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Fourier Integrals in Classical Analysis is an advanced monograph
concerned with modern treatments of central problems in harmonic
analysis. The main theme of the book is the interplay between ideas
- used to study the propagation of singularities for the wave equation and
their counterparts in classical analysis. Using microlocal analysis, the
author, in particular, studies problems involving maximal functions and
Riesz means using the so-called half-wave operator.

This self-contained book starts with a rapid review of important topics
in Fourier analysis. The author then presents the necessary tools from
microlocal analysis, and goes on to give a proof of the sharp Weyl formula
which he then modifies to give sharp estimates for the size of eigen-
functions on compact manifolds. Finally, at the end, the tools that have
been developed are used to study the regularity properties of Fourier
integral operators, culminating in the proof of local smoothing estimates
and their applications to singular maximal theorems in two and more
dimensions.
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Preface

Except for minor modifications, this monograph represents the lecture
notes of a course I gave at UCLA during the winter and spring quar-
ters of 1991. My purpose in the course was to present the necessary
background material and to show how ideas from the theory of Fourier
integral operators can be useful for studying basic topics in classical
analysis, such as oscillatory integrals and maximal functions. The link
between the theory of Fourier integral operators and classical analysis
is of course not new, since one of the early goals of microlocal analy-
sis was to provide variable coefficient versions of the Fourier transform.
However, the primary goal of this subject was to develop tools for the
study of partial differential equations and, to some extent, only recently
have many classical analysts realized its utility in their subject. In these
notes I attempted to stress the unity between these two subjects and
only presented the material from microlocal analysis which would be
needed for the later applications in Fourier analysis. I did not intend for
this course to serve as an introduction to microlocal analysis. For this
the reader should be referred to the excellent treatises of Hormander (5],
(7] and Treves [1].

In addition to these sources, I also borrowed heavily from Stein [4].
His work represents lecture notes based on a course which he gave at
Princeton while I was his graduate student. As the reader can certainly
tell, this course influenced me quite a bit and I am happy to acknowledge
my indebtedness. My presentation of the overlapping material is very
similar to his, except that I chose to present the material in the chapter
on oscillatory integrals more geometrically, using the cotangent bundle.
This turns out to be useful in dealing with Fourier analysis - n munifolds
and it also helps to motivate some results concerning Fourier integral
operators, in particular the local smoothing estimates at the end of the
monograph.

Roughly speaking, the material is organized as follows. The first two
chapters present background material on Fourier analysis and stationary
phase that will be used throughout. The next chapter deals with non-
homogeneous oscillatory integrals. It contains the L? restriction theo-
rem for the Fourier transform, estimates for Riesz means in R™, and
Bourgain’s circular maximal theorem. The goal of the rest of the mono-
graph is mainly to develop generalizations of these results. The first step
in this direction is to present some basic background ‘material from the
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theory of pseudo-differential operators, emphasizing the role of station-
ary phase. After the chapter on pseudo-differential operators comes one
dealing with the sharp Weyl formula of Hérmander (4], Avakumovié [1],
and Levitan [1]. I followed the exposition in Hérmander’s paper, except
that the Tauberian condition in the proof of the Weyl formula is stated
in terms of L™ estimates for eigenfunctions. In the next chapter, this
slightly different point of view is used in generalizing some of the earlier
results from Fourier analysis in R™ to the setting of compact manifolds.
Finally, the last two chapters are concerned with Fourier integral opera-
tors. First, some background material is presented and then the mapping
properties of Fourier integral operators are investigated. This is all used
to prove some recent local smoothing estimates for Fourier integral oper-
ators, which in turn imply variable coefficient versions of Stein’s spherical
maximal theorem and Bourgain’s circular maximal theorem.

It is a pleasure to express my gratitude to the many people who helped
me in preparing this monograph. First, I would like to thank everyone
who attended the course for their helpful comments and suggestions.
I am especially indebted to D. Grieser, A. Iosevich, J. Johnsen, and
H. Smith who helped me both mathematically and in proofreading. I
am also grateful to M. Cassorla and R. Strichartz for their thorough
critical reading of earlier versions of the manuscript. Lastly, I would like
to thank all of my collaborators for the important role they have played
in the development of many of the central ideas in this course. In this
regard, I am particularly indebted to A. Seeger and E. M. Stein.

This monograph was prepared using AA4S-TEX. The work was sup-
ported in part by the NSF and the Sloan foundation.

Sherman QOaks C. D. Sogge
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Chapter 0

Background

The purpose of this chapter and the next is to present the background
material that will be needed. The topics are standard and a more thor-
ough treatment can be found in many excellent sources, such as Stein
[2] and Stein and Weiss [1] for the first half and Hérmander (7, Vol. 1]
for the second.

We start out by rapidly going over basic results from real analysis,
including standard theorems concerning the Fourier transform in R"
and Caldéron-Zygmund theory. We then apply this to prove the Hardy-
Littlewood-Sobolev inequality. This theorem on fractional integration
will be used throughout and we shall also present a simple argument
showing how the n-dimensional theorem follows from the original one-
dimensional inequality of Hardy and Littlewood. This type of argument
will be used again and again. Finally, in the last two sections we give
the definition of the wave front set of a distribution and compute the
wave front sets of distributions which are given by oscillatory integrals.
This will be our first encounter with the cotangent bundle and, as the
monograph progresses, this will play an increasingly important role.

0.1. Fourier Transform

Given f € L1(R™), we define its Fourier transform by setting

f(e) = /R ) e~ 424 £ () da. (0.1.1)
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Given h € R", let (1,f)(z) = f(z + h). Notice that 7_ne#{§) =
ei(hrf)e_“'vf) and so

(nf)" () = M8 f(¢). (0.1.2)

In a moment, we shall see that we can invert (0.1.1) (for appropriate f)
and that we have the formula

fa)=ny™ [ &0 fie)de. (013

Thus, the Fourier transform decomposes a function into a continuous
sum of characters (eigenfunctions for translations).

Before turning to Fourier’s inversion formula (0.1.3), let us record
some elementary facts concerning the Fourier transform of L! functions.

Theorem 0.1.1:

(1) lflloo < fll2-

(2) If f € LY, then f is uniformly continuous.
Theorem 0.1.2 (Riemimn-Lebesgue): If f € LY(R™), then f(€) =0
as € — oo, and, hence, f € Co(R™).

Theorem 0.1.1 follows directly from the definition (0.1.1). To prove
Theorem 0.1.2, one first notices from an explicit calculation that the
result holds when f is the characteristic function of a cube. From this
one derives Theorem 0.1.2 via a limiting argument.

Even though f is in Cp, the integral (0.1.3) will not converge for
general f € L!. However, for a dense subspace we shall see that the
integral converges absolutely and that (0.1.3) holds.

Definition 0.1.3: The set of Schwartz-class functions, S(R™), consists of
all ¢ € C°(R™) satisfying
sup |z79%¢(z)| < oo, (0.1.4)
z

for all multi-indices o, 7.1

We give S the topology arising from the semi-norms (0.1.4). This
makes S a Fréchet space. Notice that the set of all compactly supported
C® functions, C§°(R™), is contained in S.

Let D; = %3‘2—1 Then we have:

Theorem 0.1.4: If ¢ € S, then the Foun’er‘tmnsfom of Dj¢ is §j¢3(£).
Also, the Fourier transform of z;¢ is —D;¢.

1 Here a = (a1,...,an),y = (11,---,m) and 27 = gM...zM™ §* =
(8/021)%1 - - (8/8zn)n.
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Proof: To prove the second assertion we differentiate (0.1.1) to obtain

Dide) = [ o8 (a;)0(a) dz,

since the integral converges uniformly. If we integrate by parts, we see
that

£;(€) / —Dje 5 . 4(z) do = / ~i@8 D, g(z) dz,
which is the first assertion. 4]

Notice that Theorem 0.1.4 implies the formula
£D7R(E) = / e~i(26) D2 ((=2)4(z)) de. (0.1.5)
If we set C = [(1+ |z|)~™ ! dz, then this leads to the estimate

up D3] < Cowp(1 +[=)™ D7) (0.19)

Inequality (0.1.6) of course implies that the Fourier transform maps
S into itself. However, much more is true:

Theorem 0.1.5: The Fourier transform ¢ — ¢ is an isomorphism of S
into S whose inverse is given by Fourier’s inversion formula (0.1.3).

The proof is based on a couple of lemmas. The first is the multiplica-
tion formula for the Fourier transform:

Lemma 0.1.6: If f,g € L! then
fodz= [ fodz.
R™ R"
The next is a formula for the Fourier transform of Gaussians:
Lemma 0.1.7: [, e~ i) g—elel’/2 gy — (21r/es)"/2 e 1€ /2

The first lemma is easy to prove. If we apply (0.1.1) and Fubini's
theorem, we see that the left side equals

J{J 1w ay}otayas = [{ [ e g@ s} sty ay
- [asa.
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It is also clear that Lemma 0.1.7 must follow from the special case
where n = 1. But

/-oo et /2= gy e T /2 /oo e—%(t+i‘r)’dt
—00

—00

_ e—#/2/°° et /24

—0o0

= V2re /2,

In the second step we have used Cauchy’s theorem. If we make the change
of variables £1/2s = t in the last integral, we get the desired result.

Proof of Theorem 0.1.5: We must prove that when ¢ € S,
8(@) = (m)™ [ @04 .
By the dominated convergence theorem, the right side equals

lim (27)~" / @) 3(e)e—eIEl /2 gg.

e—0

If we recall (0.1.2), then we see that this equals
linb(?rr(-:)_"/2 /¢(z +y)e Wl 2 gy,
E—

Finally, since (2r)~"/2 J e~IWI*/2 dy = 1, it is easy to check that the last
limit is ¢(z). [ |

If for f,g € L' we define convolution by
(F*g)(z)= / f(z —v)9(y) dy,
then another fundamental result is:

Theorem 0.1.8: If p,¢) € S then

(2m)" / &9 dz = / dide, (0.1.7)
(6 %)"(€) = $(€)d(8), (0.1.8)
(¢9)"(€) = (2m) (¢ * ¥) (€). (0.1.9)

To prove (0.1.7), set x = (27) ’"E. Then the Fourier inversion formula
implies that ¥ = 1. Consequently, (0.1.7) follows from Lemma 0.1.6. We
leave the other two formulas as exercises.
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We shall now discuss the Fourier transform of more general functions.
First, we make a definition.

Definition 0.1.9: The dual space of S is &’. We call S’ the space of
tempered distributions.

Definition 0.1.10: If u € S’, we define its Fourier transform i € &’ by
setting, for all ¢ € S,

i(¢) = u(4). (0.1.10)

Notice how Lemma 0.1.6 says that when u € L!, Definition 0.1.10
agrees with our previous definition of . Using Fourier’s inversion formula
for S, one can check that u — 4 is an isomorphism of &’. If u € L! and
@ € L', we conclude that the inversion formula (0.1.3) must hold for
almost all z.

Theorem 0.1.11: Ifu € L? then @ € L? and
lal|3 = (27)™||ul3 (Plancherel’s theorem). (0.1.11)

Furthermore, Parseval’s formula holds whenever ¢,v € L?:
/ 6% dz = (2m)" / . (0.1.12)

Proof: Choose u; € S satisfying u; — u in L2. Then, by (0.1.7),
lli; — @kl13 = (2m)"|luj — ugil3 — 0.

Thus, i; converges to a function v in L?. But the continuity of the
Fourier transform in S’ forces v = 4. This gives (0.1.11), since (0.1.11)
is valid for each u;. Since we have just shown that the Fourier transform
is continuous on L2, (0.1.12) follows from the fact that we have already
seen that it holds when ¢ and 1 belong to the dense subspace S. [ ]

Since, for 1 < p < 2, f € LP can be written as f = f; + f2 with
f € L', f» € L2, it follows from Theorem 0.1.1 and Theorem 0.1.11
that f € leoc. A much better result is:

Theorem 0.1.12 (Hausdorff-Young): Let 1 <p< 2 and define p’ by
1/p+1/p' = 1. Then, if f € LP it follows that f € LP" and

£l < @77 || fllp.

Since we have already seen that this result holds for p =1 and p = 2,
this follows from:
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Theorem 0.1.13 (M. Riesz interpolation theorem): Let T be a
linear map from LP° N LP* to L% N L% satisfying

ITfllg; < Mjllfllp;, =01, (0.1.13)

with 1 < pj,qj < 0o. Then, if for 0 <t < 1, 1/ps = (1 —1t)/po +
t/p1,1/qe = (1—t)/q0 +t/a1,

ITSllg, < (Mo)' ™" (M) £llp,, f € LP N IP. (0.1.14)

Proof: If p; = oo the result follows from Holder’s inequality since then
po = p1 = 00. So we shall assume that p; < oo.
By polarization it then suffices to show that

|[ 719de] < M3 M Sl Nl (01.15)

when f and g vanish outside of a set of finite measure and take on a
finite number of values, that is, f = Z;';l a5XE; 9 = Eﬁ;l brXF,, With
E;NEj; =0 and FrNFp =0 if j # j and k # k' and |Ejl, | Fi| <
oo for all j and k. We may also assume ||f|p,,[lgll;; # O and so, if
we divide both sides by the norms, it suffices to prove (0.1.15) when
I £llp. = llgllg; = 1. .

Next, if a; = i laj| and by = €V |by|, then, assuming g¢ > 1, we set

m
fo= Z |aj|a(z)/a(t)ez'9ijj,
j=1
N 3
gz = Z |bg|(L-REN/A=B®) ity o
k=1

where a(2) = (1 - 2)/po + 2/p1 and B(2) = (1 - 2)/a0 + z/a1. T g = 1
then we modify the definition by taking g, = g. It then follows that
F(z) = [Tf,g.dz is entire and bounded in the strip 0 < Re (z) < 1.
Also, F(t) equals the left side of (0.1.15). Consequently, by the three-
lines lemma,? we would be done if we could prove

|F(2)| < My, Re(z)=0,

|F(z)] < Mj, Re(z)=1.
To prove the first inequality, notice that for y € R, a(iy) = 1/pg +
1y(1/p1 — 1/pg). Consequently,

| fiylPe = leiars f. Ifliy(l/Pl—l/Po) . Iflpz/Polpo = | fIPe.

2 See, for example, Stein and Weiss [1, p. 180].



