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Preface

This book is based on a course given at Ecole Normale Supérieure de Jeunes Filles,
Paris, in 1978-1979. Its aim is to give an introduction to the main elementary theorems
of finite group theory.

Handwritten notes were taken by Martine Buhler and Catherine Goldstein (Montrouge,
1979); they were later type-set by Nicolas Billerey, Olivier Dodane and Emmanuel Rey
(Strasbourg-Paris, 2004), and made freely available through arXiv:math/0503154. In
2013, they were translated into English by Garving K. Luli and Pin Yu. In 2014-2015,
I revised and expanded them (by a factor 2) for the present publication: I gave many
references to old and recent results, I added two chapters on finite subgroups of GL,,
and on “small groups”, and I also added about 160 exercises.

I thank heartily all the people mentioned above, without whom this book would not
have been published.

Jean-Pierre Serre, Paris, Spring 2016



Conventions and Notation

The symbols Z, Q,F,, F,, R, C have their usual meaning.

Set theory
If X DY, the complement of Y in X is written X =Y.
The number of elements of a finite set X is denoted by |X]|.

Rings
Rings have a unit element, written 1.
If A is a ring, A* is the group of invertible elements of A.

The word field means commutative field.

Group theory

We use standard notation such as (G : H), G/H, H\G when H is a subgroup of a
group G.

A group G is abelian (= commutative) if zy = yz for every z,y € G.

If A is a subset of G, the centralizer of A in G is written Cg(A); it is the set of all g € G
such that ga = ag for every a € A. The normalizer of A is written Ng(A); it is the set
of all g € G such that gAg™! = A.

If A, B are subsets of G, the set of all products ab with a € A and b € B is written
either A.B or AB; the subgroup of G generated by A and B is written (A, B).

The formula G = 1 means that |G| = 1; when G is abelian, and written additively, we
write G = 0 instead.

Symmetric groups
The symmetric and alternating groups of permutations of {1,...,n} are written S, and

A,. The group of permutations of a set X is written Sy.

Linear groups

If A is a commutative ring, and n is an integer > 0, then:

vi



Conventions and notation vii

M,,(A) = A-algebra of n x n matrices with coefficients in A,
GL,(A) = M,(A)* = group of invertible n x n matrices with coefficients in A,
SL,,(A) = Ker(det : GL,(A4) — A®).

We use End(V), GL(V) and SL(V) for the similar notions relative to a vector space of

finite dimension.

Let k be a field. If n > 1, there is a natural isomorphism of k* onto the center of
GL,(k); the quotient GL,(k)/k™ is the n-th projective linear group PGL, (k).

The image of SL,(k) into PGL, (k) is denoted by PSL, (k).
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Chapter 1

Preliminaries

Let G be a group (finite or infinite). Let us recall a few standard definitions and results
relative to G.

1.1 Group actions

Definition 1.1. A (left) group action of G on a set X is a map

GxX —X
(9,) —> g2

that satisfies the following conditions :
(1) g(¢g'z) = (g9¢')x for allxz € X and all g,¢9' € G.
(2) lz ==z for all z € X, where 1 is the identity element of G.

Note. Right group actions Gx X — X are defined in a similar way, and denoted by (z, g) — zg. We shall

rarely use them. Note that every right action can be replaced by a left one via the recipe : gz = zg~!.

Remark. Equivalently, a group action of G on X can be defined as a group homomor-
phism 7 from G to the symmetric group Sy of X, namely 7(g)(z) = gz for all g € G
and z € X.

Definition 1.2. A set X, together with an action of G on it, is called a G-set. If X
and Y are G-sets, a map f : X — Y is called a G-map if f(gz) = gf(x) for every
g €q.

If X is a G-set, the action of G partitions X into orbits: two elements z and y in X
are in the same orbit if and only if there exists g € G such that z = gy. The quotient
of X by G is the set of orbits and is written X/G (or sometimes G\ X).

Definition 1.3. The group G acts transitively on X if X/G consists of only one element.

1



1.1. Group actions 2

In particular, the group G acts transitively on each orbit.

Definition 1.4. For x € X, the stabilizer of x in G, denoted by G, is the subgroup
of elements g € G that fix x (i.e., such that g = x).

Definition 1.5. The action of G on X is said to be faithful is G — Sx 1is injective,
i.e., if (Nyex Gz = 1. It is said to be free if G, = 1 for every x € X. If G acts freely
and transitively, X is called a G-torsor.

Remark. If G acts transitively on X and if z € X, we have a bijection from G/G, to
X given by gG, — gz, where G/G, is the set of left cosets of G, in G. If 2’ € X,
there exists g € G such that 2’ = gz. Thus, G, = gG,¢'. In other words, changing =
amounts to replacing its stabilizer by a conjugate. Conversely, if H is a subgroup of G,
then G acts transitively on G/H and H fixes the class of 1. Therefore, giving a set X
on which G acts transitively amounts to giving a subgroup of G, up to conjugation.

Example. Let K be a field, and let G be the group of automorphisms of the set K
defined by :

G={z—ar+bacK*, beK}.

Then G acts transitively on K. If xq € K, the stabilizer of z; is the group of homotheties
centered at zp, namely = — zo + a(x — xp), a € K*; it is isomorphic to K*.

Application. Suppose that G is finite and let |G| denote its order. If X is a finite G-set,
we have X = |J,c; Gzi, where the Gz; are the pairwise disjoint orbits under the action

of G and ; is a representative element from each orbit. We have |Gz;| = |G|. |G| ™"
Hence 1
|X| = Z(G : Gz;) = |G| Z Gl (L.1)
i€l iel T

Inner automorphisms and conjugacy classes. Let g € G. The map int, : = — gzg™' is
an automorphism of G, which is called the inner automorphism defined by g. The
map g — int, is a homomorphism of G into the automorphism group Aut(G) of G. It
defines an action of G on itself; the orbits of that action are the conjugacy classes of
G. The stabilizer of an element x of G is the set of elements of G that commute with
z, i.e., the centralizer of z; we denote it by Cg(z). We have

T
1= ;m (1.2)

where h is the number of conjugacy classes, and the x; are representatives of these
classes. In this equation the largest value of |Cg(z;)| is |G|; this fact can be used to
obtain an upper bound for |G| when h is known, cf. exerc.7.

Counting orbits.

The following result is usually called Burnside’s lemma, even though it had already
been published before Burnside by Cauchy and later by Frobenius:
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Proposition 1.1. Let G be a finite group and let X be a finite G-set. For every g € G,
let X9 C X be the set of elements x of X which are fized under the action of g, and let
Xx(9) = |X?|. Then:

IX/G| = ﬁ 3 xx(9): (13)
geG

[In other words, the number of orbits is the average of the number of fixed points of the
elements of the group.|

Proof. By splitting X into orbits, we may assume that G acts transitively, hence that
X = G/H, where H is a subgroup of G. If (g,z) € G x X, define f(g,z) to be equal
to 1 if gx = z, and to 0 if gz # x. Let us compute in two different ways the sum

S= Z(g,z)EGXX f(g,:l:) :

i) For z € X, the sum ) . f(g,2) is the number of elements of G which fix z, i.e.,
|H|. Hence S = |X||H| = |G].
ii) For g € G, the sum ) _, f(g,) is the number of elements of X fixed by g, i.e.,
Xx(g). Hence S =3 ;xx(9)-

By comparing the two formulas, we obtain |G| = }_ . xx(g), which is equivalent to
(1.3) since | X/G| = 1.

1.2 Normal subgroups, automorphisms, characteristic
subgroups, simple groups

Recall that a subgroup H of G is normal if, for all z € G and all h € H, we have

zhz~! € H. This means that H is stable under the inner automorphisms of G. The

quotient G/H has a unique group structure such that G — G/H is a homomorphism,
and we have the exact sequence:

1 »H G—G/H—1.

Note. A sequence of group homomorphisms --- — G; = G;+1 — --- is said to be exact if, for every i,
the kernel of G; — Gi41 is equal to the image of G;—; — Gi.

Ezample. The inner automorphisms {int, } ;¢ make up a normal subgroup Int(G) of the
group Aut(G) of all the automorphisms of G. The quotient Out(G) = Aut(G)/Int(G)
is the outer automorphism group of G. We thus have exact sequences :

1-2Z(G) = G—Int(G) > 1 and 1— Int(G) = Aut(G) — Out(G) — 1,
where Z(G) = Cs(G) is the center of G.
If H is a normal subgroup of a group G, the action of G on_H by inner automorphisms

defines a homomorphism G — Aut(H); this homomorphism maps H onto Int(H), hence
defines a map: G/H — Out(H).
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Proposition 1.2. Let M and N be two normal subgroups of G such that M N N = 1.
Then M and N commute elementwise, i.e., xy = yx for every x € M andy € N.

Indeed, the element zyxz~'y~! = zyz~'y~! belongs to both M and N, hence is equal
to 1.

Definition 1.6. A subgroup H of G is characteristic if it is stable under every auto-
morphism of G.

Such a subgroup is normal in G. More generally, if H C N C G, with H is characteristic
in N, and N normal in G, then H is normal in G.

Ezamples. The center Z(G) = C(G) of G is a characteristic subgroup. The derived
group of G is characteristic, and so are the subgroups D"G, C'G and ®(G) defined in
chap.3.

Definition 1.7. A group G is simple if the number of its normal subgroups is 2.
Equivalently, G # 1, and the only normal subgroups of G are 1 and G.

Examples.

1. The abelian simple groups are the cyclic groups of prime order, i.e., the groups
Z/pZ for some prime p.

2. The alternating subgroup A, is simple abelian if n = 3, and simple nonabelian if
n 2> 5, cf. exerc.19, or Huppert [25], p.156, Satz 2.4, or Lang [29], chap.I, th. 5.5.

3. If K is a field, the group PSL,(K) is simple for n > 2, except when n = 2 and
|K| =2 or 3, cf. chap.3, exerc.7, or Huppert [25], p.182, Satz 6.13, or Lang [29],
chap. XIII, §8 and §9.

4. A nonabelian simple group of order < 200 has order either 60 or 168; it is isomor-
phic to either As or SL3(F5), cf. §7.7.

For more information on the structure of the finite simple groups, including the sporadic
ones, see Gorenstein [21|, Gorenstein-Lyons-Solomon [22] and Wilson [39]. The reader
will find in these books a precise statement of the Classification of Finite Simple Groups
(CFSG), and of its many remarkable consequences (see especially [21], §1.7). Whether
this statement is presently a theorem is not clear. The only detailed proof is that of the
series [22], and it is not complete yet.

In this book, when we quote a result which depends on CFSG, we state this dependence
explicitly.
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1.3 Filtrations and Jordan-Holder theorem

Definition 1.8. A filtration of a group G is a sequence of subgroups (Gi)y;c, Such
that

Go =G DG D+ DG; D= DGp =1, (1.4)
with Gi41 normal in G;, fori=1,...,n—1. Given a filtration (G;)o<i<n, the successive

quotients G;/Gi11,0 < @ < n, are denoted by gr;(G). The sequence of the gr;(G) is
denoted by gr(G).

Remark. There are several variants of the above definition: one may use infinite filtrations, or
filtrations beginning with G intead of Gy, or filtrations not ending with 1, etc.

Definition 1.9. A filtration (Gi)yc;c, of G is called a Jordan-Hélder filtration (or
a Jordan-Holder series or a composition series) if gr;(G) = G;/G;.1 is simple for
every i such that 0 < i < n. The number n is called the length of the filtration.

Proposition 1.3. Every finite group has a Jordan-Holder filtration.

Proof. 1f G = 1, take the trivial Jordan-Hélder filtration with n = 0 in (1.4); if G is
simple, take n = 1 in (1.4). Suppose that G is neither 1 nor simple. Use induction on the
order of G. Let N be a normal subgroup of G, distinct from G, and of maximal order.
Then G/N is simple. Since |N| < |G|, we apply the induction hypothesis to N and we
obtain a Jordan-Hélder filtration (NN;) for N. Then (G, Ny, N1,...) is a Jordan-Holder
filtration for G.

Remark. An infinite group may not have a Jordan-Holder filtration; example: Z.

Theorem 1.4 (Jordan-Holder). Let (Gi)yc;c, be a Jordan-Holder filtration of a group
G. Then the gr;(G) (the successive factor groups) do not depend on the choice of the
filtration, up to permutation of the indices. In particular, the length of the filtration is
independent of the filtration.

[The length of the filtration is called the length of G, and is denoted by ¢(G); when G
has no Jordan-Hélder filtration, we write ¢(G) = oco.

Proof.
Let S be a simple group, and let n(G, (G;), S) be the number of j such that G;/Gj41 is

isomorphic to S. What we have to prove is that n(G, (G;),S) does not depend on the
chosen filtration (G;).

Note first that, if H is a subgroup of G, a filtration (G;) of G induces a filtration
(H;) of H by putting H; = G; N H.

Similarly, if N is a normal subgroup of G, we obtain a filtration of G/N by putting
(G/N); = G;/(GiN N) = G;N/N. The exact sequence 1 - N - G — G/N — 1 gives
an exact sequence -

1 = Ni/Niy1 = Gi/Giy1 —= (G/N)i/(G/N)iy1 — 1,



