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Preface

This book was written to make learning introductory algebraic geometry as
easy as possible. It is designed for the general first- and second-year graduate
student, as well as for the nonspecialist ; the only prerequisites are a one-year
course in algebra and a little complex analysis. There are many examples
and pictures in the book. One’s sense of intuition is largely built up from
exposure to concrete examples, and intuition in algebraic geometry is no
exception. I have also tried to avoid too much generalization. If one under-
stands the core of an idea in a concrete setting, later generalizations become
much more meaningful. There are exercises at the end of most sections so
that the reader can test his understanding of the material. Some are routine,
others are more challenging. Occasionally, easily established results used in
the text have been made into exercises. And from time to time, proofs of
topics not covered in the text are sketched and the reader is asked to fill in
the details.

Chapter I is of an introductory nature. Some of the geometry of a few
specific algebraic curves is worked out, using a tactical approach that
might naturally be tried by one not familiar with the general methods intro-
duced later in the book. Further examples in this chapter suggest other basic
properties of curves.

In Chapter II, we look at curves more rigorously and carefully. Among
other things, we determine the topology of every nonsingular plane curve in
terms of the degree of its defining polynomial. This was one of the earliest
accomplishments in algebraic geometry, and it supplies the initiate with a
straightforward and very satisfying result.

Chapter III lays the groundwork for generalizing some of the results of
plane curves to varieties of arbitrary dimension. It is essentially a chapter on
commutative algebra, looked at through the eyeglasses of the geometer.
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Preface

Algebraic ideas are supplied with geometric meaning, so that in a sense one
obtains a *“dictionary” between commutative algebra and algebraic geom-
etry. I have put this dictionary in the form of a diagram of lattices; this
approach does seem to neatly tie together a good many results and easily
suggests to the reader a number of possible analogues and extensions.

Chapter IV is devoted to a study of algebraic varieties in C" and P"(C)
and includes a geometric treatment of intersection multiplicity (which we
use to prove Bézout’s theorem in n dimensions).

In Chapter V we look at varieties as underlying objects upon which
we do mathematics. This includes evaluation of elements of the variety’s
function field (that is, a study of valuation rings), a translation of the funda-
mental theorem of arithmetic to a nonsingular curve-theoretic setting (the
classical ideal theory), some function theory on curves (a generalization
of certain basic facts about functions meromorphic on the Riemann sphere),
and finally the Riemann—Roch theorem on a curve (which ties in function
theory on a curve with the topology of the curve).

After the reader has finished this book, he should have a foundation from
which he can continue in any of several different directions—for example,
to a further study of complex algebraic varieties, to complex analytic
varieties, or to the scheme-theoretic treatments of algebraic geometry which
have proved so fruitful.

It is a pleasure to acknowledge the help given to me by various students
who have read portions of the book; I also want to thank Frank Lozier for
critically reading the manuscript, and Basil Gordon for all his help in reading
the galleys. Thanks are also due to Mary Blanchard for her excellent job in
typing the original draft, to Mike Ludwig who did the line drawings, and to
Robert Janusz who did the shaded figures. I especially wish to express my
gratitude to my wife, Joan, who originally encouraged me to write this book
and who was an invaluable aid in preparing the final manuscript.

Keith Kendig

Cleveland, Ohio
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CHAPTER 1

Examples of curves

1 Introduction

The principal objects of study in algebraic geometry are algebraic varieties.
In this introductory chapter, which is more informal in nature than those that
follow, we shall define algebraic varieties and give some examples; we then
give the reader an intuitive look at a few properties of a special class of
varieties, the “complex algebraic curves.” These curves are simpler to study
than more general algebraic varieties, and many of their simply-stated
properties suggest possible generalizations. Chapter II is essentially devoted
to proving some of the properties of algebraic curves described in this
chapter.

Definition 1.1. Let k be any field.
(1.1.1) The set {(x, . . ., x,)|x; € k} is called affine n-space over k; we
denote it by k", or by ky, ... x,.. Each n-tuple of k" is called a point.
(1.1.2) Let k[X,,...,X,] = k[X] be the ring of polynomials in n
indeterminants X 4, ..., X, with coefficients in k. Let p(X) € k[X]\k. The
set

V(p) = {(x) € k"|p(x) = 0}

is called a hypersurface of k", or an affine hypersurface.
(1.1.3) If {p,(X)} is any collection of polynomials in k[ X], the set

V({p.}) = {(x) € k"|each p,(x) = 0}

is called an algebraic variety in k", and affine algebraic variety, or, if the
context is clear, just a variety. If we wish to make explicit reference to the
field k, we say affine variety over k, k-variety, etc.; k is called the ground
field. We also say V({p,}) is defined by {p,}.



I: Examples of curves

(1.1.4) k? is called the affine plane. If p € k[ X, X,]\k, V(p) is called a
plane affine curve (or plane curve, affine curve, curve, etc., if the meaning is
clear from context)

We will show later on, in Section IIL3, that any variety can be defined
by only finitely many polynomials p,.
Here are some examples of varieties in R2.

EXAMPLE 1.2 ‘

(1.2.1) Any variety V(aX? + bXY + cY? + dX + eY + f) where a, ...,
fe€ R. Hence all circles, ellipses, parabolas, and hyperbolas are affine algebraic
varieties; so also are all lines.

(1.2.2) The “cusp” curve V(Y? — X3); see Figure 1.

(1.2.3) The “alpha” curve V(Y? — X*(X + 1)); see Figure 2.

Y Y

Figure 1 Figure 2

(1.2.4) The cubic V(Y2 — X(X? — 1)); see Figure 3. This example shows
that algebraic curves in R? need not be connected.

(1.2.5) If V(p,) and V(p,) are varieties in R?, then so is V(p;) U V(p,); it is
just V(p, - p,), as the reader can check directly from the definition. Hence one
has a way of manufacturing all sorts of new varieties. For instance,
(X2 4+ Y2 —1)(X? + Y? — 4) =0 defines the union of two concentric
circles (Figure 4).

(1.2.6) The graph V(Y — p(X)) in R? of any polynomial Y = p(X)e R[X]
is also an algebraic variety.

(1.2.7) If p,, p,€R[X, Y], then V(p,,p,) represents the simultaneous
solution set of two polynomial equations. For instance, V(X, Y)=
{(0, 0)} = R?, while V(X2 + Y2 — 1, X — Y) s the two-point set

{5204
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1: Introduction

e
e

Figure 3 Figure 4

(1.2.8) In R?, any conic is an algebraic variety, examples being the sphere
V(X* + Y? + Z2 — 1), the cylinder V(X? + Y? — 1), the hyperboloid
V(X%? — Y?> — Z%? — 1), and so on. A circle in R? is also a variety, being
represented, for example, as V(X% + Y? + Z? — 1, X) (geometrically the
intersection of a sphere and the (Y, Z)-plane). Any point (a, b, ¢) in R? is the
variety V(X — a, Y — b, Z — c) (geometrically, the intersection of the three
planes X = a, Y= b,and Z = ¢).

Now suppose (still using k = R) that we have written down a large number
of sets of polynomials, and that we have sketched their corresponding
varieties in R". It is quite natural to look for some regularity. How do alge-
braic varieties behave? What are their basic properties?

First, perhaps a simple “dimensionality property” might suggest itself.
For our immediate purposes, we may say that ¥ < R" has dimension d if V'
contains a homeomorph of R?, and if V is the disjoint union of finitely many
homeomorphs of R (i < d). Then in all examples given so far, each equation
introduces one restriction on the dimension, so that each variety defined by
one equation has dimension one less than the surrounding space—i.e., the
variety has codimension 1. (In k", “codimension” means “n — dimension.”)
And each variety defined by two (essentially different) equations has dimen-
sion two less than the surrounding (or “ambient ”) space (codimension 2), etc.
Hence the sphere V(X? + Y2 + Z? — 1) in R? has dimension 3 — 1 = 2,
the circle V(X% + Y2 + Z? — 1, X)in R? has dimension 3 — 2 = 1, and the
point V(X —a, Y — b, Z — ¢) in R? has dimension 3 — 3 = 0. This same
thing happens in R” with homogeneous linear equations—each new linearly
independent equation cuts down the dimension of the resulting subspace by
one.

But if we look down our hypothetical list a bit further, we come to the
polynomial X2 + Y?; X2 + Y2 defines only the Z-axis in R3. This one
equation cuts down the dimension of R* by two—that is, the Z-axis has co-
dimension two in R>. And further down the list we see X2 + Y2 + Z?; the

3



I: Examples of curves

associated variety is only the origin in R3. And if this is not bad enough,
X%+ Y2 + Z? + 1 defines the empty set ¥ in R3! Clearly then, one
equation does not always cut down the dimension by one.

We might try simply restricting our attention to the “good” sets of poly-
nomials, where the hoped-for dimensional property holds. But one “good”
polynomial together with another one may not yield a “good” set of poly-
nomials. For instance, two spheres in R* may not intersect in a circle (co-
dimension 2), but rather in a point, or in the empty set.

Though things might not look very promising at this point, mathe-
maticians have often found their way out of similar situations. For instance,
mathematicians of antiquity thought that only certain nonconstant poly-
nomials in R[ X ] had zeros. But the exceptional status of polynomials having
only real roots was removed once the field R was extended to its algebraic
completion, C = field of complex numbers. One then had a most beautiful
and central result, the fundamental theorem of algebra. (Every nonconstant
polynomial p(X)e C[X] has a zero, and the number of these zeros, when
counted with multiplicity, is the degree of p(X).) Similarly, geometers could
remove the exceptional behavior of “parallel lines” in the Euclidean plane
once they completed it in a geometric way by adding “points at infinity,”
arriving at the projective completion of the plane. One could then say that
any two different lines intersect in exactly one point, and there was born a
beautiful and symmetric area of mathematics, namely projective geometry.

For us, we may find a way out of our difficulties by using both kinds of
completions. We first complete algebraically, using C instead of R (each set of
polynomials p,,...,p, with real or complex coefficients defines a variety
V(py,--.-.,p,) in C"); and we also complete C" projectively to complex pro-
Jjective n-space, denoted P"(C). The variety V(py, ..., p,)in C" will be extended
in P"(C) by taking its topological closure. (We shall explain this further in a
moment.) By extending our space and variety this way, we shall see that all
exceptions to our “dimensional relation” will disappear, and algebraic
varieties will behave just like subspaces of a vector space in this respect.

Hence, although in R?, X2 + Y2 — 1 defines a circle but X2 + Y2 only
a point and X2 + Y? + 1 the empty set, in our new setting each of these
polynomials turns out to define a variety of (complex) codimension one in
'P*(C), independent of what the “radius” of the circle might be. (The “com-
plex dimension” of a variety V in C" is just one-half the dimension of V con-
sidered as a real point set; we shall see later that as a real point set, the dimen-
sion is always even. Also, even though the locus in C? of X? + Y2 = 1 does
not turn out to look like a circle, we shall continue to use this term since the
C2-locus is defined by the same equation. Similarly, we shall use terms like
curve or surface for complex varieties of complex dimension 1 and 2, respec-
tively.)

In general, any nonconstant polynomial turns out to define a point set of
complex codimension one in P*(C), just as one (nontrivial) linear equation
does in any vector space. A generalization of this vector space property is:

4



2: The topology of a few specific plane curves

If L, and L, are subspaces of any n-dimensional vector space k"
over k, then
COd(Ll ‘@) LZ) < COd(Ll) + COd(Lz)

(cod = codimension).

For instance, any two 2-subspaces in R* must intersect in at least a line. In
P*C) this basic dimension relation holds even for arbitrary complex-
algebraic varieties. Certainly nothing like this is true for varieties in R%. One
can talk about disjoint circles in R?, or disjoint spheres in R, These phrases
make no sense in P%(C) and P3(C), respectively; the points missing in R? or
R? simply are not seen because they are either “at infinity,” or have complex
coordinates. (This will be made more precise soon.) Hence it turns out that
what we see in R" is just the tip of an iceberg—a rather unrepresentative slice
of the variety at that—whose “true” life, from the algebraic geometer’s view-
point, is lived in P*(C).

2 The topology of a few specific plane curves

Suppose we have added the missing “points at infinity” to a complex alge-
braic variety in C", thus getting a variety in P"(C). 1t is natural to wonder what
the entire “completed” curve looks like. We consider here only curves in
C? and in P?(C); complex varieties of higher dimension have real dimension
>4 and our visual appreciation of them is necessarily limited. Even our
complex curves live in real 4-space; our situation is somewhat analogous to
an inhabitant of “Flatland” who lives in R?, when he attempts to visualize
an ordinary sphere in R3. He can, however, see 2-dimensional slices of the
sphere. Now in X2 + Y2 + Z? = 1, substituting a specific value Z, for Z
yields the part of the sphere in the plane Z = Z,. Then ifhelets Z =T =
time, he can “visualize” the sphere by looking at a succession of parallel plane
slices X2 + Y2 =1 — T? as T varies. He sees a “moving picture” of the
sphere; it is a point when T = — 1, growing to ever larger circles, reaching
maximum diameter at T = 0, then diminishing to a point when T = 1.
Our situation is perhaps even more strictly analogous to his problem of
visualizing something like a “warped circle” in 3-space (Figure 5). The

Figure 5



I: Examples of curves

Flatlander’s moving picture of the circle’s intersections with the planes
Z = constant will trace out a topological circle for him. He may not appre-
ciate all the twisting and warping that the circle has in R3, but he can see
its topological structure.

To get a topological look at our complex curves, let us apply this same idea
to a hypersurface in complex 2-space. In C?, we will let the complex X-
variable be X = X, + iX,; similarly, Y = Y, + iY¥,. We will let X, vary
with time, and our “screen” will be real (X, Y;, Y,)-space. The intersection
of the 3-dimensional hyperplane X, = constant with the real 2-dimensional
variety will in general be a real curve; we will then fit these curves together
in our own 3-space to arrive at a 2-dimensional object we can visualize. As
with the Flatlander, we will lose some of the warping and twisting in 4-space,
but we will nonetheless get a faithful topological look, which we will be con-
tent with for now.

Since our complex curves will be taken in P?(C), we first describe intuitively
the little we need here in the way of projective completions. Our treatment is
only topological here, and will be made fuller and more precise in Chapter II.
We begin with the real case.

P!(R): As a topological space, this is obtained by adjoining to the topo-
logical space R (with its usual topology) an “infinite” point, say P, together
with a neighborhood system about P. For basic open neighborhoods we take

UnP) = {P} U {reR||r| > N} N=U128,0...

We can visualize this more easily by shrinking R! down to an open line
segment, say by x — x/(1 + |x|). We may add the point at infinity by ad-
joining the two end points to the line segment and identifying these two points.
In this way P!(R) becomes, topologically, an ordinary circle.

P%(R): First note that, except for Ry, the 1-spaces L, = V(X + aY) of
Ryy are parametrized by «; a different parametrization, L, = V(@'X + Y),
includes Ry (but not Ry). Then as a topological space, P*(R) is obtained
from R? by adjoining to each 1-subspace of R?, a point together with a
neighborhood system about each such point.

If, for instance, a given line is L, , then for basic open neighborhoods
about a given P,, we take

UnMPq,) = | klj HN({Pa} U{lx,)eLll(x,»I>N}) N=123,...,
a—ag| <
where [(x, y)| = |x| + |yl.

Similarly for lines parametrized by «'. (When a and o’ both represent the
same line L,, = L,;, the neighborhoods Ux(P,,) and U(P,,) generate the
same set of open neighborhoods about P,, = P,,.)

Again, we can see this more intuitively by topologically shrinking R?
down to something small. For instance,

x y
(x, )—*( 5 )
. 1+ Ux2+ 2 1+ Ux2+)?




2: The topology of a few specific plane curves

Figure 6

maps R? onto the unit open disk. Figure 6 shows this condensed plane
together with some mutually parallel lines. (Two lines parallel in R? will
converge in the disk since distance becomes more “concentrated” as we
approach its edge; the two points of convergence are opposite points. If,
as in P'(R), we identify these points, then any two “parallel” lines in the
figure will intersect in that one point. Adding analogous points for every
set of parallel lines in the plane means adding the whole boundary of the
disk, with opposite (or antipodal) points identified. All these “points at
infinity” form the “line at infinity,” itself topologically a circle, hence a
projective line P'(R). Since this line at infinity intersects every other line in
just one point, it is clear that any two different projective lines of P%(R)
meet in precisely one point.

P!(C): Topologically, the “complex projective line” is obtained by
adjoining to C an “infinite” point P; for basic open neighborhoods about
P, take

Un{P} = {P} U {z€C|lz| >N} N=1,2,3,....

Intuitively, shrink C down so it is an open disk, which topologically is also
a sphere with one point missing (just as R is topologically a circle with one
point missing). Adding this point yields a sphere.

P?(C): As in the real case, except for the X-axis Cy, the complex 1-spaces
of C? = Cyy are parametrized by a:

X +aY =0 whereaeC;

another parametrization, «’ X + Y = 0, includes Cy but not Cy. Then P?*(C)
as a topological space is obtained from C? by adjoining to each complex

7



I: Examples of curves

1-subspace L, = V(X + aY) (or L,, = V(&'X + Y)) a point P, (or P,). A

typical basic open neighborhood about a given P, is

UN(Pao)= U ({Pa} v {(zl’ZZ)ELall(zhzZ” > N}) N= 192,3,---,
la—ao| < 1/N

where |(z,, z;)| = |z,| + |z,|; similarly for neighborhoods about points P,;.

Intuitively, to each complex 1-subspace and all its parallel translates, we
are adding a single “point at infinity,” so that all these parallel lines intersect
in one point. Each complex line is thus extended to its projective completion,
P!(C); and all points at infinity form also a P!(C). As in P%(R), any two dif-
ferent projective lines of P?(C) meet in exactly one point.

The reader can easily verify from our definitions that each of R, R?, C, C?
is dense in its projective completion; hence the closure of C? in P?*(C) is
P?(C), and so on. We shall likewise take the projective extension of a complex
algebraic curve in C? to be its topological closure in P%(C).

We next consider some examples of projective curves using the slicing
method outlined above.

ExAMPLE 2.1. Consider the circle V(X + Y2 — 1). Let X = X, + iX, and
Y=Y, +iY,. Then (X; + iX;)* + (Y, + iY¥;)*> = 1. Expanding and
equating real and imaginary parts gives
Xlz_X22+le—Y22=l, X1X2+Y1Y2=0. (l)
We let X, play the role of time; we start with X, = 0. The part of our complex
circle in the 3-dimensional slice X, = 0 is then given by
sz o = le £ Y22 = l, Yl Yz = 0. (2)

The first equation defines a hyperboloid of one sheet; the second one, the
union of the (X,, Y;)-plane and the (X, Y,)-plane (since Y, - Y, = O implies
Y, = Oor Y, = 0). The locus of the equations in (2) appears in Figure 7. It is

Y,
A v
4
Xl
Vg Aq
Figure 7



2: The topology of a few specific plane curves

P,

P-/
Figure 8

the union of the real circle X ,? + Y,? = 1 (when Y, = 0) and the hyperbola
X,? - Y,2 = 1 (when Y; = 0). The circle is, of course, just the real part of
the complex circle. The hyperbola has branches approaching two points at
infinity, which we call P, and P, .

Now the completion in P?(R) of the hyperbola is topologically an ordinary
circle. Hence the total curve in our slice X, = 0 is topologically two circles
touching at two points; this is drawn in Figure 8. The more lightly-drawn
circle in Figure 8 corresponds to the (lightly-drawn) hyperbola in Figure 7.

Now let’s look at the situation when “time” X, changes a little, say
to X, = ¢ > 0. This defines the corresponding curve

X2+Y?2-Y?2=1+¢, &X;+Y,Y,=0.

The first surface is still a hyperboloid of one sheet; the second one, for ¢
small, in a sense “looks like” the original two planes. The intersection of
these two surfaces is sketched in Figure 9. The circle and hyperbola have
split into two disjoint curves. We may now sketch these disjoint curves in on
Figure 8; they always stay close to the circle and hyperbola. If we fill in all

Figure 9



I: Examples of curves

P
Figure 10

such curves corresponding to X, = constant, we will fill in the surface of a
sphere. The curves for nonnegative X , are indicated in Figure 10.

For X, < 0, one gets curves lying on the other two quarters of the sphere.
We thus see (and will rigorously prove in Section I1,10) that all these curves
fill out a sphere. We thus have the remarkable fact that the complex circle
V(X2 + Y% — 1) in P¥C) is topologically a sphere.

From the complex viewpoint, the complex circle still has codimension 1 in
its surrounding space.

ExAMPLE 2.2. Now let us look at a circle of “radius 0,” V(X2 + Y?). The
equations corresponding to (1) are

Xlz‘_X22+Y12_Y22=0, X1X2+Y1Y2=O. (3)

The part of this variety lying in the 3-dimensional slice X, = 0 is then given
by
X2 +Y,2-Y2=0, ¥ Yyo= 0 (4)

The first equation defines a cone; the second one defines the union of two
planes as before. The simultaneous solution is the intersection of the cone and
planes. This consists of two lines (See Figure 11). The projective closure of
each line is a topological circle, so the closure of the two lines in this figure
consists of two circles touching at one point. This can be thought of as the
limit figure of Figure 8 as the horizontal circle’s radius approaches zero.
When X, = ¢, the saddle-surface defined by ¢X, + Y,Y, = 0 intersects
the one-sheeted hyperboloid given by X, + Y;2 — Y,2 = ¢%. As before,
their intersection consists of two disjoint real curves, which turn out to be
lines (Figure 12); just as in the first example, as X, varies, the curves fill out
a 2-dimensional topological space which is like Figure 10, except that the
radius of the horizontal circle is 0 (Figure 13). To keep the figure simple, only
curves for X, > 0 have been sketched; they cover the top half of the upper

10



