

Assume that the firm has already entered the project. If the costs are
constant, under some provisos, the firm should exit the project when the price
is less than a certain value. However, there is another possibility if the costs are
linear with respect to the commodity price. That is, under some assumptions,
the firm may exit the project so as to get the maximal expected profit when the
price is greater than a certain value (Theorem 1.4.5 and Theorem 1.4.7). As
a comparison, there is no such a result in the case that the costs are constant.

The rest of the chapter is organized as follows. In Section 1.2, we introduce
an elementary theory of optimal stopping problems. In Section 1.3, the model
is described in detail. In Section 1.4, we offer an optimal exit time premised
on the assumption that the firm has already activated the project. In Section
1.5, we obtain an optimal entry-exit decision as to when the firm enters the
project and when exits the project. Some conclusions are drawn in Section
1.6.

1.2 An elementary introduction to optimal stopping problems

Let us turn our attention to more general optimal stopping problems.

The materials in this section are mainly taken from [35, pp. 27-28] and
(39, pp. 231-235]. Let (£2,.#,{%}t>0,P) be a filtered probability space. We
assume that {#; };>( satisfies the usual conditions and .% is the completion of
{0, 2}. Let B = (B(t),t > 0) be a d-dimensional standard Brownian motion.

Fix an open set S C R'*™ and let Y = (Y(t),t > 0) be a diffusion in R
given by

dY (t) = a(t,Y(t))dt + (¢, Y (¢))dB(t), Y(0) =y,

where a : R¥ x R* — R™ and 3 : Rt x R® — R"*? are given two functions

such that a unique strong solution Y exists.
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Define Ts := inf{t > 0 : (¢,Y(t)) ¢ S} and let 7 denote the set of all
stopping times 7 < T&s.
For any 7 € 7 and y € R", we define

7@ =& [ 76¥ @)+ 90 Y0 Lprcan| YO =],

where f : R x R" — R and g : R* x R® — R are two functions such that the
expectation J7(y) exits.

Then the general optimal stopping problem is described as follows.

(1.2.1) Find J(y) and 7* € T such that J(y) = sug_J"'(y) =J" (y).
T€

Now we give a procedure for solving the optimal stopping problem (1.2.1).

(1) Find a function ¢ defined on S and an open set D C SN((0, +00) xR™)
such that the following properties hold.

(1.a) The function ¢ is C! in S.

(1.b) The equality %qb(t,y) + Lo(t,y) + f(t,y) = 0 holds in D, where L is
the infinitesimal generator of the diffusion Y. Moreover, for any (¢,y) € dD
with ¢ > 0, we have ¢(t,y) = g(t,y).

(1.c) The inequality ¢ > g holds in &, and the inequality ¢ > g holds in
D,

(1.d) The inequality 2¢(t,y) + Lé(t,y) + f(t,y) < 0 holds in S\ D.

(2) Verify that the stopping time 7* := inf{t : ¢ > 0,(¢,Y (t)) ¢ D} is an
optimal stopping time and the function J in (1.2.1) is given by J(y) = ¢(0,).
Remark 1.2.1 The above procedure is a modification of that in [39, pp. 234—
235] or [35, p. 29, Theorem 2.2].

1.3 The model

Let B(t) be a one dimensional standard Brownian motion, which denotes
uncertainty in a market, defined on a filtered probability space (£2, #, {.-#; }+>0,
P). Here, {#,;}:>0 satisfies the usual conditions and .%; is the completion of

{0, 2}.
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We assume that the price process P follows
(1.3.1) dP(t) = pP(t)dt + o P(t)dB(t), and P(0) > 0,

where p € R, and o > 0.
Applying Itd’s formula, we deduce that the solution of the equation (1.3.1)
is

(1.3.2) P(t) = P(0) exp [(M - 302) t+ aB(t)] .

The firm is risk neutral. Moreover, the running cost C, the initial invest-
ment cost K; and the terminal investment cost Ko are taken the following
forms:

C(p) = c1p + co,

Ki(p) = k1p + ko,

Ko(p) = lp+lo,
respectively. Here, ¢;, k; and [; are some constants, i = 0, 1, such that ¢y > 0,
ko>0,kyg+1lp>0and k; +1; > 0.

To answer the questions—what time is optimal to enter (exit) the project,
we will solve the optimal problem

Jio(p) :== sup IE[JTO exp(—rt)(P(t) — c1 P(t) — ¢o)dt —

0<r1<70 T

(1.3.3) exp(—r7r) (k1 P(77) + ko) —

exp(=r0) (11 P(r0) + lo)] P(0) =pJ,

where 77 and 7o are stopping times, and r is the discount rate such that r > 0.
As usual (for some integrability reason), we assume that r > p. We call the
stopping times 7; and 7o entry times and exit times, respectively. We refer to
the function Jjo as the maximal expected present value of the project.

1.4 An optimal exit time

In this section, we assume that the firm has already activated the project.
So we may ask at what time the firm should stop the project. This problem
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can be solved by considering the optimal problem

I - EH exp(—rt) (1 — c1) P(8) — co)dt —
(1.4.1) varg L8

exp(—=r70) (1LP(70) + lo)| P(0) = p} |

We want to find a stopping time 7, (called an optimal exit time) such that

Jo(p) =E UO exp(—rt) (1 — e1) P(t) — co)dt —

exp(—rr8) (1 P(75) + 1o)| P(0) = p} ,

and an explicit expression of Jo.

The following lemma is useful in our discussions.

Lemma 1.4.1 The family of random variables {exp [(u — r — ¢%/2)7 + 0 B(7)] :
T € T} is uniformly integrable, where T is the collection of all stopping times.

Proof. Taking a real number « such that 1 < @ < 1+ 2(r — u)/0?, we have

o? a?o?
1.4.2 e 3
( ) a (u T ) + 5 < 0
Define X (t) := exp [(u—r — 0%/2)t + 0B(t)] for any t > 0. Then for any
s < t, we find that

a

E[X(t)%%,] = exp [a (u e —2> g 20 (t—s)+ aaB(s)]

2 2
< X ()%

where we have used the fact that the process

2 2
(exp <__a2a t+ aoB(t)) b2 O)

is a martingale (see [1, p. 288, Corollary 5.2.2]) for the equality and (1.4.2) for

the inequality.
Thus (X (¢)*,t > 0) is a supermartingale with a last element 0.
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Then from Doob’s optional sampling theorem (see [28, p. 19, Theorem
3.22] or [38, p. 9, Theorem 16]), it follows that

E[X(r)%] < X(0)* =1,

for any stopping time 7.
Therefore, according to [38, pp. 8-9, Theorem 11|, the family of random
variables {exp [(u —r—0?2)T + aB(T)] : 7 € T} is uniformly integrable. [

Theorem 1.4.2 Assume that one of the following conditions

@ UL(r—p)—c1>—1andcy <rly,

@ Lr—p)—c=-1andcy<rlp
holds. Then the optimal exit time 7, is given by 75 = 400 a.s., i.e., the firm
should never ezit the project. Furthermore, the function Jo in (1.4.1) is given

& —c co
by Jo(p) = _ﬂ‘p—;

Proof. (1) Define an operator £ by

aC o 1 ,,0%
(1.4.3) L4(E,p) = 3 M3 T3P o

(Warning! Here, £ is not the infinitesimal generator of the price process P.)
For any (s,p) € RT x (0,+00), set f(s,p) := exp(—rs) [(1 — ¢1)p — ¢o] and
g(s,p) := —exp(—rs)(lip + lp). Then, via a direct calculation, we find that

‘C'g(svp) - —f(S,p).

(2) By Ito’s formula, it follows that for s <t
(1.4.4)

t t dg
g(t, P(t)) = g(s, P(s)) + J Lg(u, P(u))ds + J a—p(u, P(u))oP(u)dB(u).

For a nonnegative number s, deﬁne a sequence of stopping times (R(s), k €
N) by Ri(s) := inf{t : t > s, P(t) > k}. Next, for a stopping time 7, define
a sequence of stopping times (7x(s),k € N) by 7x(s) := (7 A k A Ri(s)) V s.
Then using the optional sampling theorem (see [32, p. 53, Theorem 1.86] or
[38, p. 10, Theorem 17]), we have
P(s) = p] =

Tk (s)
(1.4.5) lE“ gi(u P(w))oP(u)dB(u)
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