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Preface

Simulation-based Engineering Science (SBES) has become the third pillar of
modern science and technology, a peer alongside theory and physical experi-
ment | | |. Computer modeling and simulation are now an indispensable tool for
resolving a multitude of scientific and technological problems we are facing [2].
To model and simulate those extreme loading events such as hypervelocity
impact, penetration, blast, machining, transient crack propagation and multi-
phase (solid-liquid—gas) interactions involving failure evolution, however, how
to effectively describe localized large deformations, the transition from contin-
uous to discontinuous failure modes, and fragmentation remains a challenging
task.

Both Lagrangian and Eulerian approaches have been used in SBES to tackle
different kinds of extreme events. Lagrangian methods have a computational
grid embedded and deformed with the material [3.4]. As a result, material in-
terfaces can be easily tracked, and history-dependent constitutive models can
be readily implemented. However, Lagrangian methods suffer from the diffi-
culties associated with grid distortion and element entanglement, which make
Lagrangian methods unsuitable for solving problems involving localized large
deformation, fragmentation, melting and vaporization. By contrast, in Eulerian
methods, the computational grid is fixed in space, and mass flows through the
grid. There is no difficulty associated with grid distortion and element entan-
glement in Eulerian methods so that they can easily solve the problems involv-
ing extreme deformation, fragmentation, melting and vaporization. However,
special procedures are required to identify the material interfaces and history-
dependency, which are very computationally intensive as compared with La-
grangian methods.

To take advantage of both Eulerian and Lagrangian methods while avoiding
the shortcomings of each, the Material Point Method (MPM) has evolved over
more than twenty years since its first journal paper was published in 1994 [5].
The MPM is an extension of the particle-in-cell (PIC) method in computa-
tional fluid dynamics to computational solid dynamics, formulated using the
weak formulation and including the history-dependency of constitutive models.
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x Preface

It discretizes a continuum body into a set of material points (particles) moving
through an Eulerian background grid. Hence, the MPM is a continuum-based
particle method. The particles carry all material properties such as mass, veloc-
ity, stress, strain and state variables so that it is easy to track material interfaces
and to implement history-dependent constitutive models. As the equations of
motion are solved on the Eulerian background grid, there is no grid distortion
or element entanglement, which makes the MPM robust in dealing with various
types of extreme loading events.

After providing the necessary background information, this book describes
the fundamental theory, implementation and application of the MPM as well as
its recent extensions. It contains eight chapters. Chapter | briefly introduces
the basic ideas and features of the Lagrangian methods, Eulerian methods,
hybrid methods and meshfree methods, respectively. Chapter 2 reviews the La-
grangian and Eulerian descriptions of deformation and motion, as well as the
strain and stress measures in large deformation theory. The governing equa-
tions of motion in an updated Lagrangian framework are given. Based on the
updated Lagrangian description, Chapter 3 establishes the MPM formulation
by discretizing a continuum body into a set of particles. Both explicit and im-
plicit formulations are presented. The Generalized Interpolation Material Point
(GIMP) method, contact algorithm, adaptive MPM, incompressible MPM and
non-reflection boundary are discussed in detail. The computer implementation
of the MPM and corresponding source codes are described in Chapter 4 based on
our open source MPM code, MPM3D-F90. A user’s guide and several numerical
examples of the MPM3D-F90 code are also presented, for which the input data
files can be downloaded from our web site: htip://mpm3d.comdyn.cn. Chapter 5
first reviews the explicit finite element method, and then presents the material
point finite element method, coupled material point finite element method, adap-
tive material point finite element method and hybrid material point finite element
method as developed in the Computational Dynamics Lab of the School of
Aerospace Engineering at Tsinghua Uni\}ersity. Chapter 6 discusses the consti-
tutive models which describe different types of material behaviors, with a focus
on the extreme events. The computer implementation of these constitutive mod-
els is specified in detail, and corresponding source codes are provided. Chapter 7
introduces a multiscale MPM that could couple discrete forcing functions as
used in molecular dynamics with constitutive models as used in the continuous
approaches in a single computational domain. The mapping and remapping pro-
cess in the MPM could effectively coarse-grain fine details. Chapter 8 describes
the applications of the MPM and its extensions in those extreme events such
as transient crack propagation, impact/penetration, blast, fluid—structure inter-
action, and biomechanical responses to extreme loading.
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Chapter 1

Introduction

Contents
1.1 Lagrangian Methods 1 1.3.2 Particle-In-Cell Method
1.2 Eulerian Methods 3 and Its Variations 5
1.3 Hybrid Methods 4 1.3.3 Material Point Methad 6
1.3.1 Arbitrary 1.4 Meshfree Methods 7
Eulerian-Lagrangian
Method and Its Variations 4

Simulation-based Engineering Science (SBES) [2] is the third pillar of the
modern science and engineering, a peer alongside theory and physical experi-
ment [ | ]. Compared with physical experiment, SBES has the advantages of low
cost, safety, and efficiency in solving various kinds of challenging problems. To
better simulate those extreme events such as hypervelocity impact, penetration,
blast, crack propagation, and multi-phase (solid—liquid—gas) interactions involv-
ing failure evolution, yet effectively discretize localized large deformation, the
transition among different types of failure modes and fragmentation remains a
very difficult task. Based on the way how deformation and motion are described,
existing spatial discretization methods can be classified into Lagrangian, Eule-
rian, and hybrid ones, respectively.

1.1 LAGRANGIAN METHODS

In Lagrangian methods the computational grid is embedded and deformed with
the material. Since there is no advection between the grid and material, no ad-
vection term appears in the governing equations, which significantly simplifies
the solution process. The mass of each material element keeps constant during
the solution process, but the element volume varies due to element deformation.
Lagrangian methods have the following advantages:

1. They are conceptually more simple and efficient than Eulerian methods. Be-
cause there is no advection term that describes the mass flow across element
boundaries, the conservation equations for mass, momentum, and energy are
simple in form, and can be efficiently solved.



2 The Material Point Method

FIGURE 1.1 Lagrangian grid.

2. Element boundaries coincide with the material interfaces during the solution
process so that it is easy to impose boundary conditions and to track material
interfaces.

3. Since Lagrangian methods track the flow of individual masses, it is easy to
implement history-dependent constitutive models.

Fig. 1.1 shows a typical Lagrangian grid which is embedded and deformed with
the material. Severe element distortion results in significant errors in numerical
solution, and even leads to a negative element volume or area which would cause
abnormal termination of the computation. To obtain a stable solution with an ex-
plicit time integration scheme, the time step must be smaller than a critical time
step which is controlled by the minimum characteristic length of all elements
in the grid. Because severe element distortion would significantly decrease the
characteristic element length, the time step in a Lagrangian calculation could
become smaller and smaller, and finally approach zero, which makes the com-
putation impossible to be completed. To complete a Lagrangian computation for
an extreme loading case, a distorted grid must be remeshed and its result must
be interpolated to the remeshed grid. The remesh or rezone technique has been
successfully used in solving many 1D and 2D problems, but rezoning a com-
plicated 3D material domain is still a challenging task. For a history-dependent
material, the history variables are also required to be interpolated from the old
grid to the new grid, which may further cause numerical error in stress calcula-
tion.

Another way to eliminate the element distortion is to use the erosion tech-
nique, which simply deletes the heavily distorted elements. An element is
considered to be heavily distorted if its equivalent plastic strain exceeds a user-
defined erosion strain value, or the critical time step size is less than a prescribed
value. Introducing element erosion can resolve some of the issues related to
the severe element distortion, but also introduce new issues. The global system
will lose both mass and energy, which can severely affect the simulation out-
come. Furthermore, the erosion technique cannot model the formation process
of debris cloud and its interaction with other panels in hypervelocity impact
simulation.
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FIGURE 1.2 Eulerian grid.

Many Lagrangian codes have been developed, as shown in the open lit-
erature. The HEMP (8] was developed in the early 1960s by Wilkins at the
Lawrence Livermore National Laboratory. The HEMP was an explicit La-
grangian finite-difference code that could handle large strains, elastic—plastic
flow, wave propagation, and sliding interfaces. The EPIC code [9] was an ex-
plicit Lagrangian finite element code developed in the 1970s by Johnson. Both
the rezoning and erosion techniques were employed in the EPIC to simulate high
velocity impact and blast problems. The PRONTO3D code | 0] was a 3D tran-
sient solid dynamics code developed at the Sandia National Laboratory for an-
alyzing large deformations of highly nonlinear materials subjected to extremely
high strain rates. This code was based on an explicit finite element formulation,
and had been coupled with the smoothed particle hydrodynamics (SPH) method
through a contact-like algorithm [ 11]. The DYNA2D and DYNA3D codes were
developed in the 1970s at the Lawrence Livermore National Laboratory as ex-
plicit Lagrangian finite element codes and were successfully commercialized
[12-14).

1.2 EULERIAN METHODS

For problems in which a material domain could become heavily distorted or
different materials are mixed, an Eulerian method is more appropriate. In Eu-
lerian methods, the computational grid is fixed in space and does not move
with the material such that the material flows through the grid, as shown in
Fig. 1.2.

There is no element distortion in Eulerian methods, but the physical vari-
ables, such as mass, momentum, and energy, advect between adjacent elements
across their interface. The volume of each element keeps constant during the
simulation, but its density varies due to the advection of mass. Eulerian meth-
ods are suited for modeling large deformations of materials so that most of
computational fluid dynamics codes and early hydrocodes for impact and blast
simulation employ Eulerian methods.

Eulerian methods only calculate the material quantities advected between
elements without explicitly and accurately determining the position of material
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interface and free surface so that they are quite awkward in following deforming
material interfaces and moving boundaries. Significant efforts have been made
to develop interface reconstruction methods.

HELP (Hydrodynamic plus ELastic Plastic) [15], developed by Walsh and
Hageman in the 1960s, is a multi-material Eulerian finite difference program
for compressible fluid and elastic—plastic flows. To treat the material interface
or free surface, massless tracer particles are used, which define the surface po-
sition and move across the Eulerian grid. CTH [16] is an Eulerian finite volume
code developed at Sandia National Laboratories to model multi-dimensional,
multi-material, large deformation, and strong shock wave physics. The CTH
code employs a two-step Eulerian solution scheme, a Lagrangian step in which
the cells distort to follow the material motion, and a remesh step where the
distorted cells are mapped back to the Eulerian mesh. Material interfaces are re-
constructed using the Sandia Modified Young’s Reconstruction Algorithm. The
CTH has adaptive mesh refinement and uses second-order accurate numerical
methods to reduce numerical dispersion and dissipation. It is still under devel-
opment at Sandia National Laboratories | 1 7].

The Zapotec developed at Sandia National Laboratories is a framework that
tightly couples the CTH and PRONTO codes [18,19]. In a Zapotec analysis,
both CTH and PRONTO are run concurrently. For a given time step, the Zapotec
maps the current configuration of a Lagrangian body onto the fixed Eulerian
mesh. Any overlapping Lagrangian material is inserted into the Eulerian mesh
with the updated mesh data passed back to the CTH. After that the external
loading on the Lagrangian material surfaces is determined from the stress state
in the Eulerian mesh. These loads are passed back to PRONTO as a set of ex-
ternal nodal forces. After the coupled treatment is completed, both CTH and
PRONTO are run independently over the next time step.

1.3 HYBRID METHODS

Both purely Lagrangian and purely Eulerian methods possess different short-
comings and advantages so that it is desirable to find new approaches to take
advantage of both methods to better tackle challenging problems. The arbitrary
Lagrangian—Eulerian (ALE) method [20] and the particle-in-cell (PIC) method
[21,22] are two representatives.

1.3.1 Arbitrary Eulerian-Lagrangian Method and Its Variations

The ALE method was first proposed in the finite difference and finite volume
context [23,24], and was subsequently adopted in the finite element context



