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Preface

Nonlinear analysis is a new area that was born and has matured from abun-
dant research developed in studying nonlinear problems. In the past thirty
years, nonlinear analysis has undergone rapid growth; it has become part of
the mainstream research fields in contemporary mathematical analysis.

Many nonlinear analysis problems have their roots in geometry, astronomy,
fluid and elastic mechanics, physics, chemistry, biology, control theory, image
processing and economics. The theories and methods in nonlinear analysis
stem from many areas of mathematics: Ordinary differential equations, partial
differential equations, the calculus of variations, dynamical systems, differen-
tial geometry, Lie groups, algebraic topology, linear and nonlinear functional
analysis, measure theory, harmonic analysis, convex analysis, game theory,
optimization theory, etc. Amidst solving these problems, many branches are
intertwined, thereby advancing each other.

The author has been offering a course on nonlinear analysis to gradu-
ate students at Peking University and other universities every two or three
years over the past two decades. Facing an enormous amount of material,
vast numbers of references, diversities of disciplines, and tremendously differ-
ent backgrounds of students in the audience, the author is always concerned
with how much an individual can truly learn, internalize and benefit from a
mere semester course in this subject.

The author’s approach is to emphasize and to demonstrate the most fun-
damental principles and methods through important and interesting examples
from various problems in different branches of mathematics. However, there
are technical difficulties: Not only do most interesting problems require back-
ground knowledge in other branches of mathematics, but also, in order to solve
these problems, many details in argument and in computation should be in-
cluded. In this case, we have to get around the real problem, and deal with a
simpler one, such that the application of the method is understandable. The
author does not always pursue each theory in its broadest generality; instead,
he stresses the motivation, the success in applications and its limitations.



VI Preface

The book is the result of many years of revision of the author’s lecture
notes. Some of the more involved sections were originally used in seminars as
introductory parts of some new subjects. However, due to their importance,
the materials have been reorganized and supplemented, so that they may be
more valuable to the readers.

In addition, there are notes, remarks, and comments at the end of this
book, where important references, recent progress and further reading are
presented.

The author is indebted to Prof. Wang Zhigiang at Utah State University,
Prof. Zhang Kewei at Sussex University and Prof. Zhou Shulin at Peking

University for their careful reading and valuable comments on Chaps. 3, 4
and 5.

Peking University Kung Ching Chang
September, 2003
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1

Linearization

The first and the easiest step in studying a nonlinear problem is to linearize
it. That is, to approximate the initial nonlinear problem by a linear one. Non-
linear differential equations and nonlinear integral equations can be seen as
nonlinear equations on certain function spaces. In dealing with their lineariza-
tions, we turn to the differential calculus in infinite-dimensional spaces. The
implicit function theorem for finite-dimensional space has been proved very
useful in all differential theories: Ordinary differential equations, differential
geometry, differential topology, Lie groups etc. In this chapter we shall see
that its infinite-dimensional version will also be useful in partial differential
equations and other fields; in particular, in the local existence, in the stability,
in the bifurcation, in the perturbation problem, and in the gluing technique
etc. This is the contents of Sects. 1.2 and 1.3. Based on Newton iterations
and the smoothing operators, the Nash-Moser iteration, which is motivated
by the isometric embeddings of Riemannian manifolds into Euclidean spaces
and the KAM theory, is now a very important tool in analysis. Limited in
space and time, we restrict ourselves to introducing only the spirit of the
method in Sect. 1.4.

1.1 Differential Calculus in Banach Spaces

There are two kinds of derivatives in the differential calculus of several vari-
ables, the gradients and the directional derivatives. We shall extend these two
to infinite-dimensional spaces.

Let X, Y and Z be Banach spaces, with norms || - ||x, || - |lv, || - |z,
respectively. If there is no ambiguity, we omit the subscripts. Let U C X be
an open set, and let f: U — Y be a map.



2 1 Linearization
1.1.1 Frechet Derivatives and Gateaux Derivatives

Definition 1.1.1 (Fréchet derivative) Let xq € U; we say that f is Fréchet
differentiable (or F-differentiable) at o, if 3A C L(X,Y) such that

I f(z) = f(zo) — Az — 2o) ly=o(ll z — o Il x) -

Let f'(zo) = A, and call it the Fréchet (or F-) derivative of f at .

If f is F-differentiable at every point in U, and if z — f’(x), as a mapping
from U to L(X,Y), is continuous at zg, then we say that f is continuously
differentiable at xy. If f is continuously differentiable at each point in U,
then we say that f is continuously differentiable on U, and denote it by f €
cY(U,Y).

Parallel to the differential calculus of several variables, by definition, we
may prove the following:

1. If f is F-differentiable at xg, then f’(z¢) is uniquely determined.

2. If f is F-differentiable at xg, then f must be continuous at zg.

3. (Chain rule) Assume that U C X,V C Y are open sets, and that f is
F-differentiable at ¢, and g is F-differentiable at f(zg), where

gt .v-—L.2

Then
(g0 ) (z0) = g' o f(z0) - f'(20) -

Definition 1.1.2 (Gateauz derivative) Let xo € U; we say that f is Gateauz
differentiable (or G-differentiable) at zo, if YVh € X,3 df (zo, h) C Y, such that
1 f(zo + th) — f(zo) — tdf (zo, h)|ly =o(t) as t—0
for all zo+th C U. We call df (o, h) the Gateaur derivative (or G-derivative)

of f at x.
We have d
Ef(ibo + th) |t=0 = df (z0, h) ,

if f is G-differentiable at zg.
By definition, we have the following properties:

—

. If f is G-differentiable at z, then df (z¢, h) is uniquely determined.
df (zo,th) = tdf (zo,h) Vt € R
3. If f is G-differentiable at xg, then Vh € X, Vy* € Y*, the function

p(t) = (y*, f(zo+th)) is differentiable at t = 0, and ¢'(t) = (y*, df (zo, h)).
4. Assume that f : U — Y is G-differentiable at each point in U, and that
the segment {xo + th |t € [0,1]} C U, then

s

I f(zo+ k) — f(zo) ly< sup || df (zo +th,h) [y
o<t<1
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Proof. Let

@y (t) = (y*, f(zo + th)) te€0,1],Vy* €Y*

| " f(@o +h) = f@o)) | = | 9y~ (1) = 9y-(0)
= | ¢-(t") |
= | (v",df (w0 +t"h, ) |

for some t* € (0,1) depending on y*. The conclusion follows from the
Hahn-Banach theorem. O

5. If f is F-differentiable at zq, then f is G-differentiable at zo, with
df (zo,h) = f'(z0)h Vh e X.
Conversely it is not true, but we have:

Theorem 1.1.3 Suppose that f : U — Y 1is G-differentiable, and that Vx €
U, JA(z) € L(X,Y) satisfying

df(z,h) = A(x)h VYhe X .

If the mapping T — A(x) is continuous at xq, then f is F-differentiable at x¢,
with f'(zo) = A(zo).

Proof. With no loss of generality, we assume that the segment {zo + th |
t € [0,1]} is in U. According to the Hahn-Banach theorem, 3y* € Y*, with
| ¥* ||= 1, such that

I £(zo + h) — f(z0) — A(zo)h ly= (y", f(z0 + k) — f(z0) — A(z0)h)

Let
p(t) = (y", f(zo + th)) .
From the mean value theorem, 3¢ € (0, 1) such that

| (1) = 9(0) = (¥", A(zo)h) | = | ¢'(€) — (V" Alzo)h) |
= | (y", df (zo + &R, h) — A(zo)h)) |
= | (", [A(zo + £h) — A(zo)]h) |
=o(l A1),

ie., f’(zo) = A(zo). a

The importance of Theorem 1.1.3 lies in the fact that it is not easy to
write down the F-derivative for a given map directly, but the computation
of G-derivative is reduced to the differential calculus of single variables. The
same situation occurs in the differential calculus of several variables: Gradi-
ents are reduced to partial derivatives, and partial derivatives are reduced to
derivatives of single variables.
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Ezample 1. Let A € L(X,Y), f(z) = Az. Then f'(z) = A Vaz.
Ezample 2. Let X = R", Y = R™, and let ¢1,92...,0m € C'(R", R'). Set

p1(z)
flz) = ,le, f: X ->Y.
Pm(T)
Then 5
Flag) = ( Z(jo)) .

Ezample 3. Let Q@ C R" be an open bounded domain. Denote by C(Q) the
continuous function space on €. Let

p: QxR — R!,

be a C! function. Define a mapping f : C(Q2) — C(Q) by
u(z) — p(z,u(z)) .

Then f is F-differentiable, and Yuy € C(Q),

(f'(uo) - v)(2) = u(z, uo(x)) - v(z) Vv € C(Q).

Proof. Vh € C(Q)
= f (uo + th) = f(uo)|(z) = pu(x, uo(x) + tb(z)h(z))h(z) ,
where 6(z) € (0,1). Ve > 0, VM > 0, 35 = §(M, =) > 0 such that
| pu(,6) = pulz,€) |<e, V2 €Q,

as |€], |€'| < M and |€ — £'| < §. We choose M =|| ug || + || & ||, then for
lt] <6 <1,

lpu(z, uo(z) +t0(x)h(2)) — Pulx, uo(r))| <€ .

It follows that df (ug, h)(z) = pu(z,ue(z))h(z).
Noticing that the multiplication operator h — A(u)h = ¢y (z, u(z)) - h(z)

is linear and continuous, and the mapping u — A(u) from C(f) into
L(C(92),C(R)) is continuous, from Theorem 1.1.3, f is F-differentiable, and

(f'(uo) - v)(z) = pu(z, ug(x)) - v(z) Yo € C(Q) .
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We investigate nonlinear differential operators on more general spaces.
Let & C R™ be a bounded open set, and let m be a nonnegative integer,
v € (0,1). C™(Q2) (and the Holder space C™7(12)) is defined to be the function
space consisting of C™ functions (with y-Holder continuous m-order partial
derivatives).

The norms are defined as follows:

Il ullom=max Y [0°u(z)|,
€N

|a]<m
and |07u() - 9u(y)|
u(z) — 0%ul(y
lwllomer=ll u llom +  max “ Ly
. T,YEN |al=m |$ - yl

where a = (a1,a2,...,0,) is a multi-index, |a] = a; +ag + - + ap, 0% =
o052 -+ 3.

We always denote by m* the number of the index set {a = (a1, az,...,a,) |

la] € m}, and D™u the set {0%u | |a| < m}. _
Suppose that r is a nonnegative integer, and that ¢ € C*(QxR""). Define
a differentiable operator of order r:

f(u)(z) = p(z, D"u(z)) .

Suppose m > r, then f : c™(Q) — Cc™(Q) (and also C™7(Q) —
Cc™m~"7(Q)) is F-differentiable. Furthermore

(f'(uo)h)(@) = Y ¢alz, D ug(x)) - 8*h(z), VheC™(@),

|a]<r

where ¢, is the partial derivative of ¢ with respect to the variable index a.
The proof is similar to Example 3.

Ezample 4. Suppose ¢ € C®(Q x R™"). Define
flu) = / @(z,D"u(z))dz Yu e C™(Q).
Q
Then f: C"(Q2) — R! is F-differentiable. Furthermore

() k) = [ 3 pale, Drua(e)*hie)dz Vh e CE).

lal<r

Proof. Use the chain rule:

cr (@) (D" u(-)) c@) Ja R!,

and combine the results of Examples 1 and 3. 0
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In particular, the following functional occurs frequently in the calculus of
variations (r = 1,7* = n+1). Assume that ¢(z,u,p) is a function of the form:

1o w
#lawp) = lpl +3_ai(@pi + ao@u,

where p = (p1,p2,-..,Pn), and a;(x), i =0,1,...,n, are in C(Q).
Set,

flu) = /Q l:é|Vu(a:)|2 + 3 ai(z)dr,u + ao(x)u(.r):| dz ,

we have

(f'(u),h) = / {Vu(:r) -Vh(z) + z": ai(z)0., h(z) + ao(:c)h(x)] dz
Q2 i=1
Yh e CH(Q).

Ezample 5. Let X be a Hilbert space, with inner product (,). Find the F-
derivative of the norm f(z) = | z ||, as = # 6.
Let F(z) = || = ||?. Since
Lz +th | = |2 |P) = 2(z, ) +t | A |2,

we have dF(z,h) = 2(z,h). It is continuous for all z, therefore F is F-
differentiable, and

F'(z)h = 2(z,h) .
Since f = F3, by the chain rule

Fl@)y=2|z| f(=z).

f'(z)h = (HCCT“h) .

In the applications to PDE as well as to the calculus of variations, Sobolev
spaces are frequently used. We should extend the above studies to nonlinear
operators defined on Sobolev spaces.

Vp > 1, V nonnegative integer m, let

W™P(Q) = {u € LP(Q) | 8°u € LP(Q) | |a] < m},

where 0%u stands for the a-order generalized derivative of u, i.e., the derivative
in the distribution sense. Define the norm

Asx #6,

1

fulwme ={ Y 10°uloq | -
|la<m
The Banach space i= «uiled the Sobolev space of index {m,p}.
W™2(Q) is dencied by H™(Q), and the closure of C§°(£2) under this norm
is denoted by F" (1)
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1.1.2 Nemytscki Operator

On Sobolev spaces, we extend the composition operator u — ¢(z,u(x)) such
that ¢ may not be continuous in z. The class of operators is sometimes called
Nemytski operators.

Definition 1.1.4 Let (2, B,u) be a measure space. We say that ¢ : Q x
RM — R! is a Caratheodory function, if

1. Ya.e.x € Q, £ — ¢(z,§) is continuous.
2. V€ € RN, z+— o(x,€) is pu-measurable.

The motivation in introducing the Caratheodory function is to make the
composition function measurable if u(z) is only measurable. Indeed, there
exists a sequence of simple functions {u,(x)}°, such that u,(z) — u(z)
a.e., p(x,un(z)) is measurable according to (2). And from (1), ¢(z, un(z)) —
o(z,u(z)) a.e., therefore p(z,u(z)) is measurable.

Theorem 1.1.5 Assume p;,p, 21, a >0 and b € LZ’L(Q). Suppose that ¢
is a Caratheodory function satisfying
3%
lp(z,§)| < b(z) + al[= .

Then f : u(z) — @(z,u(x)) is a bounded and continuous mapping from
L7 (L,RN) to Lz (Q,RY).

Proof. The boundedness follows from the Minkowski inequality:

By
I £() llp, <N 0llp, +alluly?

where || - ||, is the Lgu(Q,RN ) norm. We turn to proving the continuity. It is
sufficient to prove that V{u,}7° if u, — w in L', then there is a subsequence
{un,} such that f(un,) — f(u) in LP2. Indeed one can find a subsequence
{tn,} of {un} which converges a.e. to u, along which || up, — un,_, [Ip, < L
i =2,3,...; therefore

[un, (z)| < @(2) := [un, (z)| + Z |tn, (T) = Un,_, (z)] -
1=2
Since ® is measurable, and
ﬁ oo
([ 12@Pdn) ™ < sl +3 Wt = By, < o0,
2 1=2

we conclude that ® € LZ;‘(Q). Noticing
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fun,) = ¢(z,un, (2)) = ¢(z,u(z)) ae.,
and .
|f (un,) ()] < b(z) + a(@(z)) 7 € LI (R, RY)

we have || f(un,) — f(u) ||,— 0, according to Lebesgue dominance theorem.
This proves the continuity of f. O

Corollary 1.1.6 Let Q2 C R™ be a smooth bounded domain, and let 1 <

p1,p2 < 00. Suppose that p : Q x R™ — R is a Caratheodory function
satisfying

]
le(z, €0, &m)| < b(z) +a ) I17
j=0
where §; is a #{a = (a1,...,an)||a| = j}-vector, aj < % - m—,:l)_ly a>

0, and b € LP2(Q). Then f(u)(zx) = p(z,D™u(z)) defines a bounded and
continuous map from W™P1(Q) into LP2(Q).

Corollary 1.1.7 Suppose that 2 C R™ and that p : QxR! — R! and p¢(z,&)

are Caratheodory functions. If |pe(z,€)| < b(x) + alé|”, where b € L= (),
a>0,andr = gi_% (if n < 2, then the restriction is not necessary), then the
functional

1) = [ ol u(e)ds
is F-differentiable on H'(Q), with F-derivative

(f(w),v) = /Q oe(z, u(@)) - v(z)dz ,

where (,) is the inner product on H'(R).

Proof. The Sobolev embedding theorem says that the injection i : H'(Q) —
L%’(Q) is continuous, so is the dual map 2* : an_:'t‘(Q) — (HY(Q))*.
According to Theorem 1.1.5, ¢ (-, ) : L% — L7 is continuous. There-
fore the Gateaux derivative
df (u,v) = / ve(z,u(z)) - v(z)de Yv e HY(Q)
Q
is continuous from H!(Q) to (H'(2))*. Applying Theorem 1.1.3, we conclude
that f is F-differentiable on H'(Q2). The proof is complete. ]
Corollary 1.1.8 In Corollary 1.1.6, the differential operator
f(u(z)) = ¢(z, D"u(z))
from CH7(Q) to C'=™7(Q), | > m, 0 < v < 1, is F-differentiable, with
(f'(wo)h)(@) = Y alz, D™u(z))0h(z) YheCI(@).

la|<m
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1.1.3 High-Order Derivatives

The second-order derivative of f at zg is defined to be the derivative of f'(z)
at xo. Since f' : U — L(X,Y), f”(zo) should be in L(X, L(X,Y)). However,
if we identify the space of bounded bilinear mappings with L(X,L(X,Y)),
and verify that f”(zo) as a bilinear mapping is symmetric, see Theorem 1.1.9
below, then we can define equivalently the second derivative f”(zq) as follows:
For f:U — Y, x9 € U C X, if there exists a bilinear mapping f”(x¢)(-,-) of
X x X — Y satisfying

| £(@o+h) = (z0)— (zo)h—3 5" (@) (h, ) = o(I A I) Vh € X, as || h =0,

then f”(zo) is called the second-order derivative of f at xg.
By the same manner, one defines the mth-order derivatives at zy succes-
sively: f(™)(zp) : X x --- x X — Y is an m-linear mapping satisfying

m

(7)
f($o+h)—zf] (fo)gz,..,,h)

=o(|l A ™),

=0

as || h ||~ 0. Then f is called m differentiable at zo.
Similar to the finite-dimensional vector functions, we have:

Theorem 1.1.9 Assume that f : U — Y is m differentiable at xo € U. Then
for any permutation w of (1,...,m), we have

f(m)(xo)(hlv ooy hm) = f(m)(l‘())(h,,(l), cey hw(m)) .

Proof. We only prove this in the case where m = 2, i.e.,

" (@o)(&,m) = f"(x0)(n,€) VEME X .
Indeed Vy* € Y*, we consider the function
p(t,s) = (y*, f(zo + t§ + sm)) .
It is twice differentiable at ¢t = s = 0; so is
0? 0?
719570 = 57!

Since f'(zo + t€ + sn) is continuous as |t|, |s| small, one has

0,0) .

%«p(t, Ms=0 = ", f'(zo + t&)n) ;

and then,
2

B%w(t, S)lt:s:O = (y‘, f”(:l)o)({, T’)) .
Similarly
0? "
M‘P(tas)lt=s=0 = <y‘»f (xO)(n’ 5)) .

This proves the conclusion. ]



