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PREFACE

This book can be divided into two parts. The first part is preliminary and
consists of algebraic number theory and the theory of semisimple algebras.
The raison d'étre of the book is in the second part, and so let us first explain
the contents of the second part.

There are two principal topics:

(A) Classification of quadratic forms;
(B) Quadratic Diophantine equations.

Topic (A) can be further divided into two types of theories:

(al) Classification over an algebraic number field;
(a2) Classification over the ring of algebraic integers.

To classify a quadratic form ¢ over an algebraic number field F. almost
all previous authors followed the methods of Helmut Hasse. Namely. one first
takes  in the diagonal form and associates an invariant to it at each prime
spot of F. using the diagonal entries. A superior method was introduced by
Martin Eichler in 1952, but strangely it was almost completely ignored, until
I resurrected it in one of my recent papers. We associate an invariant to ¢ at
each prime spot, which is the same as Eichler’s, but we define it in a different
and more direct way, using Clifford algebras. In Sections 27 and 28 we give
an exposition of this theory. At some point we need the Hasse norm theorem
for a quadratic extension of a number field, which is included in class field
theory. We prove it when the base field is the rational number field to make
the book self-contained in that case.

The advantage of our method is that it enables us to discuss (a2) in a clear-
cut way. The main problem is to determine the genera of quadratic forms with
integer coeflicients that have given local invariants. A quaratic form of n vari-
ables with integer coefficients can be given in the form p[r] =3

n > .

ij=1 Cogliiy
with a symmetric matrix (c;;) such that ¢, and 2c¢;; are integers for every
i and j. If the matrix represents a symmetric form with integer coefficients,
then ¢;; is an integer for every (i. j). Thus there are two types of classification



vi PREFACE

theories over the ring of integers: one for quadratic forms and the other for
symmetric forms. In fact, the former is easier than the latter. There were
several previous results in the unimodular case, but there were few, if any.
investigations in the general case. We will determine the genera of quadratic
or symmetric forms over the integers that are reduced in the sense that they
cannot be represented by other quadratic or symmetric forms nontrivially.
This class of forms contains forms with square-free diseriminant.

We devote Section 32 to strong approximation in an indefinite orthogonal
group of more than two variables, and as applications we determine the classes
instead of the genera of indefinite reduced forms.

The origin of Topic (a2) is the investigation of Gauss concerning primitive
representations of an integer as a sum of three squares. In our book of 2004 we
gave a framework in which we could discuss similar problems for an arbitrary
quadratic form of more than two variables over the integers. In Chapter
VII we present an easier and more accessible version of the theory. Though
Gauss treated sums of three squares, he did not state any general principle; he
merely explained the technique by which he could solve his problems. In fact.
we state results as two types of formulas for a quadratic form, which can be
specialized in two different ways to what Gauss was doing. Without going into
details here we refer the reader to Section 34 in which a historical perspective
is given. Our first main theorem of quadratic Diophantine equations is given
in Section 35, from which we derive the two formulas in Section 37.

Let us now come to the first part of the book in which we give preliminaries
that are necessary for the main part concerning quadratic forms. Assuming
that the reader is familiar with basic algebra, we develop algebraic number
theory and also the theory of semisimple algebras more or less in standard
ways, and even in old-fashioned ways, whenever we think that is the casiest
and most suitable for beginners. In fact, almost all of the material in this
part have been taken from the notes of my lectures at Princeton University.
However, we have tried a few new approaches and included some theorems
that cannot be found in ordinary textbooks. For instance. our formulation
and proof of the quadratic reciprocity law in a generalized form do not seem
to be well-known; the same may be said about the last theorem of Section
10, which is essentially strong approximation in a special linear group. In the
same spirit, we add the classical theory of genera as the last section of the

book.

We could have made the whole book self-contained by including an easy
part of class field theory, but in order to keep the book a reasonable length,
we chose a compromised plan. Namely, we prove basic theorems in local class
field theory only in some special cases, and the Hilbert reciprocity law only
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over the rational number field. However, we at least state the main theorems
with an arbitrary number field as the base field, so that the reader who knows
class field theory can learn the arithmetic theory of quadratic forms with no
further references.

To conclude the preface, it is my great pleasure to express my deepest
thanks to my friends Koji Doi, Tomokazu Kashio, Kaoru Okada, and Hiroyuki
Yoshida, who kindly read earlier versions of the first two-thirds of the book
and contributed many invaluable commments.

Princeton
May, 2009 Goro Shimura



NOTATION AND TERMINOLOGY

In this book we assume that the reader is familiar with basic facts on
groups, tings, and the theory of field extensions up to Galois theory. We
write X C Y for two sets X and Y if X is a subset of Y, including the case
X =Y, and denote by #X or #{X} the number of elements of X when it is
finite. Following the standard convention, we do not call 0 of the ring A = {0}
an identity element. Thus, whenever we speak of an identity element of a ring
A, we assume that A # {0}. For submodules B and C' of a ring A we denote
by B(C' the set of all finite sums Zib,(r, with b; € B and ¢; € C.

The symbols Z, Q. R. and C will mean as usual the ring of integers and
the fields of rational numbers, real numbers, and complex numbers, respec-
tively. In addition, we put

T:{:€C| lz2] =1},
and denote by H the Hamilton quaternion algebra; see §20.2. Given an as-
sociative ring A with identity element and an A-module X, we denote by
A* the group of all invertible elements of A, and by X" the A-module of
all m x n-matrices with entries in X'; we put X™ = X{" for simplicity. For
an element y of X" or X} we denote by y; the i-th entry of y. The zero
element of A" is denoted by 0" or simply by 0. When we view A, as a ring,
we usually denote it by M, (A). We denote the identity element of AL, (A) by
1,, or simply by 1. The transpose, determinant, and trace of a matrix x are
denoted by 'x, det(x), and tr(r). We put GL,,(A) = M, (A)*, and
SLn(A) = {a € GLy(A)| det(a) = 1}

if A is commutative. For square matrices xy, ... . z,. diaglz;, ... . r,] de-
notes the square matrix with .. ... .z, in the diagonal blocks and 0 in all
other blocks.

For a group (i we denote by [G : 1] the order of G. and for a subgroup H
of ¢ we denote by [ : H] the index of H in Gi. For a vector space V over a
field ' we denote by [V : F'] the dimension of V over F' and by Endg(V) the
ring of all F-lincar endomorphisms of V; we put then G'Lg(V) = Endgp(V)*
and SLp(V) = {a € GLp(V)| det(a) = 1}. The distinction of [V : F| from
[0+ H] will be clear from the context. If K is a field containing F. then [K : F]
is the degree of the extension A of F. When F' is clear from the context, we
also write GL(V). SL(V), and dim(V) for GLg(V), SLp(V). and [V : F].

A polynomial in one variable with coefficients in a field is called monic if
the leading coefficient is 1. Given a square matrix £ with entries in a field
F. by the minimal (or minimum) polynomial of £ over I we understand
a monic polynomial that gencrates {¢ € I"[z] ‘ @(€) = 0}. where z is an
indeterminate. We use the same terminology for an element £ of an algebraic
extension of F.

x1
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CHAPTER 1

THE QUADRATIC RECIPROCITY LAW

1. Elementary facts

1.1. In this section we recall several well-known elementary facts, mostly
without proof. We give the proof for some of them. An ideal [ of a com-
mutative ring R is called a prime ideal if R/] has no zero divisors; [ is
called principal if [ = aR with some « € K. An integral domain (that is, a
commutative ring with identity element that has no zero divisors) R is called
a principal ideal domain if every ideal of R is principal. It is known that
for a field " and an indeterminate z the polynomial ring F'[zr] is a principal
ideal domain. Also, the ring Z is a principal ideal domain. An integral do-
main is called a unique factorization domain if every principal ideal I of
R different from {0} can be written uniquely in the form [ = P{' --- P with
prime ideals F; that are principal and 0 < ¢, € Z.

Theorem 1.2. (i) Let R be a unique factorization domain. Then the
polynomial ring R[x] is a unique factorization domain. If s is a prime element
of R (that is, s ¢ R* and if s = gh with g. h € R, then g € R* or he€ R*),
then sR is a prime ideal of R. Conversely, every prime ideal of R that is
principal and different from {0} is of the form sR with a prime element s of
R.

(i) Let R be a principal ideal domain. Then R is a unique factorization
domain, and every prime ideal P of R different from {0} is a maximal ideal,
that is, /P is a field.

Theorem 1.3. Let R be a commutative ming with identity element, and
let Xy1...., X, beideals of R such that X, + X; = R if i # j. Then

(1.1) RI(X, X)X RIX, ® - @ RIX,.

Proor. We first prove the case r = 2. Defineamap f: R — R/X @R/ X,
by
J(x) = (x (mod X,). z (mod X3)).
Clearly f is a ring-homomorphism and Ker(f) = X; N X5, Now X; N X, =
(A\r] N ‘\,-_))(z\'l A+ ;\P‘_)) C XqiXo € XinNXs,andso X1Xo = X1 N Xy, Take

G. Shimura, Arithmetic of Quadratic Forms, Springer Monographs in Mathematics. 1
DOI 10.1007/978-1-4419-1732-4 1, © Springer Science+Business Media, LLC 2010



2 L THIE QUADRATIC RECIPROCITY LAW

se€ Xyand t € Xy sothat s+t = 1. Given a, b € R. put ¢ = at + bs.
Then ¢ —a = a(t — 1)+ bs = (b—a)s € X;. and similarly ¢ — b € X,.
Thus f(c) = (¢ (mod X,;). b (mod X3)). which means that f is surjective.
Therefore R/(X1X2) = R/Ker(f) = R/X, & R/X5. which proves the case
7 = 2. Now suppose Z + X = Z +Y = R for ideals X. Y, and Z of R.
Then R=(Z4+X)(Z+Y)=Z+XZ+ZY 4+ XY =2+ XY, since XZ +
ZY C Z. Taking Z to be X, and repeating the same argument, we obtain
X+ X1 Xoo1 = Ryand so R/(X--- X)) =2 R/(X1---X,1) ® R/X,..
Applying induction to R/(X, --- X, _1). we can complete the proof.

Every infinite cyclic group is isomorphic to Z; every finite cyclic group is
isomorphic to Z/mZ. Now the basic theorem on abelian groups can be stated
as follows.

Theorem 1.4. Every finitely generated abelian group is the direct product
of finitely many cyclic groups of finite or infinite order. In particular, every
finite abelian group is wsomorphic to a direct sum of the form 3 Z/mZ
with a finite set M of positive integers.

me N

Theorem 1.5. If I is a field, every finite subgroup of F'* is cyclic. In
particular, F'™ is a cyclic group if F' is a finite field.

Proo¥r. Let G be a finite subgroup of F*. Then by Theorem 1.4, G is
isomorphic to 3.7, Z/n,Z with positive integers n,. We may assume that
r > 1 and n, > 1 for every i. since (G is cyclic otherwise. Suppose 7,
and ny are divisible by a prime number p. Then (Z/n,2) ® (Z/n>2Z) has p?
elements y such that py = 0. These elements y correspond to p® elements
r of G such that x” = 1. Since F is a field, the equation X? = 1 can have
at most p solutions in F. a contradiction. Thus n; and ns are relatively
prime, and more generally, ni, ... . n, are relatively prime. By (1.1), (i is
isomorphic to Z/(n, - - - n,Z), which is cyclic. This proves our theorem.

For example, (Z/pZ)* is a cyclic group of order p — 1.
Lemma 1.6. Let [ be a homomorphism of a finite group G nto C*.
Then
_ (1] if f is trivial,
o -
%f( ) 0 if f is nontrivial.

PrOOF. Assuming [ to be nontrivial, take y € ( such that f(y) # 1.

and observe that 3 . f(x) = 3 oo f(we) = f(y) 2 ,cq f(x). and hence
> vec f(x) = 0. Our formula for trivial f is trivial.

For example, let ¢ be a primitive m-th root of unity with 1 < m € Z and
let r € Z. Then taking f(r) = {"". from Lemma 1.6 we obtain
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O m if remZ.
1.2 ra
(12) "Z:“ ¢ { 0 if r¢m2z.

Lemma 1.7. Let R be a commutative ring with identity element. Suppose
R=A@--- ®A. =B, & B with subrings A; and B; that are indecom-
posable. (Here a ring X is called indecomposable if X cannot be written
in the form X' =Y @ Z with subrings ¥ and Z that are different from {0}.)
Then the A; are the same as the B as a whole.

Proor. Clearly A; and B; are ideals of R. Let 1g = e + --- 4+ ¢, with
¢; € A;. Then we can easily show that B, = Bie; @ --- @ Bje,. The inde-
composability of By implies that B; = Bjeg for exactly one k. Changing the
order of the A;. we may assume that B; = [B3¢;; then B; C A;. Exchanging
{A;} and {B;}, we have A, C B; for some j. Clearly j =1, and so A} = By.
Repeating the same argument, we eventually obtain the desired conclusion.

Lemma 1.8. Let K be a separable quadratic extension of a field F. and p
the nontrivial automorphism of K over IY. Then

ye K |yy’ =1} ={a/c" |xr e K*;.
/

ProoF. If y = x/z”. then clearly yy” = 1. Thus our task is to show that
if ye K* and yy” = 1. then y = x/x” with some x € K'*. Suppose y = —1.
If the characteristic of F' is 2, then y = 1 and there is no problem. If the
characteristic is not 2, then K = F(r) with x such that z*> € F'*. Then
2P = —x, and so —1 = x/x”. Suppose y # —1; put © =y -+ 1. Then x # 0
and yr? =1+ y =, and so y = x/x’ as expected.

1.9. Finite fields. In this subsection we recall some basic facts on finite
fields. A field with a finite number of elements is called a finite field. For
every prime number p the ring Z/pZ is a finite field with p elements. We
denote this field by F(p). Every finite field is a finite algebraic extension of
F(p) for some p, and vice versa. Let us fix a prime number p and an algebraic
closure of F(p). and denote it by F(p™ ). For every positive integer n the field
F(p™) contains exactly one algebraic extension of F(p) of degree n. It has p"
elements, and we denote it by F(p™). Put ¢ = p" with a fixed n. Then 29 = ¢
for every = € F(g). and in particular 97! = 1 for every r € F(¢)*. By
Theorem 1.5, F(q)* is a cyclic group of order ¢— 1. For another positive integer
m we have F(p") C F(p™)if and only if m = n with 0 < ¢ € Z. in which case
F(p'™) is a cyclic extension (that is, a Galois extension whose Galois group is
cyclic) of F(p") of degree £. The Galois group consists of the maps x — x9" for
0 <a < {. where g = p". Write k = F(p") and h = F(p""). Then the maps
Tryp e h — k and Ny 0 B — k™ are surjective. Indeed, the surjectivity of
the trace map is true for every separable extension. As for the norm map, we
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have Ny, (x) = 2" with r = Zi;:} ¢ =(¢" =1)/(q—1)=[h* : k*]. and we
obtain the desired surjectivity.

2. Structure of (Z/mZ)*

2.1. ¥ my, ... . m, are relatively prime positive integers > 1. then from
(1.1) we obtain Z/(my ---m,Z) X Z/m,Z @ --- & L/m,Z. and s0
(2.1) (Z/(my - m2Z)) S (2 Z) X e x (B)meZ) R

In particular, if m = p{' - - pir is the prime decomposition of a positive integer
m > 1, then

(2.1a) (Z/mZ)* = (Z/p{'Z)* x - x (Z/pir2)".

Therefore the structure of (Z/mZ)”* for 1 < m € Z can be reduced to the case
where m is a prime power. The order of the group (Z/mZ)” is traditionally
denoted by (m). In addition we put (1) = 1. This ¢ is called Euler’s
function. Observe that ¢(m) equals the number of integers a prime to m
such that 0 < a < m. From (2.1) we obtain

(2.2) olmy - -mg) = @(my)---¢lmy) if the m; are as in (2.1).
We easily see that
(2.3) e(p™) =p" Yp—1) if p is a prime number and 0 < n € Z.

Lemma 2.2. Let p be an odd prime number and b an integer prime to
p. Then for 0 < e € Z we have (14 bp)? = 14 cp®t! with an integer ¢ prime
to p.

Proor. We prove this by induction on e. Since (f) is divisible by p if

1 < k < p. by the binomial theorem we have (14 bp®)? = 1 +bp*! +dp/ witkr
deZand f>e+1,and so (1+bp")P =1+ b'p°t! with an integer b’ prime
to p. This proves the case e = 1 of our lemma. Assuming our lemma for the
et _ ((1 +bp)p"‘)ﬁ _ (1 _‘_(_p(—+l)p = 1+("lj)"+2
with an integer ¢ prime to p. and we can complete the proof.

exponent p®, we have (1 -+ bp)”

_Notice that this lemma is false if p = 2. Indeed, (1 +2)? = 1 +2.2%

Theorem 2.3. If p is an odd prime number, then (Z/p"4)* is a cyclic
group for every n € Z. > 0.

PrOOF. Take an integer r that represents a generator of (Z/pZ)”; then
P~ =1 4+ bp with b € Z. Choosing r suitably, we may assume that pf{0.
Indeed, if p|b, take r+p instead of r. Since (r+p)? ' =rP ' (p—1)r? p+
ps with s € Z, we have (r +p)” ' =1 +pt with t =b— "2+ p(s+rP?).
which is prime to p as desired. Thus assuming b to be prime to p. let g be
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the order of the class of r (mod p™) in (Z/p"Z)*. Then g|p™ *(p —1). and
also (p—1)|g. as r generates (Z/pZ)*. Thus g = (p—1)p® with0 <a < n—1.
Then by Lemma 2.2, 79 = (1 +bp)?" =1+ cp®"! with an integer ¢ prime to
p. Since 19 —1 € p"Z, we sce that a+1 > n. and so @ = n — 1, which means
that » (mod p™) has order (p — 1)p™ !, This proves our theorem.

Any integer that represents a generator of (Z/p"Z)* is called a primitive
root modulo p".

As for the case p = 2, we first note that (Z/2Z)* is trivial and (Z/4Z)*
is of order 2, and so they arc cyclic. If a« = 4k + 1 with k& € Z, then
@’ = 1+ 8k + 16k% and so a> — 1 € 8Z for every odd integer a. Thus
(Z/8Z)* has no element of order 4, and so it is not cyclic.

Theorem 2.4. Let 3<necZ. For 2<v<n let H, denote the subgroup
of (Z)2"Z)* consisting of all o (mod 2™) such that o — 1 € 2VZ. Then H,
is cyclic of order 2" and (Z/2"4)" = { + l} x Hs.

PRrROOF. The order of (Z/2"Z)* is 2" . and so the order of any element of
(Z/2"Z)* is a power of 2. By induction on m we can prove that (1 F2NE =
1+ 2™k with an odd integer &k for 0 < m € Z. Therefore 142" is of order
27 in this group. Since every odd integer «a satisfies either a — 1 € 47 or
a+1 € 4Z, we obtain (Z/2"Z)* = {+1} x Hy. Clearly {1} = H,, G --- G I
and [{, has an element of order 2"~". Therefore H, is cyclic of order 2.
This completes the proof.

3. The quadratic reciprocity law

3.0. Here is a problem that motivates our investigation in this section. We
consider a congruence f[(r) = 0 (mod m), where f(x) is a polynomial with
coefficients in Z and m is a positive integer; we ask whether it has a solution
x in Z. If m is fixed, then we can answer the question by computing f(x)
for 0 < o < m. If we vary m. the question becomes more interesting. For
example, we can ask: For what kind of prime numbers p does the congruence

(3.0) 502 = 3 (mod p)

have a solution x in Z7 We will give an answer in §3.8 after developing a
general theory.

3.1. Let p be an odd prime number. Then (Z/pZ)* is a cyclic group of
order p—1.and p—1 is even. Therefore (Z/pZ)* has a unique subgroup R
of order (p—1)/2, and so we have a homomorphism A of (Z/pZ)” onto {£1}

b
such that Ker(A) = R. We then define a symbol (ﬁ> for b € Z by
p
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(b) _ {/\(1) (mod p)) if ptb.

p 0 it plb.

This is called the quadratic residue symbol. Clearly

()-C)) o voer

To explain the nature of this symbol, let r be a primitive root modulo p.
Then R is gencrated by r? (mod p). If b is an integer prime to p. then

= 7% (mod p) with 0 < a € Z. Since (;) = A(r (mod p)) = —1. we have

)“ and we easily see that

N
=T
N
Il
—
|
—

=1« beR < ac?2Z

N
| o

P

) < b=1? (mod p) for some r € Z prime to p.
b -

(5) =—-1 < b¢ R << a¢?2Z

<= b# 1% (mod p) for every r € Z,

where b denotes the class of b modulo pZ. We call an integer b a quadratic

b
residue modulo p if (—) = 1 and a quadratic nonresidue modulo p
p

(-

Theorem 3.2. For odd prime numbers p and q we have:

(3.1) (ﬁ) a?=1/2 (mod p) for every a € Z.
p
.
3.2 (—) yp-1)/2,
(3.2) 5
1 if p=4+1 (mod 8).
(3.3) . .
—1 if p=43 (mod 8).

2
P
q
p

(3-4) ( )( )_ )T g,

The last equality is called the quadratic reciprocity law.

ProOF. The first congruence is clear if pla. Let a = r™ (mod p) with a
primitive root 7 modulo p. Then r'#~1/2 = —1 (mod p). and so a'P~1/2 =
(rP=D/2)™ = (—1)™ (mod p). which proves (3.1). Taking a = —1. we obtain
(3.2). We will derive the last two relations in §3.5 as special cases of Theorem
3.4 below.

Formula (3.4) can be written also



