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In the first volume, we presented a review and synthesis of our theoret-
ical work, available until now only in journal articles, in which we
establish an exact connection between the quantum and classical equa-
tions descrihing the same system. This connection was proved starting
from the basic equations, without using any approximation. For sta-
tionary multidimensional atomic and molecular systems, the connec-
tion between the quantum and classical equations is based on the fact
that the geometric elements of the wave described by the Schrodinger
equation, namely the wave surface and their normals, are given by the
Hamilton—Jacobi equation. For electrodynamic systems composed of
a particle in an electromagnetic field, we established a similar connec-
tion using the fact that the Klein—Gordon equation is verified exactly
by a wave function that corresponds to the classical solution of the rel-
ativistic Hamilton—Jacobi equation.

In this volume, we present applications of the above theory, for the
modeling of the properties of atomic, molecular, and electrodynamic
systems. In the case of the atomic and molecular systems, whose
behavior is described by the Schrédinger equation, the principle of our
calculation method is based on the fact that the wave function and
geometric elements of the wave described by the Schrodinger equation
are mathematical objects which describe the same physical system and
depend on its constants of motion. It follows that we can use the geo-
metric elements of the wave, to calculate the energetic values and the
symmetry properties of the system. Accuracy of our method is compa-
rable to the accuracy of the Hartree—Fock method, for numerous
atoms and molecules.

For electrodynamic systems composed of a particle in an electro-
magnetic field, the connection between the Klein—Gordon and relativ-
istic Hamilton—Jacobi equation is related to a periodicity property,
which leads to an accurate method for studying systems composed of
very intense laser fields and electrons or atoms. We present a series of
applications of this method, such as the calculation of angular and
spectral distributions of the radiations generated at interactions



iv Introduction

between very intense laser beams and electron plasmas or relativistic
electron beams. Our results are in good agreement with experimental
data from literature. The study of these systems is particularly impor-
tant, due to the recent emergence of a new generation of ultraintense
lasers, whose applications can be predicted using the model described
here.

This volume is structured into three chapters, numbered by 1, 2,
and 3. Chapters 1 and 2 present wave models for the calculation of the
energies and symmetry properties for atomic and molecular systems,
while Chapter 3 presents models for the properties of radiations gener-
ated at the interaction between very intense laser beams and electron
plasmas, electron beams, or atomic gases. For completeness, in
Appendices we include the programs which are used for the numerical
calculations. The equations are written in the International System.

This book presents applications of the theoretical models, which are
described in the first volume, entitled “Theory of Quantum and Classical
Connections in Modeling Atomic, Molecular and Electrodynamic
Systems.” This volume will be referred as “Volume I” throughout the
present book.
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Wave Model for Atomic Systems

Abstract

In the first chapter from Volume I, we have shown that the normal
curves C of the wave surface of a system described by the Schrédinger
equation, can be used to calculate the constants of motion of the sys-
tem. We show that the motions of the electrons can be separated, and
the projection of the C curve from the R* space of coordinates on the
space X, Va.. Z, Of the electron e, denoted by C,, can be calculated
with the aid of the central field approximation. Our method is similar
to the central field method, applied in the frame of the atomic and
molecular orbitals model. The energy of the system is calculated with
the aid of the Bohr quantization relation, which is valid for the C,
curves. The accuracy of our calculations is comparable to the accuracy
of the Hartree—Fock method.

Key Words: wave surface; wave surface normals; Hamilton—Jacobi
equation; constants of motion; energetic values; Bohr quantization
relation; central field approximation; central field method; geometrical
symmetries; periodic solutions

1.1 GENERAL CONSIDERATIONS

In this chapter, we review the applications of the wave model presented
in the first chapter of Volume I to the case of atomic systems, which
were treated in the papers (Popa, 1998b, 1999b, 2008a, 2009a).

The central idea of our approach is that the wave surface and its
normals can be used to study the properties of the system, just as well
as the wave function. This is because the wave surface and its normals
are mathematical elements of the wave described by Schrodinger
equation, and depend on the constants of motion of the system. More
specifically, we calculate the curves C, with the aid of the central
field method, in a similar manner as the atomic orbital wave functions



2 Applications of Quantum and Classical Connections

Table 1.1 Values of L and p,; for the Atoms Analyzed in This Chapter

Atom State Spectral Term Por

Helium 152 'Sy 0

Lithium 1s%2s Sin 0

Lithium 1s22p Pin h/2
Beryllium 1522s 'So 0

Boron 15225%2p Pin 2
Carbon 1s22s22p? *P, h2
Nitrogen 1s22s*2p’ *Sin 0

Oxygen 1s22s%2p* ’P, 1 w2

W, are calculated in the frame of the atomic orbital method.
This similitude explains the fact that the accuracy of our method is
comparable to the accuracy of the Hartree—Fock method. In addition,
our calculations lead to symmetry properties of the C, curves, which
are similar to the symmetry properties of the wave function.

In virtue of Eq. (1.52) from Volume I, the curve C corresponds to
the same constants of motion as those resulting from the Schrodinger
equation. For example, the total angular momentum of the curve C is
per =hy/L(L+ 1), where L is the corresponding quantum number.
The value of L can be found from the expression of the spectral term
corresponding to a given element, as it results from Table 1.1. Using
the data from Landau (1991), in this table we give the spectral terms
and the values of L and pgr for all the atoms, which will be analyzed
in this chapter.

1.2 SOLUTION FOR HELIUM-LIKE SYSTEMS

The helium-like systems (He, Li*, Be?*, B>", and so on) are composed
of a nucleus and two 1s electrons, which are denoted by e; and e;. The
corresponding C, curves, for a = 1,2, are the periodic solutions of the
equations of motion of the electrons. In a Cartesian system of coordi-
nates with origin at nucleus, these equations are:

Ki\Zr,  Ki(F—TF)  d7F,
— + =m
3 IFa = 7/’ de?

with a,b=1,2 and a#b (1.1)
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where 7, is the position vector of the electron e, and K, is given by
Eq. (B.3) from Volume I. The system (Eq. (1.1)) has the following
solution:

Fil=—F=F, F-k=F k=0, %=—-%=V (1.2)

It follows that the motions of the electrons are separated, and the
solution of the system (Eq. (1.1)) reduces to the solution of the follow-
ing equation:

K\ ZF d’7,
- 'r3" 2 = PR where Z,=Z — 512 (1.3)
a
and sj2. = 571, = 1/4. Here, Z, has the significance of an effective order
number while 515, and 5,1, have the significance of reciprocal screening
coefficients of the electrons e; and es.

In virtue of Eq. (1.3), written for a =1 and a = 2, we have

_m dr1 2__KIZI _m dr2 2_K|Z|
E"E(a) " EZ“E(E o

where E, and E, are the total energies of the electrons e; and e,. It fol-
lows that the total energy is E = E; + E,, where, due to the symmetry,
E, = E,. We note that one half of the electrostatic interaction energy
between the two electrons enters in the expression of E; through the
quantity 513, from the expression of Z;. The other half of the interac-
tion energy enters in the expression of E,.

The relation (1.3) is the equation of a motion in central field. It fol-
lows that the C; curve is an ellipse in the xy plane and, in virtue of
Eq. (1.2), the curve C; is an ellipse symmetrical to C; with respect to
the nucleus, as shown in Figure 1.1A.

Since the motions of the electrons are separated, we apply the quantiza-
tion condition (1.43) from Volume I for the electron e; and find its energy,
which is E. Since its expression is given by Eq. (B.10) from Volume I, we
have:

ZZ
E:E1+E2=2E]=—2Roon—21 (1.5)
1
The total angular momentum is:
Per =Pa1 + Paa = 2Pg1 = pork (1.6)

where p,, and py, are the angular moments corresponding to the curves
() and C;, which are equal.
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Figure 1.1 (A) C\ and C; curves for helium-like systems. (B) Quasilinear trajectories for the 1s* states.

In agreement with the data from Table 1.1, it follows that the angular
moments of the C; and C, curves have negligible values, and we have:

pol=pp=c with e«h (1.7)

where ¢ is a very small positive number. It follows that the C; and C;
curves are ellipses with eccentricity e very close to unity, for which the
following inequality is strongly fulfilled: 7,, « r3s. These curves are qua-
silinear along the ox axis, as shown in Figure 1.1B. For these curves,
the value of the energy given by Eq. (1.5) must be corrected, taking
into account the average spin magnetic interaction energy of the elec-
trons (Gryzinski, 1973):

L= | [ ——
T1dn T1 Jr
where 7, given by Eq. (B.11) from Appendix B of Volume I, is the period
of the electrons motion, while 1;, 1, and B, B, are, respectively, the
magnetic moments and magnetic induction vectors of the two electrons:
eh = _ o [3dE,-d)
b— —_— — _—— 1.9
M= =, and B=g [ a5 & (1.9)
a similar relation being valid for Bj. In the above relations, y is the
magnetic permeability of vacuum and d is the vector having its origin
on the electron e, and the tip on the electron e;.



Wave Model for Atomic Systems 5

In Section 1.3, we prove that E,,;, is given by the following relation:

zZ?

Emis=Ro —5
8n3

(1.10)

We use normalized quantities: the energies are normalized to R,
and distances to 2a¢. The normalized quantities are underlined. For
example, E,,, = Em;s/R. Introducing the correction term E,,  in
Eq. (1.5), the normalized expression of the total energy becomes:

2z z)”

E=2E +E .=——
= =1 =mls n% 8’1?

(1.11)

where Z) =Z —1/4 and n; = 1.

The experimental value of the total energy, denoted by Eeyp,
is obtained by summing the two ionization energies of helium.
The experimental ionization energies are taken from Lide (2003).
In Table 1.2, we give a comparison between the experimental value
of the total energy of helium and the theoretical values, calculated
with the aid of Eq. (1.11), and in papers from literature, with the aid
of the Hartree—Fock method (Slater, 1960; Hartree, 1957; Coulson,
1961).

For ions with the same structure as helium, E, is the sum of the
last two ionization energies. The comparison between the theoretical
and experimental values of the total energy for helium and for ions
with the same structure is presented in Table 1.3.

1.3 EVALUATION OF THE CORRECTION TERM Eps

The calculation of E,;, is based on the following assumptions:

(al.l) The vectors z; and 1z, are normal to the ox axis, as shown in
Figure 1.1B.

(al.2) The total magnetic moment is equal to zero, corresponding to
the 1s? states of helium-like systems.

(al.3) We suppose that the magnetic forces act only as a perturbation,
and it does not change the elliptic character of the C; and C;
curves. When calculating the integral from Eq. (1.8), we
approximate these curves by their projections on the xoy plane.
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Table 1.2 Normalized Values of the Total Energy Calculated by Popa (2008a, 2009a)

and in Literature, with the Aid of the Hartree

Fock Method, as Compared to

Experimental Values

Atom E (Our Model) E (Literature) E,
Helium —5.83562 —5.723359* ~5.80692°
—5.7233598¢
—5.7233600¢
Lithium (1s22s state) —14.9563 —14.8654514° ~14.95634"
—14.8654516%
—14.8654475°
Lithium (1s22p state) -14.8174 —14.760174 —14.821478
—14.760382"
Beryllium ~29.2533 —29.146044* ~29.33766"
—29.146042¢
—29.146042¢
Boron —49.1475 —49.058114° —493177°
—49.058116¢
—49.058114°
Carbon —75.5248 —75.377224° ~75.7133%
—175.377232¢
—75.377224°
Nitrogen -109.018 —108.80185° —109.2266°
—108.80187¢
108.80184°
Oxygen —149.428 —149.61874° —150.2206°
—149.61879¢
—149.61876°
The values are given in Rydbergs.
“Huzinaga and Aranu (1970).
bLide (2003).
“Clementi and Roetti (1974).
9Koga et al. (1993).
“de Castro and Jorge (2001 ).
fLadner and Goddard (1969).
ESlater (1960).
%Beebe and Lunell (1975).

Assumption (al.3) is sustained by the fact that the attraction
force of the nucleus is overwhelmingly dominant over the most
part of the trajectory. We have to check that this force is domi-
nant even in the configuration where the Lorentz force has the
maximum value in the vicinity of the nucleus.
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Table 1.3 Theoretical and Experimental Normalized Values of the Total Energy for

7

4
System He Li" Be** B**
State 15 15 1s? 1s?
E —5.83562 —14.555 —27.2173 —43.831
) —5.806921 —14.56004 —27.31391 —44.07097
System - Li Be* B**
State - 1s%2s 15%2s 15225
S3le - 0.854942 0.824677 0.80852
S13e — 0.0013792 0.0031737 0.0045637
E - —14.9563 —28.5522 —46.6073
£ - —14.956336 —28.65244 —46.85889
System - Li Be* B*
State - 152p 1s%2p 15%2p
Sile - 0.979092 0.956543 0.941069
S13¢ - 0.000831799 0.00257599 0.00415845
E - —14.8174 —28.2684 —46.1839
ﬁepr = —14.82147 —28.36230 —46.41877
The values are given in Rydbergs.
“Lide (2003).
®Slater (1960).

In virtue of Eq. (1.6), we obtain the total orbital magnetic moment:

e
2m

The total magnetic moment is:

e ==
it T
Pot um

i = Pgr Ty T 12y

(1.12)

(1.13)

With the aid of assumption (al.2), we have iy =0. We write this
relation by components, taking into account Egs. (1.12), (1.13)
and assumption (al.1), and have —(e/m)park + py,j + pik + py, j +

i,k = 0, from where obtain:

e
Mz T oz = Do) and  py, = —py,

(1.14)

From relation pf = ui, + pf, =p3=p3, +p3, and Eq. (1.14), we
have pu;,= *p,,. From Eq. (1.14), we have also pu,, + p,, >0,
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resulting that u;, = p,,. From this relation, together with Egs. (1.7)
and (1.14), we obtain:
e

ot (1.15)

e
Hiz = Moz = ﬁpm <
From the first relation of Egs. (1.9) and (1.15), we have:

Pip = Mo, < fhy (1.16)
Using Eqgs. (1.14) and (1.16), we obtain:

Bi=pyj and = —py) (1.17)

as shown in Figure 1.1B.

Figure 1.2A shows the forces which act on the electrons, when the
electrons approach the nucleus: the forces in the radial direction, F)
and F,, the Lorentz forces, F,, and F,;, and the repelling forces
between the two electrons, F,; and F,;. It results that the C; and C,
curves are slightly different from the elliptic trajectories described by
Egs. (B.1) and (B.2) from Volume I. In Figure 1.2B, we show the pro-
jection of these curves on the plane xy, where ~ is the angle between
the velocity vector v; and the oy axis, corresponding to 6, = /2.

A) 1Y (B) ty
o
ﬁ1 e1 ﬁm1 C1
_____ y /
- e
u R/ _YB; v :
Ff1 u
Z o o m X
T n -rp N i
E ul fo
r2 V.
u 2
R 51 e,
m2 4
I»-‘z €2 Cz
Fez

Figure 1.2 (A) Configuration of the electrons in the vicinity of nucleus for 1s* states. (B) Projection of the C,
and C; curves on the xy plane.
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The C; and C; curves have a spatial configuration in the vicinity of
the nucleus, where the Lorentz forces cannot be neglected. When the
electrons e; and e; move toward the nucleus, the forces F,, and F,»
act in the direction —k, as illustrated in Figure 1.2A. It follows that
the electrons are situated in the domain corresponding to z <0. When
the electrons move away from the nucleus, the forces F,,; and F,; act
in the direction k, and the electrons are situated in the domain for
which z> 0.

In virtue of assumption (al.3), we approximate the C; and G
curves by their projections on the xy plane. From Eq. (1.2), we have
71 = — F2. For simplicity, we write 7{ =7 and 6; = 6. From these rela-
tions, together with Egs. (1.8) and (B.1) from Volume I, we have:

1 _ 2 m (M _ rdr
Ens=——| myBydt=—— —J 1, B 1.18
: nL“‘ ’ n V2E ), "7 S = D =) (L15)

From assumption (al.3), we can write d ~2F, = 27. From this rela-
tion, together with Egs. (1.9) and (1.18), we have:

Epls = _3.@ m Jw [12(7'/71)(7'212) By 'ﬁz] rdr
T T Ay 2R @0’ @n* | o —n0=1u)
(1.19)

m

We have 7=rcosfi+rsinfj, and from Eq. (1.17), we obtain
Fefiy =rp sin@, 7, = —ru,sin6, and G, - i, = —p3. On the other
hand, from Eq. (B.8) of Volume I, we have |E||=(K\Z))/rpm.
Introducing these relations in Eq. (1.19), we have:

(1.20)

2 M . 2
B = M Mo [mry 7 where [= J (2 — 3 cos® B)dr
4t 4n \ 2K, Z, rm PPA/(rM — 1) — Tm)

In Appendix A, we prove that the processing of Eq. (1.20) leads to
the expression of the correction term E,,,, which is given by
Eq. (1.10).

1.4 SOLUTION FOR LITHIUM-LIKE SYSTEMS

1.4.1 The States 1s2s

The lithium-like systems (Li, Be*, B**, C3*, and so on) are composed
of a nucleus and three electrons. The 1s electrons are denoted by e
and e, while the 2s electron is denoted by e;.
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We consider the following assumptions (Gryzinski, 1973; Popa,
2008a):

(al.4) The motion of the 1s electrons is like in the helium atom, and it

is not influenced significantly by the motion of the 2s electron.
This assumption is strongly sustained by the fact that the mean
distance between a 1s electron and nucleus is much smaller than
the mean distance between the 2s electron and nucleus. The C,
and C; curves corresponding to the 1s electrons are quasilinear.
In a Cartesian system of coordinates with origin at nucleus
(Figure 1.3), we have r; = ry, rp; =0, and rpy =0. They are situ-
ated in the plane xoy, very close to the ox axis, as illustrated in
Figure 1.3A.

(al.5) The 2s electron has a quasilinear motion, and the C; curve is sit-

uated in the plane yoz, very close to the oy axis. The following
relation is valid: r,3 0. The assumption is sustained by the fact
that for this configuration the energy of the system is minimum.

Our solution of the equations of the electron motion is based on a

central field method, which has the following stages.
1.4.1.1 Definition of the Screening Coefficients

Since the motions of the e; and e; electrons are symmetrical, the equa-

tion of the energy can be written as:

E = — _Z_K_] T (dr3)2 —+ _—.ZK]'
e

+2

dr

_(Z-su)Ky  om (drl

r3 2 7 2 E

(A) 4
Twa
83 r3
B3
Gy
-Tuz 2 0PI AN it x
CZ € n e1 C1

Figure 1.3 Configuration of the curves Cy, Cy, and C; for the 1s*2s (A) and 1s*2p (B) states of lithium.



