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CHAPTER

Matrices and Systems of Equations

Probably the most important problem in mathematics is that of solving a system of
linear equations. Well over 75 percent of all mathematical problems encountered in
scientific or industrial applications involve solving a linear system at some stage. By
using the methods of modern mathematics, it is often possible to take a sophisticated
problem and reduce it to a single system of linear equations. Linear systems arise
in applications to such areas as business, economics, sociology, ecology, demography,
genetics, electronics, engineering, and physics. Therefore, it seems appropriate to begin
this book with a section on linear systems.

m Systems of Linear Equations

A linear equation in n unknowns is an equation of the form
aix; +agxs + -+ apx, = b

where a,as, ...,a, and b are real numbers and x|, x2, ..., x, are variables. A linear
system of m equations in n unknowns is then a system of the form

ayxy + apxa + -+ apxy, = by
a)nx) + apxa + -+ agx, = by

(1

AmiX1 + AmaX2 + <+ -+ AmnXn = b

where the a;;’s and the b;’s are all real numbers. We will refer to systems of the form (1)
as m x n linear systems. The following are examples of linear systems:

\ (@ x+2x =5 b)) x1—x+x3=2 © xy +xn=2
2x1 +3x, =8 21 +x —x3=4 xi—x =1
X1 =4
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System (a) is a 2 x 2 system, (b) isa 2 x 3 system, and (¢) is a 3 x 2 system.

By a solution of an m x n system., we mean an ordered n-tuple of numbers
(6 TP PR x,,) that satisfies all the equations of the system. For example, the ordered
pair (1, 2) is a solution of system (a), since

1-(1)4+2-(2)=5
2:.(1)+3-(2)=38

The ordered triple (2,0, 0) is a solution of system (b), since

1:2)=1-0)+1-(0)=2
2-2)+1-(0)—1-(0)=4

Actually, system (b) has many solutions. If « is any real number, it is easily seen that
the ordered triple (2, o, @) is a solution. However, system (¢) has no solution. It follows
from the third equation that the first coordinate of any solution would have to be 4.
Using x; = 4 in the first two equations, we see that the second coordinate must satisfy

44x=2
4—XQ=I

Since there is no real number that satisfies both of these equations, the system has no
solution. If a linear system has no solution, we say that the system is inconsistent. It
the system has at least one solution, we say that it is consistent. Thus system (c¢) is
inconsistent, while systems (a) and (b) are both consistent.

The set of all solutions of a linear system is called the solurion set of the system.
If a system is inconsistent, its solution set is empty. A consistent system will have a
nonempty solution set. To solve a consistent system, we must find its solution set. .

2 x 2 Systems
Let us examine geometrically a system of the form

anx) + apx; = by
axy + anx; = by

Each equation can be represented graphically as a line in the plane. The ordered pair
(x1,x2) will be a solution of the system if and only if it lies on both lines. For example.
consider the three systems

@D x+x=2 G) x +x=2 (iii) x;+x=
X —xn=2 X +x=I1 —X] — X2 = —2

The two lines in system (1) intersect at the point (2,0). Thus, {(2,0)} is the solution
set of (i). In system (ii) the two lines are parallel. Therefore, system (ii) is inconsistent
and hence its solution set is empty. The two equations in system (iii) both represent the
same line. Any point on this line will be a solution of the system (see Figure 1.1.1).

In general, there are three possibilities: the lines intersect at a point, they are par-
allel, or both equations represent the same line. The solution set then contains either
one, zero, or infinitely many points.
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(i) (ii) (i)

The situation is the same for m x n systems. An m x n system may or may not be
consistent. If it is consistent, it must have either exactly one solution or infinitely many
solutions. These are the only possibilities. We will see why this is so in Section 1.2
when we study the row echelon form. Of more immediate concern is the problem of
finding all solutions of a given system. To tackle this problem, we introduce the notion
of equivalent systems.

I nmivaloant
Lauivaient Systems

Consider the two systems

(@) 3x; +2x — x3=-2 (b) 3x) + 20 —x3 = =2
X2 = 3 —3x1— x4+x3= 5
2x3= 4 3x1+ 20 4+x3= 2

System (a) is easy to solve because it is clear from the last two equations that x, = 3
and x3 = 2. Using these values in the first equation, we get

3 +2:3— 2=-2
.\’]:—2

Thus, the solution of the system is (—2, 3,2). System (b) seems to be more difficult to
solve. Actually, system (b) has the same solution as system (a). To see this, add the
first two equations of the system:
3x;) + 20 —x3 = -2
—3x1— x+x3= 5

X2 = 3
If (x1, x2. x3) 1s any solution of (b), it must satisfy all the equations of the system. Thus,
it must satisfy any new equation formed by adding two of its equations. Therefore, x,
must equal 3. Similarly, (x1, x2, x3) must satisty the new equation formed by subtracting

the first equation from the third:

31 +20 4+ x3= 2

3+ 20— x3=-2

ZX3 = 4
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Definition

Therefore, any solution of system (b) must also be a solution of system (a). By a similar -
argument, it can be shown that any solution of (a) is also a solution of (b). This can be
done by subtracting the first equation from the second:
X2 = 3
3x + 20 —x3 = -2
—3x1— X+x3= 5

Then add the first and third equations:

3X|+2X2-+- X3 = 2

Thus, (x1, X2, x3) is a solution of system (b) if and only if it is a solution of system (a).
Therefore, both systems have the same solution set, {(—2, 3,2)}.

Two systems of equations involving the same variables are said to be equivalent if
they have the same solution set.

Clearly, if we interchange the order in which two equations of a system are written,
this will have no effect on the solution set. The reordered system will be equivalent to
the original system. For example, the systems

X1 +2x =4 dx; + xx =6
3X| — X2 = 2 and 3.X'] = X = 2
4x1+ x2=6 X1 +2xn=4

both involve the same three equations and, consequently, they must have the same
solution set.

If one equation of a system is multiplied through by a nonzero real number, this
will have no effect on the solution set, and the new system will be equivalent to the
original system. For example, the systems

xXi1+x+ x3=3 d 2x; + 2% +2x3 =6
—2x; —x2 +4x3 =1 = —2x1— xp+4x3=1
are equivalent.

If a multiple of one equation is added to another equation, the new system will be
equivalent to the original system. This follows since the n-tuple (x, .. ., x,) will satisfy
the two equations

aix1 + -+ ainXn = b;
a; Xy + -4 aj,,.x,, = bj
if and only if it satisfies the equations
anXx; + -+ aipxy, = b;
(ajp +aap)x) + -+ + (@ + aaip)x, = b+ ab;
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To summarize, there are three operations that can be used on a system to obtain an
equivalent system:

I. The order in which any two equations are written may be interchanged.
I1. Both sides of an equation may be multiplied by the same nonzero real number.
III. A multiple of one equation may be added to (or subtracted from) another.

Given a system of equations, we may use these operations to obtain an equivalent
system that is easier to solve.

i X 1 Systems

Let us restrict ourselves to n x n systems for the remainder of this section. We will
show that if an n x n system has exactly one solution, then operations I and III can be
used to obtain an equivalent “strictly triangular system.”

A system is said to be in strict triangular form if, in the kth equation, the coef-
ficients of the first k — 1 variables are all zero and the coefficient of x; is nonzero
(k= 15::.,n)

The system

3 + 20+ x3=1
Xy — X3=2
2x; =4

is in strict triangular form, since in the second equation the coefficients are 0, 1, —1, re-
spectively, and in the third equation the coefficients are 0, 0, 2, respectively. Because of
the strict triangular form, the system is easy to solve. It follows from the third equation
that x3 = 2. Using this value in the second equation, we obtain

xn—2=2 or xn =4
Using x; = 4, x3 = 2 in the first equation, we end up with

x1=—3

Thus, the solution of the system is (—3, 4, 2). ]

Any n x n strictly triangular system can be solved in the same manner as the last
example. First, the nth equation is solved for the value of x,. This value is used in the
(n — 1)st equation to solve for x,_;. The values x, and x,_; are used in the (n — 2)nd
equation to solve for x,_,, and so on. We will refer to this method of solving a strictly
triangular system as back substitution.



