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Introduction

There are sufficiently many books about modules over arbitrary rings (many of
them are included in the bibliography). At the same time, books on modules over
some specific rings are in short supply. Modules over discrete valuation domains
certainly call for a special consideration, since these modules have specific prop-
erties and play an important role in various areas of algebra (especially of commu-
tative algebra).

This book is the study of modules over discrete valuation domains. It is in-
tended to be a first systematic account on modules over discrete valuation domains.
In every part of mathematics, it is desirable to have many interesting open prob-
lems and a certain number of nice theorems. The theory presented in the book
completely satisfies these conditions.

Discrete valuation domains form the class ot such local domains which are very
close to division rings. However, it is convenient for us to choose such a definition
of a discrete valuation domain under which a division ring is not a discrete valua-
tion domain. A discrete valuation domain is a principal ideal domain with unique
(up to an invertible factor) prime element. In the theory of modules over discrete
valuation domains, the role of prime elements is very important, and the nature of
various constructions related to prime elements is clearly visible. Among discrete
valuation domains, complete (in the p-adic topology) discrete valuation domains
stand out. Typical examples of such domains are rings of p-adic integers and for-
mal power series rings over division rings.

It is well known that all localizations of (commutative) Dedekind domains with
respect to maximal ideals are discrete valuation domains. It follows from the gen-
eral localization principle that it is sufficient to study many problems of the theory
of modules over Dedekind domains in the case of modules over discrete valuation
domains. For example, primary modules over a Dedekind domain coincide with
primary modules over localizations of this ring with respect to maximal ideals.

It is necessary to emphasize close various interrelations between the theory of
modules over discrete valuation domains and the theory of Abelian groups. These
theories have many points of contact. This is a partial case of the principle of
localization of problems, since Abelian groups coincide with modules over the
ring of integers Z which is a commutative principal ideal domain. This implies
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that the theories have close ideas, methods, results, and lines of researches.

In many areas of the theory of Abelian groups, we deal with so-called p-local
groups (i.e., modules over the localization Z,, of the ring Z with respect to the ideal
generated by the prime integer p). The ring Z,, is a subring in the field Q of rational
numbers; Z,, consists of rational numbers whose denominators are not divisible by
p, and p-local groups coincide with Abelian groups (' such that G = qG for all
prime integers ¢ # p. With slight changes, many results on p-local groups and
their proofs remain true for modules over arbitrary discrete valuation domains. In
the theory of Abelian groups, modules over the ring ZP of p-adic integers are very
useful (such modules are called p-adic modules). The ring Zp is the completion in
the p-adic topology of the ring Z and the ring Z,. In addition, Zl, is a complete
discrete valuation domain.

One of central positions in the theory of Abelian groups is occupied by p-
groups, which are also called primary groups. It is appropriate to say that all mod-
ules over a fixed discrete valuation domain can be partitioned into three classes:
primary modules, torsion-free modules, and mixed modules. Abelian p-groups
coincide with primary Z,-modules as well as primary i,,-modules. We note that
primary modules over discrete valuation domains are essentially presented in the
literature by the theory of Abelian p-groups. With a suitable correction, main
definitions, methods, and results of this theory can be transferred to primary mod-
ules. We almost are not involved in this process, since that the theory of Abelian
p-groups is extensively presented in the books of Fuchs [93] and Griffith [126].

In the Kaplansky’s book [166], several important theorems on modules over
discrete valuation domains were included for the first time. There are three more
familiar books which have appreciably affected formation of the theory of modules
over discrete valuation domains. These books are the books of Baer [28] and Fuchs
[92,93]. Some topics related to the theory of endomorphism rings have their origin
in the Baer’s book, where the theory is developed for vector spaces (e.g., see the
studies in Section 15 and Chapter 7). In the light of what has been said on the
theory of Abelian groups, the reference to books of Fuchs is natural. Chapters
4,7, and 8 of our book are related to the books of Krylov—Mikhalev—Tuganbaev
[183] and Gobel-Trlifaj [109].

All main areas of the theory of modules over discrete valuation domains are
presented in the book. The authors try to present main ideas, methods, and the-
orems which can form a basis of studies in the theory of modules over discrete
valuation domains, as well as over some other rings. Some of the items presented
in the book are also included in the papers [185] and [186].

Properties of vector spaces over division rings and their linear operators are
assumed to be familiar; we use them without special remarks.

In comments at the end of chapters, we present some results not included in the
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main text and short historical remarks: we also outline other areas of studies and
call attention to the literature for further examination of the field. Similar remarks
are also presented in some sections. This will help to the reader to pass to the study
of journal papers.

In the beginning of every chapter, we outline the content of the chapter. All sec-
tions contain exercises beginning with Section 2. Some exercises contain results
from various papers. We present 34 open problems which seem to be interesting.
The bibliography is quite complete, although it is possible that we did not consider
some papers.

To work with the book, the reader needs to know basic results of the general
theory of rings and modules. We also use certain some topological and category-
theoretical ideas.

The authors assume that the book is useful to young researchers as well as
experienced specialists. The book can be recommended to students and graduates
studying algebra. We accept the Zermelo—Fraenkel axiomatic system from the set
theory (including the choice axiom and the Zorn lemma which is equivalent to the
choice axiom). The terms ‘class’ and ‘set” are used in the ordinary set-theoretical
sense. The end of the proof of some assertion is denoted by the symbol .

The first chapter is auxiliary. In Chapter 2, we present foundations of the the-
ory of modules over discrete valuation domains. Chapter 3 is devoted to some
questions about endomorphism rings of divisible primary modules and complete
torsion-free modules. In Chapter 4, we study the problem of existence of an iso-
morphism from an abstract ring onto the endomorphism ring of some module. In
Chapter 5. torsion-free modules are studied. In Chapter 6, mixed modules are stud-
ied. In Chapter 7, we analyze the possibility of an isomorphism of two modules
with isomorphic endomorphism rings. In Chapter 8, we consider several questions
on transitive or fully transitive modules.
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Chapter 1

Preliminaries

[n Chapter 1, we consider the following topics:
» some definitions and notation (Section 1);
« endomorphisms and homomorphisms of modules (Section 2):
« discrete valuation domains (Section 3);
« primary notions of the theory of modules (Section 4).

The first two sections contain some necessary standard information about mod-
ules. Some notation and terms are presented. In Section 2, we also consider the
endomorphism ring of the module which is one of important objects of the study
in the book. The material of these sections is included in the book for convenience.
In Section 3 discrete valuation domains are defined and their main properties are
studied. In Section 4, we lay the foundation of the theory of modules over discrete
valuation domains.

1 Some definitions and notation

We assume that the reader is familiar with basic notions of the theory of rings and
modules such that a ring, a module, a subring, an ideal, a submodule, the fac-
tor ring, the factor module, a homomorphism, and other notions. In the text we
permanently use various elementary results on rings and modules (such as isomor-
phism theorems), basic properties and several constructions of rings and modules
(e.g., direct sums), and some standard methods of the work with these objects. It
is impossible to list all these properties. In any case, for reading the book, it is
sufficient to know the theory of rings and modules within one of the three follow-
ing books: F. Anderson and K. Fuller “Rings and categories of modules™ ([1]),
I. Lambek “Rings and modules™ ([198]), F. Kasch “Modules and rings™ ([170]).
The considered (quite simple) category properties, can be also found in the book
of S.MacLane [217]. Sometimes we touch on several aspects of the theory of
topological rings and modules (e.g., see the book [2] of V. Arnautov, S. Glavatsky,
and A. Mikhalev [2]). The two-volume monograph of L. Fuchs [92, 93] is an
acknowledged manual in the theory of Abelian groups.
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We do present here some material related to terminology and notation. Other
required definitions and results will be presented when needed.

All rings considered in the book are associative. By definition, all rings have
identity elements (the only exclusions are Sections 17 and 18). The identity ele-
ment is preserved under homomorphisms: it is contained in subrings and the action
of the identity element on modules is the identity mapping (i.e., modules are uni-
tary).

When we speak about an order in the set of right, left, or two-sided ideals
(two-sided ideals are also called ideals), we always assume the order with respect
to set-theoretical inclusion. Minimality and maximality of ideals are considered
with respect to this order. Each of the three sets of ideals of the given ring forms
a partially ordered set. In fact. we have three lattices. For two right (left or two-
sided) ideals A and B of the ring R, the least upper bound is the intersection AN B
and the greatest lower bound is the sum A + B, where A+ B = {a + b | a €
A, be B}.

If R and S are two rings and p: R — S is a ring homomorphism, then Im(y)
and Ker(y) denote the image and the kernel of the homomorphism . respectively.
The ring of all n x n matrices over the ring S with n > 1 is denoted by S,,.

We specialize some details related to interrelations between decompositions of
rings and idempotents. A subset {e;,...,¢e,} of the ring I? is called a complete
orthogonal system of idempotents if (f = e;,e;e; =0fori # j,and ) ;e = 1.

For a complete orthogonal system of idempotents, we have the Pierce decom-
position of the ring into a direct sum of right ideals:

{e1,...,en} = R=e1RD--- B e, R.

In addition, the right ideal ¢; R is not decomposable into a direct sum of right
ideals if and only if the idempotent ¢; is primitive. This means that every relation
e; = [+ g, where f and g are orthogonal idempotents, implies that either ¢; = f
or ¢; = g. If we additionally assume that the idempotents ¢; are central (therefore,
they are contained in the center of the ring R), then we obtain a decomposition of
the ring 12 into a direct sum of two-sided ideals ¢; 2. In this case, the ideal ¢; 17 is a
ring with identity element e; and the direct sum e, R & - - - @ ¢, I? can be identified
with the product of the rings e K. . ... e, K. The direct product of some family of
rings Ry,.... R,, is denoted by

n
Ry x---x R, or HR,-
i=1
(we can also write By & --- @& R, or @' | R
For a ring R, an element rof Ris c‘llled a non-zero-divisor if sr # 0 and
rs # 0 forevery 0 # s € R. Otherwise, r is called a zero-divisor. Let I? be a
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subring of the ring S. The ring S is called the right classical ring of fractions ot
the ring R if the following conditions hold:

(1) All non-zero-divisors of the ring R are invertible in the ring S.

(2) All elements of the ring S have the form ab~—', where a.b € R and b is a
non-zero-divisor of the ring R.

We say that a ring R satisfies the right Ore condition if for any element a € R
and each non-zero-divisor b € R, there exist elements o',/ € R such that i/ is a
non-zero-divisor and ab’ = ba’.

[t is well known that the ring R has the right classical ring of fractions if and
only if it satisfies the right Ore condition. We obtain that the right classical ring
of fractions of a domain with the right Ore condition is a division ring. The left
classical ring of fractions and the left Ore condition are defined similarly.

Unless otherwise stated, we usually consider left modules; it was mentioned
above that the modules are unitary. Similar to ideals of rings, submodules of the
given module form a partially ordered set with respect to inclusion, and we also
have the lattice consisting of all submodules.

We use the same notation Ker(yp) and Im(y) for the kernel and the image of
the module homomorphism . If p: A/ — N is a homomorphism of modules
and A is a submodule of the module M, then | 4 is the restriction of o to A. The
restriction to A of the identity mapping of the module A is called the embedding
from the submodule A in A/.

The direct sum of modules A;, i € I, where [ is some subscript set, is denoted
by @,  Aior Ay & --- @ A, provided I = {1.2....,n}. We assume that we
have the direct sum A = @B, ; A;. For every subscript i € I, we have the
coordinate embedding >z;: A, — M and the coordinate projection m;: M — A;
(details on direct sums are presented in Section 2). Setting £; = m;¢;, we obtain
an idempotent endomorphism of the module M, ie., e = &;. Clearly, we can
identify 7r; and &; if it is convenient.

We assume that A/ = A® Band x = a+ b, where a € Aand b € B. Then the
elements a and b are the components of the element . More generally, assume that
either M = I—L-E, A; (the direct product of the family of modules A; with 7 € )
or M = P,.; Ai. We write the element . of the module M either in the vector
formx = (....a;....)orin the brief form = = (a;), where a; is the component of
the element . contained in the summand A; (we also say the “coordinate™).

If M is-a module and n is a positive integer, then &, M or M" is the direct
sum of n copies of the module M.

Let M be a left module over a ring R or a left /2-module for brevity. For every
subset X of the module M, we denote by RX the submodule of the module A/
generated by X. The submodule X is the intersection of all submodules of the



4 Chapter 1 Preliminaries

module A/ containing X. This is obvious that Z.X consists of all sums of the form
rixy + -+ rpar,. where r; € Rand 2; € X. If RX = M, then X is called a
generator system of the module M. A module is said to be finitely generated if it
has a finite generator system. We say that M is a cyclic module with generator .»
if Ml = Rux for some x € M.

By definition, the sum Z,E, A; of the submodules A; with 7 € I consists of the
set of all sums of the form a; + --- + a;,. where ai; € A,-J. This sum coincides
with the submodule generated by the union of all submodules A;.

If R and S are two rings, then an R-S-bimodule p Mg is an Abelian group M
such that A/ is a left /?-module and a right S-module and (ra)s = r(xs) for all
elements r € R.x € M,and s € S. The ring R (more precisely. the additive
group of R) can be naturally considered as a left R-module and a right R-module
(these modules are also called regular modules). More precisely, we have an R- -
bimodule R.

We assume that /7 i1s a commutative ring. In this case, every left R-module 1/
can be turned into a right 7-module and conversely with the use of the relation
rr = xrr,where r € IR and x € M. We obtain the I?-R-bimodule M.

In Section 2, we present several familiar properties of induced exact sequences
of modules. Now we consider the following details. A short exact sequence of
modules 0 — A = B 5 €' — 0 is said to be splir if B = Im() & €’ for some
module (" (we have (" = (). Every submodule A of the module A provides an
exact sequence

0—-A3 M5 M/A -0,

where ¢ is an embedding and 7 is the canonical homomorphism such that © —
x+ Aforall »r € M.

Section 2 also contains main properties of the tensor product of modules which
is often used in the book.

The theory of modules over discrete valuation domains and the theory of
Abelian groups are congenial theories. Many sections of these theories are de-
veloped in similar ways. The reason is that discrete valuation domains and the
ring of integers are close to each other, since Abelian groups and modules over the
ring of integers are the same objects. Commutative discrete valuation domains and
the ring of integers are contained in some special class of rings. They are examples
of commutative principal ideal domains.

In some questions of the theory of modules over discrete valuation domains,
categories and the category language are very useful. We give the definition of a
category and consider some important related notions. An additional information
about categories is considered in Sections 24 and 27. In Sections 24 and 29, we
define the following three categories with a module origin: the category of quasi-
homomorphisms, the Walker category, and the Warfield category. These categories
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will be essentially used later.
A class & of objects A. B. (... is called a category if for any two objects
A. B ¢ &, there is a set of morphisms Homg(A. B) with the composition

Homg (A, B) x Homg(B.C') — Homg(A, ()

such that the following two assertions hold.
(1) The composition is associative.
(2) For every object A € &, there exists a morphism 14 € Homg(A, A) such

that 14f = f and gl4 = g every time, when f € Homg(A. B) and ¢ €
Homg (B, A).

The morphism 1 4 is called the identity morphism of the object A.

The category & is said to be additive if the following conditions (3) and (4)
hold.

(3) For any two objects A, B € £, the set Homg (A, B) is an Abelian group and
the composition of morphisms is bilinear, i.e.,

glh +J2) =g/ tgfo and (fi + fa)h = fih+ fah
for all

g € Homg(C.A). fi € Homg(A, B)., and h € Homg(B. D).

(4) There exist finite direct sums in £. This means that for given objects
Ay, ..., A, €€,

there exist an object A € &£ and morphisms ¢; € Homg(A,;, A) such that if
fi € Homg(A;,B) (i = 1,..., n), then there exists the unique morphism
f € Homg(A. B)suchthate, f = f;foralli =1...., n.
The object A is called the direct sum of objects Ay, . ... A, and the morphisms
. —— e, are called embeddings. In this case, we write A = A, ¢ --- @ A,
and also say that there exists a direct decomposition of the object A.
In the additive category &£, the set Homg (A, A) is a ring with identity element 1 4.
which is called the endomorphism ring of the object A; it is denoted by Endg(A).
For two categories C and &, the category C is called a subcategory of € if C
satisfies the following conditions:
(1) All objects of the category C are objects of the category £.
(2) Homg(A, B) € Homg (A, B) for any two objects A, B € C.
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(3) The composition of any morphisms in C is induced by their composition in £.
(4) All identity morphisms in C are identity morphisms in £.

A subcategory C of the category £ is said to be full it Home (A, B) = Homge (A, B)
for any two objects A, B € C.

A morphism [ € Homg(A, B) is called an isomorphism if there exists a mor-
phism ¢ € Homg(B, A) such that fg = 14 and gf = 1p. In this case, we say
that the objects A and B are isomorphic to each other in the category £.

We assume that we have two categories & and D. A covariant (resp.. con-
travariant) functor F': £ — D from the category £ into the category D consists of
the mapping & — D, A — F(A), A € £. and mappings

Homg (A, B) — Homp(F(A), F(B))
(resp.., Homg(A, B) — Homp(F(B).F(A)))

(f — F(f)) such that they preserve the composition of morphisms and identity
morphisms, i.e.,

F(fg) = F(f)F(g) (resp.. F(fg)=F(g)F(f)) and F(l1)=1p)

for all objects and morphisms A, f.g € £.
The identity functor 1¢ of the category £ defined by the relations

lg(A)=A and lg(f)=f

forall A, f € £ is a covariant functor from the category & into €.

Let F' and (& be two covariant functors from a category & into a category D.
A correspondence ¢: F' — ( associating a morphism ¢ 4: F'(A) — G(A) in D
with every object A € & is called a natural transformation ¢: F' — G if for every
morphism f: A — B in the category £, we have the relation F'(f)op = oaG([)
in the category D. If ¢ 4 is an isomorphism for every object A € &, then ¢ is called
a natural equivalence. The morphism ¢ 4 is called a natural isomorphism between
F(A)and G(A).

One says that two categories £ and D are equivalent if there exist two covariant
functors

F:£—-D and G:D—=E&

such that the functor F'(7 (defined as the composition of the functors F" and GG from
the left to the right) is equivalent to the identity functor l¢ and the functor G F is
equivalent to the identity functor 1p. In this case, we say that the functors £ and
G define an equivalence of the categories £ and D.

In the theory of modules additive functors are usually used. A functor F' is said
to be additive if F'(f + g) = F(f) + F(g) for any two morphisms f, g € & such
that the morphism [ + g is defined.
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2  Endomorphisms and homomorphisms of modules

We present some well known definitions and results related to endomorphism
rings. group homomorphisms, and tensor products. In this section I is an arbi-
trary ring.

We write homomorphisms to the left side of arguments. To avoid the use of
anti-isomorphic rings, we define the composition of homomorphisms as follows.
Letw: M — N and 3: N — L be two homomorphisms of modules. Then the
composition «v/3 of «v and /3 is the mapping M — L such that (a3)(a) = 3(a(a))
for every a € M. It is clear that the composition is a homomorphism. In some
works, homomorphisms are written to the right side of the arguments, i.e., (a)a is
used instead of a(a). Then for the composition a /4, we have

(a)(af) = ((a)a) 3, a € M.

Let A/ and N be two R-modules. We denote by Homp (M, N) the set of all
homomorphisms from the module M into the module N. (Sometimes we write
“R-homomorphisms™ for brevity.) The set Homp (M. N) is nonempty, since it
contains the zero homomorphism 0: M — N, where ¢ — 0 forall a € M. We
can define the pointwise addition of homomorphisms, where

(v + F)(a) = ala) + ((a)

fora. 3 € Homp(M,N)and a € M. Then a + /3 is a homomorphism from A
into V.

A homomorphism A — Al is called an endomorphism of the module M. We
set Endp(M) = Homp(A, M). Endomorphisms can be multiplied, where the
product av/# coincides with the composition of the endomorphisms.

Endomorphisms of the module M which are bijections are called automor-
phisms. The identity mapping 157, where 1;(a) = a for all @ € M, is an au-
tomorphism of the module M. Let Autp (M) be the set of all automorphisms of

the module M. There exists the operation of multiplication of automorphisms in
Autp(M).

Theorem 2.1. (a) The set Homp(M, N) is an Abelian group with respect to ad-
dition of homomorphisms.

(b) The set End (M) is an associative ring with identity element.

(¢) The set Autp(M) is a group with respect to multiplication of automorphisms.

It coincides with the group of invertible elements of the ring End (M ).

Proof. (a) The commutativity and the associativity of addition homomorphisms
are directly verified. The zero homomorphism is the zero element. For a ho-
momorphism a: M — N, we define the homomorphism —a: M — N by the



