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Preface

Differential geometry is a major subject in contemporary mathematics. One person
who had played an essential role in the rising of differential geometry is Professor
Shiing-Shen Chern.

He received the Wolf prize in 1983/4 for his “outstanding contributions to
global differential geometry, which have profoundly influenced all mathematics”,
and the citation says:

Professor Shiing-Shen Chern has been the leading figure in global dif-
ferential geometry. His earlier work on integral geometry, especially on
the kinematic formula, was the source of most later work. His ground-
breaking discovery of characteristic classes (now known as Chern classes)
was the turning point that set global differential geometry on a course of
tumultuous development. The field has blossomed under his leadership,
and his results, together with those of his numerous students, have influ-
enced the development of topology, algebraic geometry, complex mani-
folds, and most recently of gauge theories in mathematical physics.

In 2001, Professor Chern received a special Morningside Lifetime Achieve-
ment Award in Mathematics, and the citation reads:

Professor Chern is awarded the Morningside Lifetime Achievement for
his work on developing the foundation of Chinese mathematics, his epochal
contributions to research in differential geometry, and his nurturing of
leading mathematicians both in China and abroad. In the 1940s, differen-
tial geometry was at a low point worldwide; this area of mathematics was
only beginning to be understood and to be used. Professor Chern became a
pioneer in this subject. Some of his major achievements include the Chern
characteristic classes in fiber spaces, and his proof of the Gauss-Bonnet
formula. Today, differential geometry is a major subject in mathematics
and a large share of the credit for this transformation goes to Professor
Chern.



VI Preface

One natural question is how and what did such an initiator of a major subject
say about the topics dear to his heart, especially when they were taking shape.
What can the young generations, especially the young Chinese mathematicians,
learn from a leading figure in the last century? We hope that these two books of
lecture notes of Professor Chern and some of his expository papers will answer
this question.

Though there are many books now on differential geometry, integral geome-
try and related topics, they often lack the freshness and directness of the original
descriptions by masters. This is consistent with Abel’s advice “By studying the
masters, not their pupils.” This point was endorsed by Professor Chern in his fore-
word to the Chinese edition of M. Atiyah’s collected works:

No matter how refined or improved a new account is, the original papers
on a subject are usually more direct and to the point. When I was young,
I was benefited by the advice to read Henri Poincaré, David Hilbert, Felix
Klein, Adolf Hurwitz, etc. I did better with Wilhelm Blaschke, Elie Cartan
and Heinz Hopf. This has also been in the Chinese tradition, when we
were told to read Confucius, Han Yu in prose, and Tu Fu in poetry.

The title of the first book Topics in Differential Geometry comes from the title
of his lecture notes at IAS, Princeton, in 1951. It also contains his expository pa-
pers: “From Triangles to Manifolds”, “Curves and Surfaces in Euclidean Space”,
“Characteristic Classes and Characteristic Forms”, “Geometry and Physics”, and
“The Geometry of G-Structures”, together with the set of so far unpublished lec-
ture notes: “Minimal Submanifolds in a Riemannian Manifold” .

Together they show how differential geometry is connected to other subjects
such as topology and Lie group theory. Though there are more modern expositions
of these topics, they are usually not comparable with what Chern wrote. For exam-
ple, his lecture notes “Topics in Differential Geometry” starts from basics which
is accessible to beginners and goes right to some striking applications such as the
rigidity theorem of Cohn-Vossen on convex surfaces in R? and the rigidity of con-
vex hypersurfaces in R”. His treatment of the theory of connection has also such
characteristic of being direct and going to the key point. The papers selected to
be reprinted in this book give an overview of the scope and power of differential
geometry. They complement well this set of lecture notes.

This first book will be very valuable to beginners to learn the modern differ-
ential geometry, and will also be valuable to experts for them to rethink about
differential geometry.

The title of the second book is a combination of titles of two sets of lecture
notes of Chern which have not been formally published. It seems that there exists
only one known copy of the second set of lecture notes, which is owned by the
library of University of Michigan, It also contains a more recent unpublished set
of lecture notes titled “Lectures on Differential Geometry”.
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This second book starts with a paper of Chern which gives a gentle introduction
to differential geometry accessible to students and nonexperts, and a survey of the
status of global differential geometry in 1971 when Chern gave a plenary talk in
ICM. As Gromov commented in his Math Review of this paper:

This is a brilliant and inspiring exposition. The author begins with a brief
historical survey, outlines some fundamental notions and tools, and de-
scribes the current situation in four branches of differential geometry:
manifolds of positive curvature, curvature and the Euler characteristic,
minimal sub manifolds isometric mappings, holomorphic mappings.

This paper also includes some open problems and hence is also very interesting
from the historical perspective.

As every student knows, there are two key components of calculus: differen-
tiation and integration. In geometry, there are also two closely related subjects:
differential geometry and integral geometry. It is valuable to read and learn them
side by side.

The lecture notes “Differential Manifolds™ gives a smooth and rapid introduc-
tion to differential manifolds and differential geometry. It was delivered by Chern
in 1959 at University of Chicago when differential geometry was becoming a ma-
jor subject in mathematics. Its freshness shines through.

As the citation of the Wolf prize indicates, Chern also made major contribution
to integral geometry. The lecture notes “Lectures on Integral Geometry” give an
efficient and also accessible introduction to this subject. It is worthwhile to point
out that one of Chern’s teachers was Blaschke, who was a major or leading figure
in integral geometry. This also adds something special to his lectures. In this set of
lecture notes, one can also see Chern’s global view of mathematics. For example,
besides standard topics in integral geometry in Euclidean spaces, it also discusses
integral geometry of homogeneous spaces.

This second book will also be a very valuable introduction to both differential
and integral geometry for beginners and a supplementary reading for people at all
stages.

We hope and believe that there is much one can learn from these collections of
lecture notes and papers of Professor Chern, a modern master in mathematics and
one of the originators of global differential geometry.

In collecting material for and editing these two books, we have received gen-
erous help from Professor Chuu-Lian Terng, and support and blessing from May
Chu, the daughter of Processor Chern. Liping Wang of the Higher Education Press
has also been very supportive of this project. Without their kind help, these books
probably cannot appear in print. We would like thank them sincerely.

Finally, may you enjoy these two books and benefit from them!

Shiu-Yuen Cheng and Lizhen Ji
January 14, 2016.
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1
From Triangles to Manifolds '

1.1 Geometry

I believe I am expected to tell you all about geometry; what it is, its developments
through the centuries, its current issues and problems, and, if possible, a peep into
the future. The first question does not have a clear-cut answer. The meaning of the
word geometry changes with time and with the speaker. With Euclid, geometry
consists of the logical conclusions drawn from a set of axioms. This is clearly not
sufficient with the horizons of geometry ever widening. Thus in 1932 the great ge-
ometers O. Veblen and J. H. C. Whitehead said, “A branch of mathematics is called
geometry, because the name seems good on emotional and traditional grounds to a
sufficiently large number of competent people™ [1]. This opinion was enthusiasti-
cally seconded by the great French geometer Elie Cartan [2]. Being an analyst him-
self, the great American mathematician George Birkhoff mentioned a “disturbing
secret fear that geometry may ultimately turn out to be no more than the glittering
intuitional trappings of analysis”[3]. Recently my friend Andre Weil said: “The
psychological aspects of true geometric intuition will perhaps never be cleared up.
At one time it implied primarily the power of visualization in three-dimensional
space. Now that higher-dimensional spaces have mostly driven out the more ele-
mentary problems, visualization can at best be partial or symbolic. Some degree
of tactile imagination seems also to be involved”[4].

At this point it is perhaps better to let things stand and turn to some concrete
topics.

1.2 Triangles
Among the simplest geometrical figures is the triangle, which has many beauti-
ful properties. For example, it has one and only one inscribed circle and also one

! The American Mathematical Monthly, Vol. 86, No. 5 (May, 1979), pp. 339-349.
(©Mathematical Association of American, 1979. All right reserved.



2 1 From Triangles to Manifolds

and only one circumscribed circle. At the beginning of this century the nine-point
circle theorem was known to almost every educated mathematician. But its most
intriguing property concerns the sum of its angles. Euclid says that it is equal to
180°, or 7 by radian measure, and deduces this from a sophisticated axiom, the
so-called parallel axiom. Efforts to avoid this axiom failed. The result was the dis-
covery of non-Euclidean geometries in which the sum of angles of a triangle is
less or greater than 7, according as the geometry is hyperbolic or elliptic. The dis-
covery of hyperbolic non-Euclidean geometry, in the eighteenth century by Gauss,
John Bolyai, and Lobachevsky, was one of the most brilliant chapters in human
intellectual history.

The generalization of a triangle is an n-gon, a polygon with n sides. By cutting
the n-gon into n — 2 triangles, one sees that the sum of its angles is (n — 2) 7. It is
better to measure the sum of the exterior angles! The latter is equal to 27, for all
n-gons, including triangles.

1.3 Curves in the plane; rotation index and regular homotopy

By applying calculus we can consider smooth curves and closed smooth curves in
the plane, i.e., curves with a tangent line everywhere and varying continuously. As
a point moves along a closed smooth (oriented) curve C once, the lines through a
fixed point O and parallel to the tangent lines of C rotate through an angle 2n7w or
rotate n times about O. This integer n is called the rotation index of C (See Fig. 1).
A famous theorem in differential geometry says that if C is a simple curve, i.e., if
C does not intersect itself n = 1.

Clearly, there should be a theorem combining the theorem on the sum of exte-
rior angles of an n-gon and the rotation index theorem of a simple closed smooth
curve. This is achieved by considering the wider class of simple closed sectionally
smooth curves. The rotation index of such a curve can be defined in a natural way
by turning the tangent at a corner an amount equal to the exterior angle(See Fig. 2).
Then the rotation index theorem above remains valid for simple closed sectionally
smooth curves. In the particular case of an n-gon formed by straight segments, this
reduces to the statement that the sum of its exterior angles is 2.

Fig. 1.
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Fig. 2.

This theorem can be further generalized. Instead of simple closed curves we
can allow closed curves to intersect themselves. A generic self-intersection can be
assigned a sign. Then, if the curve is properly oriented, the rotation index is equal
to one plus the algebraic sum of the number of self-intersections (See Fig. 3). For
example, the figure 8 has the rotation index zero.

Fig. 3.

A fundamental notion in geometry, or in mathematics in general, is deforma-
tion or homotopy. Two closed smooth curves are said to be regularly homotopic if
one can be deformed to the other through a family of closed smooth curves. Since
the rotation index is an integer and varies continuously in the family, it must remain
a constant; i.e., it keeps the same value when the curve is regularly deformed. A
remarkable theorem of Whitney-Graustein says that the converse is true [5]: Two
closed smooth curves with the same rotation index are regularly homotopic.

It is a standard practice in mathematics that in order to study closed smooth
curves in the plane it is more profitable to look at all curves and to put them into
classes, the regular homotopy classes in this case being an example. This may be
one of the essential methodological differences between theoretical science and ex-
perimental science, where such a procedure is impractical. The Whitney-Graustein
theorem says that the only invariant of a regular homotopy class is the rotation in-
dex.
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1.4 Euclidean three-space

From the plane we pass to the three-dimensional Euclidean space where the geom-
etry is richer and has distinct features. Perhaps the nicest space curve which does
not lie in a plane is a circular helix. It has constant curvature and constant torsion
and is the only curve admitting o' rigid motions. There is an essential difference
between right-handed and left-handed helices (See Fig. 4), depending on the sign
of the torsion; a right-handed helix cannot be congruent to a left-handed one, ex-
cept by a mirror reflection. Helices play an important role in mechanics. From a
geometrical viewpoint it may not be an entire coincidence that the Crick-Watson
model of a DNA-molecule is double-helical. A double helix has interesting geo-
metrical properties. In particular, by joining the end points of the helices by seg-
ments or arcs, we get two closed curves. In three-dimensional space they have a
linking number(See Fig. 5).

AR
\v

J

—_————

~

) —_——
Fig. 4.

Q<O
d

=2

Fig. 5.

A recent controversial issue in biochemistry, raised by the mathematicians
William Pohl and George Roberts, is whether the chromosomal DNA is double-
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helical. In fact, if it is, it will have two closed strands with a linking number of
the order of 300,000. The molecule is replicated by separation of the strands and
formation of the complementary strand of each. With such a large linking number
Pohl and Roberts showed that the replication process would have severe math-
ematical difficulties. Thus the double-helical structure of the DNA molecule, at
least for the chromosome, has been questioned [6]. (Added January 26, 1979; A
number of recent experiments have shown that some of the mathematical diffi-
culties for the double helical structure of the DNA-molecule can be overcome by
enzymatic activities (cf. . H. C. Crick, Is DNA really a double helix? preprint,
1978).)
The linking number L is determined by the formula of James H. White [7]:

T+W=L, ()]

where T is the total twist and W the writhing number. The latter can be exper-
imentally measured and changes by the action of an enzyme. This formula is of
fundamental importance in molecular biology. Generally DNA molecules are long.
In order to store them in limited space, the most economical way is to writhe and
coil them. These discussions could indicate the beginning of a stochastic geometry,
with the main examples drawn from biology.

In a three-dimensional space surfaces have far more important properties than
curves. Gauss’s fundamental work elevated differential geometry from a chapter
of calculus to an independent discipline. His Disquisitiones generales circa super-
ficies curvas (1827) is the birth certificate of differential geometry. The main idea
is that a surface has an intrinsic geometry based on the measure of arc length alone.
From the element of arc other geometric notions, such as the angle between curves
and the area of a piece of surface, can be defined. Plane geometry is thus general-
ized to any surface X based only on the local properties of the element of arc. This
localization of geometry is both original and revolutionary. In place of the straight
lines are the geodesics, the “shortest” curves between any two points (sufficiently
close). More generally, a curve on X has a “geodesic curvature” generalizing the
curvature of a plane curve and geodesics are the curves whose geodesic curvature
vanishes identically.

Let the surface X be smooth and oriented. At every point p of X there is a unit
normal vector v(p) which is perpendicular to the tangent plane to X at p(See Fig.
6). The vector v(p) can be viewed as a point of the unit sphere Sy with center at
the origin of the space. By sending p to v(p) we get the Gauss mapping

g:Z — So. 2)

The ratio of the element of the area of Sy by the element of area of X under this
mapping is called the Gaussian curvature. Gauss’s “remarkable theorem” says that
the Gaussian curvature depends only on the intrinsic geometry of X. In fact, in a
sense it characterizes this geometry. Clearly the Gaussian curvature is zero if X is
the plane.
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v(p)

Fig. 6.

As in plane geometry we consider on X a domain D bounded by one or more
sectionally smooth curves. D has an important topological invariant y (D), called
its Euler characteristic, which is most easily defined as follows: Cut D into poly-
gons in a “proper way” and denote by v, e, and f the number of vertices, edges,
and faces, respectively. Then

x(D)=v—e+f. (3)

(Euler’s polyhedral theorem was known before Euler, but Euler seems to have been
the first one to recognize explicitly the importance of the “alternating sum”.)
The Gauss-Bonnet formula in surface theory is

Xext angles +/ geod curv + // Gaussian curv = 2y (D), (4)
aD D

where dD is the boundary of D. For a plane domain the Gaussian curvature is
zero. If in addition the domain is simply connected, we have ¥ (D) = 1. Then this
formula reduces to the rotation index theorem discussed in §1.3. We are indeed a
long way from the sum of angles of a triangle.

Generalizing the geometry of closed plane curves we can consider closed ori-
ented surfaces in space. The generalization of the rotation index is the degree of
the Gauss mapping g in (2). The precise definition of the degree is sophisticated.
Intuitively it is the number of times that the image g(X) covers Sy, counted with
sign. Unlike the plane, where the rotation index can be any integer, the degree d is
completely determined by the topology of Z; it is equal to

1
das 5)((2). ()

For the imbedded unit sphere this degree is +1 independently of its orienta-
tion. A surprising result of S. Smale [8] says that the two oppositely oriented unit



