Quantum Machine Learning
What Quantum Computing
Means to Data Mining

BT B ST B

YE U8 a1 i1 5y ik

'SEVIER
;EmB\ uﬁ ﬁ{

HARPNNSTH TF F HNOLOG LJ




&= Quantum Machine Learning What Quantum Computing Means to Data Mi

e

. . %maiﬁg |
- *
ME ® [&F] Wittek, P. (#4RIR) Ha

A R ey T B A
I

78T HARBIN INSTITUTE OF TECHNOLOGY PRESS




EiRFAFEF 08-2015-062 =

Quantum Machine Learning What Quantum Computing Means to Data Mining
Peter Wittek

ISBN ;9780128009536

Copyright © 2014 by Elsevier Inc. All rights reserved.

Authorized English language reprint edition published by Elsevier ( Singapore) Pte Ltd. and Harbin Institute of
Technology Press

Copyright © 2016 by Elsevier ( Singapore) Pte Ltd. All rights reserved.

Elsevier (Singapore) Pte Litd.

3 Killiney Road, #08-01 Winsland House I, Singapore 239519

Tel: (65)6349-0200 Fax; (65) 6733-1817

First Published 2016

2016 FHI

Printed in China by Harbin Institute of Technology Press under special arrangement with Elsevier ( Singapore )
Pte Ltd. This edition is authorized for sale in China only, excluding Hong Kong SAR, Macao SAR and Taiwan.
Unauthorized export of this edition is a violation of the Copyright Act. Violation of this Law is subject to Civil
and Criminal Penalties.

B ENRH Elsevier (Singapore) Pte Ltd. FEAUM /R EE Tlk K2 AL 76+ B KRE S A K &
7o ABRAREFTEEN(FEERE RIIULEEE) HR AR aE, RSFTZ2H0, 0 hiER
EAER: 2 RE RN BRI

ABEHIKWEA Elsevier Bithinss , TInEEPHHE,

EEERS B (CIP) ¥R

B FLEE T P IR & 7118 % = Quantum Machine Learning What Quantum
Computing Means to Data Mining; 5% 3/ ( £ ) 4E45 52 ( Wittek, P. ) 3. —M/RIE . M /RIE T
kKA A ,2016. 1

ISBN 978 —7 —5603 — 5759 — 1

1.0 0.04%.. . OFdERE-NH-BFh¥ 8%k
IV.D0413.1 -39

o E R A B 4548 CIP Bl %~ (2015) 5 291576 5

KIUFE XS

TERE Kakr BRE

HE®RIT #EE

HRET M/RE TR R

M /RETTR R X ZEMEA 105 #B4s 150006
0451 — 86414749

http ; //hitpress. hit. edu. cn

M /REETT TR REERR

787mmx1092mm 1/16 EN3K 12 F# 260 TF
2016 4E 1 A5 1 A 2016 4E 1 A% 1 WEIRI
ISBN 978 —7 — 5603 —5759 — 1

98.00 7T

H
SSoap N P2 OEE W

(a2 i k[ T2 () 52 , Rk 97 BT R 46 )



Preface

Machine learning is a fascinating area to work in: from detecting anomalous events
in live streams of sensor data to identifying emergent topics involving text collection,
exciting problems are never too far away.

Quantum information theory also teems with excitement. By manipulating particles
at a subatomic level, we are able to perform Fourier transformation exponentially
faster, or search in a database quadratically faster than the classical limit. Superdense
coding transmits two classical bits using just one qubit. Quantum encryption is
unbreakable—at least in theory.

The fundamental question of this monograph is simple: What can quantum
computing contribute to machine learning? We naturally expect a speedup from
quantum methods, but what kind of speedup? Quadratic? Or is exponential speedup
possible? It is natural to treat any form of reduced computational complexity with
suspicion. Are there tradeoffs in reducing the complexity?

Execution time is just one concern of learning algorithms. Can we achieve higher
generalization performance by turning to quantum computing? After all, training
error is not that difficult to keep in check with classical algorithms either: the
real problem is finding algorithms that also perform well on previously unseen
instances. Adiabatic quantum optimization is capable of finding the global optimum
of nonconvex objective functions. Grover’s algorithm finds the global minimum in a
discrete search space. Quantum process tomography relies on a double optimization
process that resembles active learning and transduction. How do we rephrase learning
problems to fit these paradigms?

Storage capacity is also of interest. Quantum associative memories, the quantum
variants of Hopfield networks, store exponentially more patterns than their classical
counterparts. How do we exploit such capacity efficiently?

These and similar questions motivated the writing of this book. The literature on the
subject is expanding, but the target audience of the articles is seldom the academics
working on machine learning, not to mention practitioners. Coming from the other
direction, quantum information scientists who work in this area do not necessarily
aim at a deep understanding of learning theory when devising new algorithms.

This book addresses both of these communities: theorists of quantum computing
and quantum information processing who wish to keep up to date with the wider
context of their work, and researchers in machine learning who wish to benefit from
cutting-edge insights into quantum computing.



vi Preface

I am indebted to Stephanie Wehner for hosting me at the Centre for Quantum
Technologies for most of the time while I was writing this book. I also thank Antonio
Acin for inviting me to the Institute for Photonic Sciences while I was finalizing the
manuscript. I am grateful to Sdndor Dardnyi for proofreading several chapters.

Peter Wittek
Castelldefels, May 30, 2014



Contents

Preface

Notations

Part One Fundamental Concepts

1 Introduction

1.1
1.2
1.3
1.4
1.5

Learning Theory and Data Mining

Why Quantum Computers?

A Heterogeneous Model

An Overview of Quantum Machine Learning Algorithms
Quantum-Like Learning on Classical Computers

2  Machine Learning

2.1
2.2
23
24
25
2.6
2.7

Data-Driven Models

Feature Space

Supervised and Unsupervised Learning
Generalization Performance

Model Complexity

Ensembles :

Data Dependencies and Computational Complexity

3  Quantum Mechanics

3.1
3.2
33
34
33
3.6
3.7
38
3.9

States and Superposition

Density Matrix Representation and Mixed States
Composite Systems and Entanglement
Evolution

Measurement

Uncertainty Relations

Tunneling

Adiabatic Theorem

No-Cloning Theorem

4 Quantum Computing

4.1
42
4.3
44

Qubits and the Bloch Sphere
Quantum Circuits

Adiabatic Quantum Computing
Quantum Parallelism



Contents

4.5 Grover’s Algorithm
4.6 Complexity Classes
4.7 Quantum Information Theory

Part Two Classical Learning Algorithms

5  Unsupervised Learning
5.1 Principal Component Analysis
5.2 Manifold Embedding
5.3 K-Means and K-Medians Clustering
5.4 Hierarchical Clustering
5.5 Density-Based Clustering

6  Pattern Recognition and Neural Networks
6.1 The Perceptron
6.2 Hopfield Networks
6.3 Feedforward Networks
6.4 Deep Learning
6.5 Computational Complexity

7  Supervised Learning and Support Vector Machines

7.1 K-Nearest Neighbors

7.2 Optimal Margin Classifiers

7.3 Soft Margins

7.4 Nonlinearity and Kernel Functions
7.5 Least-Squares Formulation

7.6 Generalization Performance

7.7 Multiclass Problems

7.8 Loss Functions

7.9 Computational Complexity

8  Regression Analysis
8.1 Linear Least Squares
8.2 Nonlinear Regression
8.3 Nonparametric Regression
8.4 Computational Complexity

9  Boosting
9.1 Weak Classifiers
9.2 AdaBoost
9.3 A Family of Convex Boosters
9.4 Nonconvex Loss Functions

49
51
52

55

57
57
58
59
60
61

63
63
65
67
69
70

73
74
74
76
77
80
81
81
83
83

85
85
86
87
87

89
89
90
92
94



Contents

il

Part Three Quantum Computing and Machine Learning

10

11

12

13

14

Clustering Structure and Quantum Computing
10.1 Quantum Random Access Memory

10.2 Calculating Dot Products

10.3 Quantum Principal Component Analysis
10.4 Toward Quantum Manifold Embedding

10.5 Quantum K-Means

10.6 Quantum K-Medians

10.7 Quantum Hierarchical Clustering

10.8 Computational Complexity

Quantum Pattern Recognition
11.1 Quantum Associative Memory
11.2 The Quantum Perceptron

11.3 Quantum Neural Networks
11.4 Physical Realizations

11.5 Computational Complexity

Quantum Classification

12.1 Nearest Neighbors

12.2 Support Vector Machines with Grover’s Search

12.3 Support Vector Machines with Exponential Speedup
12.4 Computational Complexity

Quantum Process Tomography and Regression

13.1 Channel-State Duality :

13.2 Quantum Process Tomography

13.3 Groups, Compact Lie Groups, and the Unitary Group
13.4 Representation Theory

13.5 Parallel Application and Storage of the Unitary

13.6 Optimal State for Learning

13.7 Applying the Unitary and Finding the Parameter for the Input State

Boosting and Adiabatic Quantum Computing

14.1 Quantum Annealing

14.2 Quadratic Unconstrained Binary Optimization

14.3 Ising Model

14.4 QBoost

14.5 Nonconvexity

14.6 Sparsity, Bit Depth, and Generalization Performance
14.7 Mapping to Hardware

14.8 Computational Complexity

Bibliography

97

99

99
100
102
104
104
105
106
107

109
109
114
115
116
118

119
119
121
122
123

125
126
127
128
130
133
134
136

139
140
141
142
143
143
145
147
151

153



Notations

TEENTZA~NETQEmAAQ -

indicator function

set of complex numbers

number of dimensions in the feature space
error

expectation value

group

Hamiltonian

Hilbert space

identity matrix or identity operator
number of weak classifiers or clusters, nodes in a neural net
number of training instances
measurement: projective or POVM
probability measure

set of real numbers

density matrix

Pauli matrices

trace of a matrix

unitary time evolution operator

weight vector '

data instance

matrix of data instances

label

transpose

Hermitian conjugate

norm of a vector

commutator of two operators

tensor product

XOR operation or direct sum of subspaces



Part One

Fundamental Concepts



Introduction

The quest of machine learning is ambitious: the discipline seeks to understand
what learning is, and studies how algorithms approximate learning. Quantum machine
learning takes these ambitions a step further: quantum computing enrolls the help of
nature at a subatomic level to aid the learning process.

Machine learning is based on minimizing a constrained multivariate function, and
these algorithms are at the core of data mining and data visualization techniques. The
result of the optimization is a decision function that maps input points to output points.
While this view on machine learning is simplistic, and exceptions are countless, some
form of optimization is always central to learning theory.

The idea of using quantum mechanics for computations stems from simulating
such systems. Feynman (1982) noted that simulating quantum systems on classical
computers becomes unfeasible as soon as the system size increases, whereas quantum
particles would not suffer from similar constraints. Deutsch (1985) generalized the
idea. He noted that quantum computers are universal Turing machines, and that
quantum parallelism implies that certain probablhstIc tasks can be performed faster
than by any classical means.

Today, quantum information has three main specializations: quantum computing,
quantum information theory, and quantum cryptography (Fuchs, 2002, p. 49). We
are not concerned with quantum cryptography, which primarily deals with secure
exchange of information. Quantum information theory studies the storage and
transmission of information encoded in quantum states; we rely on some concepts
such as quantum channels and quantum process tomography. Our primary focus,
however, is quantum computing, the field of inquiry that uses quantum phenomena
such as superposition, entanglement, and interference to operate on data represented
by quantum states.

Algorithms of importance emerged a decade after the first proposals of quantum
computing appeared. Shor (1997) introduced a method to factorize integers expo-
nentially faster, and Grover (1996) presented an algorithm to find an element in
an unordered data set quadratically faster than the classical limit. One would have
expected a slew of new quantum algorithms after these pioneering articles, but the
task proved hard (Bacon and van Dam, 2010). Part of the reason is that now we expect
that a quantum algorithm should be faster—we see no value in a quantum algorithm
with the same computational complexity as a known classical one. Furthermore, even

Q Machine L ing. http://dx.doi.org/10.1016/B978-0-12-800953-6.00001-3
© 2014 Elsevier Inc. All rights reserved.




4 Quantum Machine Learning

with the spectacular speedups, the class NP cannot be solved on a quantum computer
in subexponential time (Bennett et al., 1997).

While universal quantum computers remain out of reach, small-scale experiments
implementing a few qubits are operational. In addition, quantum computers restricted
to domain problems are becoming feasible. For instance, experimental validation of
combinatorial optimization on over 500 binary variables on an adiabatic quantum
computer showed considerable speedup over optimized classical implementa-
tions (McGeoch and Wang, 2013). The result is controversial, however (Rgnnow
etal, 2014).

Recent advances in quantum information theory indicate that machine learning
may benefit from various paradigms of the field. For instance, adiabatic quantum
computing finds the minimum of a multivariate function by a controlled physical
process using the adiabatic theorem (Farhi et al., 2000). The function is translated to
a physical description, the Hamiltonian operator of a quantum system. Then, a system
with a simple Hamiltonian is prepared and initialized to the ground state, the lowest
energy state a quantum system can occupy. Finally, the simple Hamiltonian is evolved
to the target Hamiltonian, and, by the adiabatic theorem, the system remains in the
ground state. At the end of the process, the solution is read out from the system, and
we obtain the global optimum for the function in question.

While more and more articles that explore the intersection of quantum computing
and machine learning are being published, the field is fragmented, as was already
noted over a decade ago (Bonner and Freivalds, 2002). This should not come as a
surprise: machine learning itself is a diverse and fragmented field of inquiry. We
attempt to identify common algorithms and trends, and observe the subtle interplay
between faster execution and improved performance in machine learning by quantum
computing.

As an example of this interplay, consider convexity: it is often considered a
virtue in machine learning. Convex optimization problems do not get stuck in local
extrema, they reach a global optimum, and they are not sensitive to initial conditions.
Furthermore, convex methods have easy-to-understand analytical characteristics, and
theoretical bounds on convergence and other properties are easier to derive. Non-
convex optimization, on the other hand, is a forte of quantum methods. Algorithms
on classical hardware use gradient descent or similar iterative methods to arrive at
the global optimum. Quantum algorithms approach the optimum through an entirely
different, more physical process, and they are not bound by convexity restrictions.
Nonconvexity, in turn, has great advantages for learning: sparser models ensure better
generalization performance, and nonconvex objective functions are less sensitive to
noise and outliers. For this reason, numerous approaches and heuristics exist for
nonconvex optimization on classical hardware, which might prove easier and faster
to solve by quantum computing.

As in the case of computational complexity, we can establish limits on the
performance of quantum learning compared with the classical flavor. Quantum
learning is not more powerful than classical learning—at least from an information-
theoretic perspective, up to polynomial factors (Servedio and Gortler, 2004). On
the other hand, there are apparent computational advantages: certain concept classes
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are polynomial-time exact-learnable from quantum membership queries, but they
are not polynomial-time learnable from classical membership queries (Servedio and
Gortler, 2004). Thus quantum machine learning can take logarithmic time in both the
number of vectors and their dimension. This is an exponential speedup over classical
algorithms, but at the price of having both quantum input and quantum output (Lloyd
et al., 2013a). -

1.1 Learning Theory and Data Mining

Machine learning revolves around algorithms, model complexity, and computational
complexity. Data mining is a field related to machine learning, but its focus is
different. The goal is similar: identify patterns in large data sets, but aside from
the raw analysis, it encompasses a broader spectrum of data processing steps. Thus,
data mining borrows methods from statistics, and algorithms from machine learning,
information retrieval, visualization, and distributed computing, but it also relies on
concepts familiar from databases and data management. In some contexts, data mining
includes any form of large-scale information processing.

In this way, data mining is more applied than machine learning. It is closer to what
practitioners would find useful. Data may come from any number of sources: business,
science, engineering, sensor networks, medical applications, spatial information, and
surveillance, to mention just a few. Making sense of the data deluge is the primary
target of data mining.

Data mining is a natural step in the evolution of information systems. Early
database systems allowed the storing and querying of data, but analytic functionality
was limited. As databases grew, a need for automatic analysis emerged. At the same
time, the amount of unstructured information—text, images, video, music—exploded.
Data mining is meant to fill the role of analyzing and understanding both structured
and unstructured data collections, whether they are in databases or stored in some
other form.

Machine learning often takes a restricted view on data: algorithms assume either a
geometric perspective, treating data instances as vectors, or a probabilistic one, where
data instances are multivariate random variables. Data mining involves preprocessing
steps that extract these views from data.

For instance, in text mining—data mining aimed at unstructured text documents—
the initial step builds a vector space from documents. This step starts with identifi-
cation of a set of keywords—that is, words that carry meaning: mainly nouns, verbs,
and adjectives. Pronouns, articles, and other connectives are disregarded. Words that
occur too frequently are also discarded: these differentiate only a little between two
text documents. Then, assigning an arbitrary vector from the canonical basis to each
keyword, an indexer constructs document vectors by summing these basis vectors. The
summation includes a weighting, where the weighting reflects the relative importance
of the keyword in that particular document. Weighting often incorporates the global
importance of the keyword across all documents.
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The resulting vector space—the term-document space—is readily analyzed by
a whole range of machine learning algorithms. For instance, K-means clustering
identifies groups of similar documents, support vector machines learn to classify
documents to predefined categories, and dimensionality reduction techniques, such
as singular value decomposition, improve retrieval performance.

The data mining process often includes how the extracted information is presented
to the user. Visualization and human-computer interfaces become important at this
stage. Continuing the text mining example, we can map groups of similar documents
on a two-dimensional plane with self-organizing maps, giving a visual overview of
the clustering structure to the user.

Machine learning is crucial to data mining. Learning algorithms are at the heart
of advanced data analytics, but there is much more to successful data mining. While
quantum methods might be relevant at other stages of the data mining process, we
restrict our attention to core machine learning techniques and their relation to quantum
computing.

1.2 Why Quantum Computers?

We all know about the spectacular theoretical results in quantum computing: factoring
of integers is exponentially faster and unordered search is quadratically faster than
with any known classical algorithm. Yet, apart from the known examples, finding an
application for quantum computing is not easy.

Designing a good quantum algorithm is a challenging task. This does not necessar-
ily derive from the difficulty of quantum mechanics. Rather, the problem lies in our
expectations: a quantum algorithm must be faster and computationally less complex
than any known classical algorithm for the same purpose.

The most recent advances in quantum computing show that machine learning might
just be the right field of application. As machine learning usually boils down to a form
of multivariate optimization, it translates directly to quantum annealing and adiabatic
quantum computing. This form of learning has already demonstrated results on
actual quantum hardware, albeit countless obstacles remain to make the method scale
further.

We should, however, not confine ourselves to adiabatic quantum computers. In
fact, we hardly need general-purpose quantum computers: the task of learning is far
more restricted. Hence, other paradigms in quantum information theory and quantum
mechanics are promising for learning. Quantum process tomography is able to
learn an unknown function within well-defined symmetry and physical constraints—
this is useful for regression analysis. Quantum neural networks based ‘on arbitrary
implementation of qubits offer a useful level of abstraction. Furthermore, there is
great freedom in implementing such networks: optical systems, nuclear magnetic
resonance, and quantum dots have been suggested. Quantum hardware dedicated to
machine learning may become reality much faster than a general-purpose quantum
computer.
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1.3 A Heterogeneous Model

It is unlikely that quantum computers will replace classical computers. Why would
they? Classical computers work flawlessly at countless tasks, from word processing
to controlling complex systems. Quantum computers, on the other hand, are good at
certain computational workloads where their classical counterparts are less efficient.

Let us consider the state of the art in high-performance computing. Accelerators
have become commonplace, complementing traditional central processing units.
These accelerators are good at single-instruction, multiple-data-type parallelism,
which is typical in computational linear algebra. Most of these accelerators derive
from graphics processing units, which were originally designed to generate three-
dimensional images at a high frame rate on a screen; hence, accuracy was not
a consideration. With recognition of their potential in scientific computing, the
platform evolved to produce high-accuracy double-precision floating point operations.
Yet, owing to their design philosophy, they cannot accelerate just any workload.
Random data access patterns, for instance, destroy the performance. Inherently single
threaded applications will not show competitive speed on such hardware either.
In contemporary high-performance computing, we must design algorithms using
heterogeneous hardware: some parts execute faster on central processing units, others
on accelerators. This model has been so successful that almost all supercomputers
being built today include some kind of accelerator.

If quantum computers become feasible, a similar model is likely to follow for at
least two reasons:

1. The control systems of the quantum hardware will be classical computers.
2. Data ingestion and measurement readout will rely on classical hardware.

More extensive collaboration between the quantum and classical realms is also
expected. Quantum neural networks already hint at a recursive embedding of classical
and quantum computing (Section 11.3). This model is the closest to the prevailing
standards of high-performance computing: we already design algorithms with accel-
erators in mind.

1.4 An Overview of Quantum Machine Learning
Algorithms

Dozens of articles have been published on quantum machine learning, and we observe
some general characteristics that describe the various approaches. We summarize our
observations in Table 1.1, and detail the main traits below.

Many quantum learning algorithms rely on the application of Grover’s search
or one of its variants (Section 4.5). This includes mostly unsupervised methods:
K-medians, hierarchical clustering, or quantum manifold embedding (Chapter 10).
In addition, quantum associative memory and quantum neural networks often rely on
this search (Chapter 11). An early version of quantum support vector machines also
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uses Grover’s search (Section 12.2). In total, about half of all the methods proposed
for learning in a quantum setting use this algorithm.

Grover’s search has a quadratic speedup over the best possible classical algorithm
on unordered data sets. This sets the limit to how much faster those learning methods
that rely on it get. Exponential speedup is possible in scenarios where both the input
and the output are also quantum: listing class membership or reading the classical data
once would imply at least linear time complexity, which could only be a polynomial
speedup. Examples include quantum principal component analysis (Section 10.3),
quantum K-means (Section 10.5), and a different flavor of quantum support vector
machines (Section 12.3). Regression based on quantum process tomography requires
an optimal input state, and, in this regard, it needs a quantum input (Chapter 13). At a
high level, it is possible to define an abstract class of problems that can only be learned
in polynomial time by quantum algorithms using quantum input (Section 2.5).

A strange phenomenon is that few authors have been interested in the general-
ization performance of quantum learning algorithms. Analytical investigations are
especially sparse, with quantum boosting by adiabatic quantum computing being
a notable exception (Chapter 14), along with a form of quantum support vector
machines (Section 12.2). Numerical comparisons favor quantum methods in the
case of quantum neural networks (Chapter 11) and quantum nearest neighbors
(Section 12.1).

While we are far from developing scalable universal quantum computers, learning
methods require far more specialized hardware, which is more attainable with current
technology. A controversial example is adiabatic quantum optimization in learning
problems (Section 14.7), whereas more gradual and well founded are small-scale
implementations of quantum perceptrons and neural networks (Section 11.4).

1.5 Quantum-Like Learning on Classical Computers

Machine learning has a lot to adopt from quantum mechanics, and this statement is
not restricted to actual quantum computing implementations of learning algorithms.
Applying principles from quantum mechanics to design algorithms for classical
computers is also a successful field of inquiry. We refer to these methods as quantum-
like learning. Superposition, sensitivity to contexts, entanglement, and the linearity of
evolution prove to be useful metaphors in many scenarios. These methods are outside
our scope, but we highlight some developments in this section. For a more detailed
overview, we refer the reader to Manju and Nigam (2012).

Computational intelligence is a field related to machine learning that solves
optimization problems by nature-inspired computational methods. These include
swarm intelligence (Kennedy and Eberhart, 1995), force-driven methods (Chatterjee
et al.,, 2008), evolutionary computing (Goldberg, 1989), and neural networks
(Rumelhart et al., 1994). A new research direction which borrows metaphors from
quantum physics emerged over the past decade. These quantum-like methods
in machine learning are in a way inspired by nature; hence, they are related to
computational intelligence.



