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Chapter

COMBINATORIAL ANALYSIS

Contents

1.1 Introduction 1.5 Multinomial Coefficients

1.2 The Basic Principle of Counting 1.6 The Number of Integer Solutions of
1.3 Permutations Equations

1.4 Combinations

Introduction

Here is a typical problem of interest involving probability: A communication system
is to consist of n seemingly identical antennas that are to be lined up in a linear order.
The resulting system will then be able to receive all incoming signals—and will be
called functional—as long as no two consecutive antennas are defective. If it turns
out that exactly m of the n antennas are defective, what is the probability that the
resulting system will be functional? For instance, in the special case where n = 4 and
m = 2, there are 6 possible system configurations, namely,

0110
0101
1010
0011
1001
1100

where 1 means that the antenna is working and 0 that it is defective. Because the
resulting system will be functional in the first 3 arrangements and not functional in
the remaining 3, it seems reasonable to take % = % as the desired probability. In
the case of general n and m, we could compute the probability that the system is
functional in a similar fashion. That is, we could count the number of configurations
that result in the system’s being functional and then divide by the total number of all
possible configurations.

From the preceding discussion, we see that it would be useful to have an effec-
tive method for counting the number of ways that things can occur. In fact, many
problems in probability theory can be solved simply by counting the number of dif-
ferent ways that a certain event can occur. The mathematical theory of counting is
formally known as combinatorial analysis.
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.2 The Basic Principle of Counting

Example
2a

Example
2b

The basic principle of counting will be fundamental to all our work. Loosely put, it
states that if one experiment can result in any of m possible outcomes and if another
experiment can result in any of n possible outcomes, then there are mn possible
outcomes of the two experiments.

The basic principle of counting

Suppose that two experiments are to be performed. Then if experiment 1 can
result in any one of m possible outcomes and if, for each outcome of experiment
1, there are n possible outcomes of experiment 2, then together there are mn
possible outcomes of the two experiments.

Proof of the Basic Principle: The basic principle may be proven by enumerating
all the possible outcomes of the two experiments; that is,

LD, 4,2), ..., L)
2.1, 2,2), ..., 2,n)

(m,1), (m,2), ..., (m,n)

where we say that the outcome is (i, j) if experiment 1 results in its ith possible
outcome and experiment 2 then results in its jth possible outcome. Hence, the set of
possible outcomes consists of m rows, each containing n elements. This proves the
result.

A small community consists of 10 women, each of whom has 3 children. If one
woman and one of her children are to be chosen as mother and child of the year,
how many different choices are possible?

Solution By regarding the choice of the woman as the outcome of the first experi-
ment and the subsequent choice of one of her children as the outcome of the second
experiment, we see from the basic principle that there are 10 X 3 = 30 possible
choices. |

When there are more than two experiments to be performed, the basic principle
can be generalized.

The generalized basic principle of counting

If r experiments that are to be performed are such that the first one may result
in any of n; possible outcomes; and if, for each of these n; possible outcomes,
there are n; possible outcomes of the second experiment; and if, for each of the
possible outcomes of the first two experiments, there are n3 possible outcomes
of the third experiment; and if ..., then there is a total of n; - ny - - - n, possible
outcomes of the r experiments.

A college planning committee consists of 3 freshmen, 4 sophomores, 5 juniors, and
2 seniors. A subcommittee of 4, consisting of 1 person from each class, is to be cho-
sen. How many different subcommittees are possible?
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[.3 Permutations

Example
3a

Example
3b
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Solution We may regard the choice of a subcommittee as the combined outcome of
the four separate experiments of choosing a single representative from each of the
classes. It then follows from the generalized version of the basic principle that there
are 3 X 4 X 5 X 2 = 120 possible subcommittees. |

How many different 7-place license plates are possible if the first 3 places are to be
occupied by letters and the final 4 by numbers?

Solution By the generalized version of the basic principle, the answer is 26 - 26 -
26 - 10 - 10 - 10 - 10 = 175,760,000. m

How many functions defined on »n points are possible if each functional value is
either O or 1?

Solution Let the points be 1,2,...,n. Since f(i) must be either 0 or 1 for each
i=1,2,...,n,it follows that there are 2" possible functions. ||

In Example 2c, how many license plates would be possible if repetition among letters
or numbers were prohibited?

Solution In this case, there would be 26 - 25 - 24 - 10 - 9 - 8 . 7 = 78,624,000
possible license plates. u

How many different ordered arrangements of the letters a, b, and c are possible?
By direct enumeration we see that there are 6, namely, abc, ach, bac, bca, cab,
and cha. Each arrangement is known as a permutation. Thus, there are 6 possible
permutations of a set of 3 objects. This result could also have been obtained
from the basic principle, since the first object in the permutation can be any of
the 3, the second object in the permutation can then be chosen from any of the
remaining 2, and the third object in the permutation is then the remaining 1.
Thus, there are 3 - 2 - 1 = 6 possible permutations.

Suppose now that we have n objects. Reasoning similar to that we have just used
for the 3 letters then shows that there are

nn—-1Hn-2---3-2-1=n!

different permutations of the n objects.

Whereas n! (read as “n factorial”) is defined to equal 1 - 2---n when n is a
positive integer, it is cenvenient to define 0! to equal 1.

How many different batting orders are possible for a baseball team consisting of 9
players?

Solution There are 9! = 362,880 possible batting orders. |

A class in probability theory consists of 6 men and 4 women. An examination is
given, and the students are ranked according to their performance. Assume that no
two students obtain the same score.

(a) How many different rankings are possible?
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Example
3c

Example
3d

(b) If the men are ranked just among themselves and the women just among them-
selves, how many different rankings are possible?

Solution (a) Because each ranking corresponds to a particular ordered arrangement
of the 10 people, the answer to this part is 10! = 3,628,800.

(b) Since there are 6! possible rankings of the men among themselves and 4!
possible rankings of the women among themselves, it follows from the basic principle
that there are (6!)(4!) = (720)(24) = 17,280 possible rankings in this case. |

Ms. Jones has 10 books that she is going to put on her bookshelf. Of these, 4 are math-
ematics books, 3 are chemistry books, 2 are history books, and 1 is a language book.
Ms. Jones wants to arrange her books so that all the books dealing with the same
subject are together on the shelf. How many different arrangements are possible?

Solution There are 4! 3! 2! 1! arrangements such that the mathematics books are
first in line, then the chemistry books, then the history books, and then the language
book. Similarly, for each possible ordering of the subjects, there are 4! 3! 2! 1! pos-
sible arrangements. Hence, as there are 4! possible orderings of the subjects, the
desired answer is 4! 4! 31 2! 1! = 6912. m

We shall now determine the number of permutations of a set of n objects when
certain of the objects are indistinguishable from one another. To set this situation
straight in our minds, consider the following example.

How many different letter arrangements can be formed from the letters PEPPER?

Solution We first note that there are 6! permutations of the letters Py Ey P, P3E;R
when the 3P’s and the 2E’s are distinguished from one another. However, consider
any one of these permutations—for instance, P; P, E; P3E; R. If we now permute the
P’s among themselves and the E’s among themselves, then the resultant arrange-
ment would still be of the form PPEPER. That is, all 3! 2! permutations

PP,E|PsE;R  PPE,P3E R
P1PyE{P,EsR  P{P3E;PrE(R

P>PyE{PiE>R
P3P{E|P,E>R
P3P,E{P1E>R

PP E;P3E|R
P>,PsE>,P ER
P3P E,P,ER
P3sP,E,PLE{R

Example
3e

are of the form PPEPER. Hence, there are 6!/(3! 2!) = 60 possible letter arrange-
ments of the letters PEPPER. ]

In general, the same reasoning as that used in Example 3d shows that there are

n!
n!n! - nyl

different permutations of n objects, of which n; are alike, ny are alike, . . ., n, are
alike.

A chess tournament has 10 competitors, of which 4 are Russian, 3 are from the
United States, 2 are from Great Britain, and 1 is from Brazil. If the tournament
result lists just the nationalities of the players in the order in which they placed, how
many outcomes are possible?
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Solution There are 161
TETETH U

possible outcomes. |

Example How many different signals, each consisting of 9 flags hung in a line, can be made
3f from a set of 4 white flags, 3 red flags, and 2 blue flags if all flags of the same color
are identical?

Solution There are o1

4! 312!
different signals. ]

= 1260

.4 Combinations

We are often interested in determining the number of different groups of r objects
that could be formed from a total of n objects. For instance, how many different
groups of 3 could be selected from the 5 items A, B, C, D, and E? To answer this
question, reason as follows: Since there are 5 ways to select the initial item, 4 ways to
then select the next item, and 3 ways to select the final item, there are thus 5 - 4 - 3
ways of selecting the group of 3 when the order in which the items are selected is
relevant. However, since every group of 3 —say, the group consisting of items A, B,
and C—will be counted 6 times (that is, all of the permutations ABC, ACB, BAC,
BCA, CAB, and CBA will be counted when the order of selection is relevant), it
follows that the total number of groups that can be formed is

5-4.3
32110

In general,as n(n — 1)---(n — r + 1) represents the number of different ways that
a group of r items could be selected from 7 items when the order of selection is
relevant, and as each group of r items will be counted r! times in this count, it follows
that the number of different groups of r items that could be formed from a set of n
items is

nn —1--(n—r+1) n!

r! n—nlr

Notation and terminology

We define (f ),forr = n, by

ny _ n!
r]T m—n'r!

and say that ’: ) (read as “n choose r”) represents the number of possible

combinations of n objects taken 7 at a time."

n

T By convention, 0! is defined to be 1. Thus, ( B ) - ( "

0 )=l.Wcalsotake(':)tobeequaltoOwhen
eitheri < Oori > n.
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Example
4a

Example
4b

Example

n ’ .
Thus, . ) represents the number of different groups of size r that could be
selected from a set of n objects when the order of selection is not considered relevant.

Equivalently, (’: ) is the number of subsets of size r that can be chosen from

. . n! G s

a set of size n. Using that 0! = 1, note that "Y=(")=_—" =1, whichis
n 0 0!n!

consistent with the preceding interpretation because in a set of size n there is exactly

1 subset of size n (namely, the entire set), and exactly one subset of size 0 (namely

the empty set). A useful convention is to define ': equal to O when eitherr > n

orr < 0.

A committee of 3 is to be formed from a group of 20 people. How many different
committees are possible?
20)_20-19-18

= 1140 possible committees. ]

lution Th
Solution There are( 3 3 2.1

From a group of 5 women and 7 men, how many different committees consisting of
2 women and 3 men can be formed? What if 2 of the men are feuding and refuse to
serve on the committee together?

Solution As there are (;) possible groups of 2 women, and (;) possible

groups of 3 men, it follows from the basic principle that there are (;) (; ) =

> 13 21 350 possible committees consisting of 2 women and 3 men.

Now suppose that 2 of the men refuse to serve together. Because a total of

(5-4 Te625

2 1 3
the feuding men, it follows that there are 35 — 5 = 30 groups that do not contain

(2) ( >V = 5 out of the RY = 35 possible groups of 3 men contain both of

g = 10 ways to choose the 2
women, there are 30 - 10 = 300 possible committees in this case. =]

both of the feuding men. Because there are still

Consider a set of n antennas of which m are defective and n — m are functional
and assume that all of the defectives and all of the functionals are considered indis-
tinguishable. How many linear orderings are there in which no two defectives are
consecutive?

Solution Imagine that the n — m functional antennas are lined up among them-
selves. Now, if no two defectives are to be consecutive, then the spaces between the
functional antennas must each contain at most one defective antenna. That is, in the
n — m + 1 possible positions—represented in Figure 1.1 by carets—between the
n — m functional antennas, we must select m of these in which to put the defective
n—m+1

antennas. Hence, there are 35

possible orderings in which there is at

least one functional antenna between any two defective ones. |
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1 = functional

» = place for at most one defective

Figure 1.1 No consecutive defectives.

A useful combinatorial identity is

('r’):('r’:})+<”:l) l<r=n 4.1)

Equation (4.1) may be proved analytically or by the following combinatorial argu-
ment: Consider a group of n objects, and fix attention on some particular one of

these objects—call it object 1. Now, there are (': : 11 ) groups of size r that con-
tain object 1 (since each such group is formed by selecting r — 1 from the remaining

n — 1 objects). Also, there are " : ! groups of size r that do not contain object
1. As there is a total of ( ': ) groups of size r, Equation (4.1) follows.

n . . ] ;
The values , | are often referred to as binomial coefficients because of their

prominence in the binomial theorem.

The binomial theorem

x+yt=) (Z)x"y""‘ 4.2)

k=0

We shall present two proofs of the binomial theorem. The first is a proof by
mathematical induction, and the second is a proof based on combinatorial consider-
ations.

Proof of the Binomial Theorem by Induction: When n = 1, Equation (4.2) reduces to

1
x+y=((1)).wfoy1 + (1)x1y0=y+ x

Assume Equation (4.2) forn — 1. Now,

x+ )=+ yx + p!

n—1
=@ + y)Z(’l k 1)Jr"y"‘l“"
k=0

—([n-1 =1
_ Z( B )xk+1yn—1-k + ¥ ( p )xkyn—k
k=0

1
k=0



