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Preface

In 1961 the second author delivered a series of lectures at Haverford Col-
lege on the subject of “Rational Points on Cubic Curves.” These lectures,
intended for junior and senior mathematics majors, were recorded, tran-
scribed, and printed in mimeograph form. Since that time they have been
widely distributed as photocopies of ever decreasing legibility, and por-
tions have appeared in various textbooks (Husemoller [1], Chahal [1]), but
they have never appeared in their entirety. In view of the recent inter-
est in the theory of elliptic curves for subjects ranging from cryptogra-
phy (Lenstra [1], Koblitz [2]) to physics (Luck-Moussa-Waldschmidt [1]).
as well as the tremendous purely mathematical activity in this area, it
seems a propitious time to publish an expanded version of those original
notes suitable for presentation to an advanced undergraduate audience.
We have attempted to maintain much of the informality of the orig-
inal Haverford lectures. Our main goal in doing this has been to write a
textbook in a technically difficult field which is “readable” by the average
undergraduate mathematics major. We hope we have succeeded in this
goal. The most obvious drawback to such an approach is that we have
not been entirely rigorous in all of our proofs. In particular, much of the
foundational material on elliptic curves presented in Chapter I is meant
to explain and convince, rather than to rigorously prove. Of course, the
necessary algebraic geometry can mostly be developed in one moderately
long chapter, as we have done in Appendix A. But the emphasis of this
book is on the number theoretic aspects of elliptic curves; and we feel that
an informal approach to the underlying geometry is permissible, because
it allows us more rapid access to the number theory. For those who wish
to delve more deeply into the geometry, there are several good books on
the theory of algebraic curves suitable for an undergraduate course, such as
Reid [1], Walker [1] and Brieskorn-Kaorrer [1]. In the later chapters we have
generally provided all of the details for the proofs of the main theorems.
The original Haverford lectures make up Chapters I, II, III, and the
first two sections of Chapter IV. In a few places we have added a small
amount of explanatory material, references have been updated to include
some discoveries made since 1961, and a large number of exercises have
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been added. But those who have seen the original mimeographed notes will
recognize that the changes have been kept to a minimum. In particular, the
emphasis is still on proving (special cases of) the fundamental theorems in
the subject: (1) the Nagell-Lutz theorem, which gives a precise procedure
for finding all of the rational points of finite order on an elliptic curve;
(2) Mordell’s theorem, which says that the group of rational points on an
elliptic curve is finitely generated; (3) a special case of Hasse’s theorem, due
to Gauss, which describes the number of points on an elliptic curve defined
over a finite field.

In the last section of Chapter IV we have described Lenstra’s ellip-
tic curve algorithm for factoring large integers. This is one of the recent
applications of elliptic curves to the “real world,” to wit the attempt to
break certain widely used public key ciphers. We have restricted our-
selves to describing the factorization algorithm itself, since there have been
many popular descriptions of the corresponding ciphers. (See, for example,
Koblitz [2].)

Chapters V and VI are new. Chapter V deals with integer points on
elliptic curves. Section 2 of Chapter V is loosely based on an IAP under-
graduate lecture given by the first author at MIT in 1983. The remaining
sections of Chapter V contain a proof of a special case of Siegel’s theorem,
which asserts that an elliptic curve has only finitely many integral points.
The proof, based on Thue’s method of Diophantine approximation, is el-
ementary, but intricate. However, in view of Vojta’s [1] and Faltings’ (1]
recent spectacular applications of Diophantine approximation techniques,
it seems appropriate to introduce this subject at an undergraduate level.
Chapter VI gives an introduction to the theory of complex multiplication.
Elliptic curves with complex multiplication arise in many different contexts
in number theory and in other areas of mathematics. The goal of Chap-
ter VI is to explain how points of finite order on elliptic curves with complex
multiplication can be used to generate extension fields with abelian Galois
groups, much as roots of unity generate abelian extensions of the rational
numbers. For Chapter VI only, we have assumed that the reader is familiar
with the rudiments of field theory and Galois theory.

Finally, we have included an appendix giving an introduction to projec-
tive geometry, with an especial emphasis on curves in the projective plane.
The first three sections of Appendix A provide the background needed for
reading the rest of the book. In Section 4 of Appendix A we give an ele-
mentary proof of Bezout’s theorem, and in Section 5 we provide a rigorous
discussion of the reduction modulo p map and explain why it induces a
homomorphism on the rational points of an elliptic curve.

The contents of this book should form a leisurely semester course,
with some time left over for additional topics in either algebraic geome-
try or number theory. The first author has also used this material as a
supplementary special topic at the end of an undergraduate course in mod-
ern algebra, covering Chapters I, II, and IV (excluding IV §3) in about
four weeks of classes. We note that the last five chapters are essentially
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independent of one another (except IV §3 depends on the Nagell-Lutz the-
orem, proven in Chapter II). This gives the instructor maximum freedom
in choosing topics if time is short. It also allows students to read portions
of the book on their own (e.g., as a suitable project for a reading course
or an honors thesis.) We have included many exercises, ranging from easy
calculations to published theorems. An exercise marked with a (*) is likely
to be somewhat challenging. An exercise marked with (*x) is either ex-
tremely difficult to solve with the material we cover or actually a currently
unsolved problem.

It has been said that “it is possible to write endlessly on elliptic
curves.”! We heartily agree with this sentiment, but have attempted to
resist succumbing to its blandishments. This is especially evident in our
frequent decision to prove special cases of general theorems, even when only
a few more pages would be required to prove a more general result. Our
goal throughout has been to illuminate the coherence and the beauty of
the arithmetic theory of elliptic curves; we happily leave the task of being
encyclopedic to the authors of more advanced monographs.

Computer Packages

The first author has written two computer packages to perform basic com-
putations on elliptic curves. The first is a stand-alone application which
runs on any variety of Macintosh. The second is a collection of Mathematica
routines with extensive documentation included in the form of Notebooks in
Macintosh Mathematica format. Instructors are welcome to freely copy and
distribute both of these programs. They may be obtained via anonymous
ftp at
gauss.math.brown.edu (128.148.194.40)

in the directory dist/EllipticCurve.

Acknowledgments

The authors would like to thank Rob Gross, Emma Previato, Michael
Rosen, Seth Padowitz, Chris Towse, Paul van Mulbregt, Eileen O’Sullivan,
and the students of Math 153 (especially Jeff Achter and Jeff Humphrey)
for reading and providing corrections to the original draft. They would also
like to thank Davide Cervone for producing beautiful illustrations from their
original jagged diagrams.

t From the introduction to Elliptic Curves: Diophantine Analysis, Serge Lang, Spring-
er-Verlag, New York, 1978. Professor Lang follows his assertion with the statement that
“This is not a threat,” indicating that he, too, has avoided the temptation to write a book of
indefinite length.



viii Acknowledgments

The first author owes a tremendous debt of gratitude to Susan for her
patience and understanding, to Debby for her fluorescent attire brighten-
ing up the days, to Danny for his unfailing good humor, and to Jonathan
for taking timely naps during critical stages in the preparation of this
manuscript.

The second author would like to thank Louis Solomon for the invitation
to deliver the Philips Lectures at Haverford College in the Spring of 1961.

Joseph H. Silverman
John Tate

March 27, 1992

Acknowledgments for the
Second Printing

The authors would like to thank the following people for sending us sug-
gestions and corrections, many of which have been incorporated into this
second printing: G. Allison, D. Appleby, K. Bender, G. Bender, P. Berman,
J. Blumenstein, D. Freeman, L. Goldberg, A. Guth, A. Granville, J. Kraft,
M. Mossinghoff, R. Pries, K. Ribet, H. Rose, J.-P. Serre, M. Szydlo, J. To-
bey, C.R. Videla, J. Wendel.

Joseph H. Silverman
John Tate

June 13, 1994



Contents

Preface
Computer Packages
Acknowledgments

Introduction

CHAPTER 1

Geometry and Arithmetic

1.

2
3.
4

Rational Points on Conics

The Geometry of Cubic Curves
Weierstrass Normal Form

Explicit Formulas for the Group Law
Exercises

CHAPTER II
Points of Finite Order

Cra 00 o

Points of Order Two and Three

Real and Complex Points on Cubic Curves

The Discriminant

Points of Finite Order Have Integer Coordinates

The Nagell-Lutz Theorem and Further Developments
Exercises

CHAPTER II1
The Group of Rational Points

O o e b

Heights and Descent

The Height of P + Py

The Height of 2P

A Useful Homomorphism

Mordell’'s Theorem

Examples and Further Developments
Singular Cubic Curves

Exercises

vii

vii

15
22
28
32

38

38
41
47
49
56
58

63

63
68
71
76
83
89
99
102



x Contents

CHAPTER IV
Cubic Curves over Finite Fields 107
1. Rational Points over Finite Fields 107
2. A Theorem of Gauss 110
3. Points of Finite Order Revisited 121
4. A Factorization Algorithm Using Elliptic Curves 125
Exercises 138
CHAPTER V
Integer Points on Cubic Curves 145
1. How Many Integer Points? 145
2. Taxicabs and Sums of Two Cubes 147
3. Thue’s Theorem and Diophantine Approximation 152
4. Construction of an Auxiliary Polynomial 157
5. The Auxiliary Polynomial Is Small 165
6. The Auxiliary Polynomial Does Not Vanish 168
7. Proof of the Diophantine Approximation Theorem 171
8. Further Developments 174
Exercises 177
CHAPTER VI
Complex Multiplication 180
1. Abelian Extensions of Q 180
2. Algebraic Points on Cubic Curves 185
3. A Galois Representation 193
4. Complex Multiplication 199
5. Abelian Extensions of Q(7) 205
Exercises 213
APPENDIX A
Projective Geometry 220
1. Homogeneous Coordinates and the Projective Plane 220
2. Curves in the Projective Plane 225
3. Intersections of Projective Curves 233
4. Intersection Multiplicities and a Proof of Bezout’s Theorem 242
5. Reduction Modulo p 251
Exercises 254
Bibliography 259
List of Notation 263

Index 267



Introduction

The theory of Diophantine equations is that branch of number theory which
deals with the solution of polynomial equations in either integers or rational
numbers. The subject itself is named after one of the greatest of the ancient
Greek algebraists, Diophantus of Alexandria,! who formulated and solved
many such problems.

Most readers will undoubtedly be familiar with Fermat’s Last Theo-
rem.? This theorem says that if n > 3 is an integer, then the equation

Xt Y® =20

has no solutions in non-zero integers X, Y, Z. Equivalently, the only solu-
tions in rational numbers to the equation

2t +yt =1

are those with either r = 0 or y = 0. Fermat’s Theorem is now known to
be true for all exponents n < 125000, so it is unlikely that anyone will find
a counterexample by random guessing. On the other hand, there are still
a lot of possible exponents left to check between 125000 and infinity!

As another example, we consider the problem of writing an integer as
the difference of a square and a cube. In other words, we fix an integer c € Z
and look for solutions to the Diophantine equation3

1 Diophantus lived sometime before the 3" century A.D. He wrote the Arithmetica. a

treatise on algebra and number theory in 13 volumes, of which 6 volumes have survived.

2 Fermat’'s Last “Theorem” is really a conjecture, because it is still unsolved after more

than 350 years. Fermat stated his “Theorem” as a marginal note in his copy of Diophantus'
Arithmetica; unfortunately, the margin was too small for him to write down his proof!

3 This equation is often called Bachet’s equation, after the 17%P century mathematician
who originally discovered the duplication formula. It is also sometimes called Mordell’s equa-
tion, in honor of the 20'" century mathematician L.J. Mordell, who made a fundamental
contribution to the solution of this and many similar Diophantine equations. We will be
proving a special case of Mordell's theorem in Chapter III.
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Suppose we are interested in solutions in rational numbers z,y € Q. An
amazing property of this equation is the existence of a duplication formula,
discovered by Bachet in 1621. If (z,y) is a solution with z and y rational,
then it is easy to check that

z* — 8cx —x8 — 20cz® + 8¢?
4y? 8y3

is a solution in rational numbers to the same equation. Further, it is possi-
ble to prove (although Bachet was not able to) that if the original solution
has zy # 0 and if ¢ # 1,432, then repeating this process leads to in-
finitely many distinct solutions. So if an integer can be expressed as the
difference of a square and a cube of non-zero rational numbers, then it can
be so expressed in infinitely many ways. For example, if we start with the
solution (3,5) to the equation '

y?—z3=-2

and apply Bachet’s duplication formula, we find a sequence of solutions
that starts

(3.5) 129 383 2340922881 113259286337292
e 1027 103 )’ 76602 76603 ’

As you can see, the numbers rapidly get extremely large.
Next we’ll take the same equation

and ask for solutions in integers z,y € Z. In the 1650’s Fermat posed as
a challenge to the English mathematical community the problem of show-
ing that the equation y?2 — z3 = —2 has only two solutions in integers,
namely (3,+5). This is in marked contrast to the question of solutions in
rational numbers, since we have just seen there are infinitely many of those.
None of Fermat’s contemporaries appears to have solved the problem, which
was solved incorrectly by Euler in the 1730’s, and given a correct proof 150
years later! Then in 1908, Axel Thue* made a tremendous breakthrough;
he showed that for any non-zero integer ¢, the equation y? — z° = ¢ can
have only a finite number of solutions in integers z,y. This is a tremendous
(qualitative) generalization of Fermat’s challenge problem; among the in-
finitely many solutions in rational numbers, there can be but finitely many
integer solutions.

4 Axel Thue made important contributions to the theory of Diophantine equations, espe-

cially to the problem of showing that certain equations have only finitely many solutions in
integers. These theorems about integer solutions were generalized by C.L. Siegel during the
1920’s and 1930’s. We will prove a version of the Thue-Siegel theorem (actually a special case
of Thue’s original result) in Chapter V.
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The Fermat Curves ¢ + y* =1 and z° + y° = 1
Figure 0.1

The 17** century witnessed Descartes’ introduction of coordinates into
geometry, a revolutionary development which allowed geometric problems
to be solved algebraically and algebraic problems to be studied geometri-
cally. For example, if n is even, then the real solutions to Fermat’s equa-
tion z™ + y™ = 1 in the zy plane form a geometric object that looks like a
squashed circle. Fermat’s Theorem is then equivalent to the assertion that
the only points on that squashed circle having rational coordinates are the
four points (+1,0) and (0, £1). The Fermat equations with odd exponents
look a bit different. We have illustrated the Fermat curves with exponents 4
and 5 in Figure 0.1.

Similarly, we can look at Bachet’s equation y2 — z® = ¢, which we have
graphed in Figure 0.2. Recall that Bachet discovered a duplication formula
which allows us to take a given rational solution and produce a new rational
solution. Bachet’s formula is rather complicated, and one might wonder
where it comes from. The answer is, it comes from geometry! Thus, suppose
we let P = (z,y) be our original solution, so P is a point on the curve (as
illustrated in Figure 0.2). Next we draw the tangent line to the curve at
the point P, an easy exercise suitable for a first semester calculus course.®
This tangent line will intersect the curve at one further point, which we have
labeled @. Then, if you work out the algebra to calculate the coordinates
of @, you will find Bachet’s duplication formula. So Bachet’s complicated
algebraic formula has a simple geometric interpretation in terms of the
intersection of a tangent line with a curve. This is our first intimation of
the fruitful interplay that is possible among algebra, number theory, and
geometry.

5 Of course, Bachet had neither calculus nor analytic geometry; so he probably discovered

his formula by clever algebraic manipulation.
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Bachet’s Equation y? — z% = ¢
Figure 0.2

The simplest sort of Diophantine equation is a polynomial equation in
one variable:
Az +Gp_12" 4+ -+ a1z + a9 =0.

Assuming that ag,...,a, are integers, how can we find all integer and all
rational solutions? Gauss’ lemma provides the simple answer. If p/q is a
rational solution written in lowest terms, then Gauss’ lemma tells us that g
divides a,, and p divides ag. This gives us a small list of possible rational
solutions, and we can substitute each of them into the equation to determine
the actual solutions. So Diophantine equations in one variable are easy.

When we move to Diophantine equations in two variables, the situation
changes dramatically. Suppose we take a polynomial f(z,y) with integer
coefficients and look at the equation

f(z,y) =0.

For example, Fermat’s and Bachet’s equations are equations of this sort.
Here are some natural questions we might ask:

(a) Are there any solutions in integers?

(b) Are there any solutions in rational numbers?

(c) Are there infinitely many solutions in integers?

(d) Are there infinitely many solutions in rational numbers?

In this generality, only question (c) has been fully answered, although much
progress has recently been made on (d).%

5 For polynomials f(z,,..., Z,) with more than two variables, our four questions have only
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The set of real solutions to an equation f(z,y) = 0 forms a curve
in the zy plane. Such curves are often called algebraic curves to indicate
that they are the solutions of a polynomial equation. In trying to answer
questions (a)-(d), we might begin by looking at simple polynomials, such
as polynomials of degree 1 (also called linear polynomials, because their
graphs are straight lines.) For a linear equation

az +by=c

with integer coefficients, it is easy to answer our questions. There are always
infinitely many rational solutions, there are no integer solutions if ged(a, b)
does not divide ¢, and otherwise there are infinitely many integer solutions.
So linear equations are even easier than equations in one variable.

Next we might turn to polynomials of degree 2 (also called quadratic
polynomials). Their graphs are conic sections. It turns out that if such
an equation has one rational solution, then there are infinitely many. The
complete set of solutions can be described very easily using geometry. We
will explain how this is done in the first section of Chapter I. We will also
briefly indicate how to answer question (b) for quadratic polynomials. So
although it would be untrue to say that quadratic polynomials are easy, it
is fair to say that their solutions are completely understood.

This brings us to the main topic of this book, namely, the solution of
degree 3 polynomial equations in rational numbers and in integers. One
example of such an equation is Bachet’s equation y? — z3 = ¢ which we
looked at earlier; some other examples which will appear during our studies
are

v=x2}+az’ +bx+c and az® + by’ =c.

The real solutions to these equations are called cubic curves or elliptic
curves. (However, they are not ellipses, since ellipses are conic sections,
and conic sections are given by quadratic equations! The curious chain
of events that led to elliptic curves being so named will be recounted in
Chapter I, Section 3.) In contrast to linear and quadratic equations, the
rational and integer solutions to cubic equations are still not completely
understood; and even in those cases where the complete answers are known,
the proofs involve a subtle blend of techniques from algebra, number theory,
and geometry. Our main goal in this book is to introduce you to the
beautiful subject of Diophantine equations by studying in depth the first
case of such equations which are still imperfectly understood, namely cubic
equations in two variables. To give you an idea of the sorts of results we
will be studying, we briefly indicate what is known about questions (a)—(d).

been answered for some very special sorts of equations. Even worse, work of Davis, Matijasevic,
and Robinson has shown that in general it is not possible to find a solution to question (a).
That is, there does not exist an algorithm which takes as input the polynomial f and produces
as output either “YES” or “NO” as an answer to question (a).
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First, a cubic equation has only finitely many integer solutions’ (Sie-
gel, 1920’s); and there is an explicit upper bound for the largest solution
in terms of the coefficients of the polynomial (Baker-Coates, 1970). This
provides a satisfactory answer to (a) and (c), although the actual bounds
for the largest solution are generally too large to be practical. We will prove
a special case of Siegel’s theorem (for equations of the form az® + by® = c)
in Chapter V.

Second, all of the (possibly infinitely many) rational solutions to a
cubic equation may be found by starting with a finite set of solutions and
repeatedly applying a geometric procedure similar to Bachet’s duplication
formula. The fact that there exists such a finite generating set was suggested
by Poincaré in 1901 and proven by L.J. Mordell in 1923. We will prove
(a special case of) Mordell’s theorem in Chapter III. However, we must in
truth point out that Mordell’s theorem does not really answer questions (b)
and (d). As we will see, the proof of Mordell’s theorem gives a procedure
which often allows one to find a finite generating set for the set of rational
solutions. But it is only conjectured, and not yet proven, that Mordell’s
method always yields a generating set. So even for special sorts of cubic
equations, such as y?2 — z® = ¢ and az® + by® = ¢, there is no general
method (i.e., algorithm) currently known which is guaranteed to answer
question (b) or (d).

We have mentioned several times the idea that the study of Diophan-
tine equations involves an interplay among algebra, number theory, and
geometry. The geometric component is clear, because the equation itself
defines (in the case of two variables) a curve in the plane; and we have
already seen how it may be useful to consider the intersection of that curve
with various lines. The number theory is also clearly present, because we
are searching for solutions in either integers or rational numbers, and what
else is number theory other than a study of the relations between integers
and/or rational numbers. But what of the algebra? We could point out
that polynomials are essentially algebraic objects. However, algebra plays
a much more important role than this.

Recall that Bachet’s duplication formula can be described as follows:
start with a point P on a cubic curve, draw the tangent line at P, and
take the third point of intersection of the line with the curve. Similarly,
if we start with two points P, and P» on the curve, we can draw the line
through P; and P, and look at the third intersection point P;. (This will
work for most points, because the intersection of a line and a cubic curve will
usually consist of exactly three points.) We might describe this procedure,
which we illustrate in Figure 0.3, as a way to “add” two points on the curve
and get a third point on the curve. Amazingly enough, we will show that
with a slight modification this geometric operation takes the set of rational

£ Actually, Siegel’s theorem applies only to “non-singular” cubic equations. However,
most cubic equations are non-singular; and in practice it is quite easy to check whether or not
a given equation is non-singular.
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“Adding” Two Points on a Cubic Curve
Figure 0.3

solutions to a cubic equation and turns it into an abelian group! And
Mordell’s theorem alluded to earlier can be rephrased by saying that this
group has a finite number of generators. So here is algebra, number theory,
and geometry all packaged together in one of the greatest theorems of this
century.

We hope that the foregoing introduction has convinced you of some of
the beauty and elegance to be found in the theory of Diophantine equations.
But the study of Diophantine equations, in particular the theory of elliptic
curves, also has its practical applications. We will study one such applica-
tion in this book. Everyone is familiar with the Fundamental Theorem of
Arithmetic, which asserts that every positive integer factors uniquely into
a product of primes. It is less well known that if the integer is fairly large,
say on the order of 10'% or 10%2%, it may be virtually impossible to perform
that factorization. This is true even though there are very quick ways to
check that an integer of this size is not itself a prime. In other words, if one
is presented with an integer N with (say) 150 digits, then one can easily
check that N is not prime, even though one cannot in general find any of
the prime factors of N.

This curious state of affairs has been used by Rivest, Shamir, and
Adleman to construct what is known as a public key cipher based on a
trapdoor function. These are ciphers in which one can publish, for all to
see, the method of enciphering a message; but even with the encipherment
method on hand, a would-be spy will not be able to decipher any messages.
Needless to say, such ciphers have numerous applications, ranging from
espionage to ensuring secure telecommunications between banks and other
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financial institutions. To describe the relation with elliptic curves, we will
need to briefly indicate how such a “trapdoor cipher” works.

First one chooses two large primes, say p and g, each with around 100
digits. Next one publishes the product N = pqg. In order to encipher
a message, your correspondent only needs to know the value of N. But
in order to decipher a message, the factors p and ¢ are needed. So your
messages will be safe as long as no one is able to factor N. This means
that in order to ensure the safety of your messages, you need to know the
largest integers that your enemies are able to factor in a reasonable amount
of time.

So how does one factor a large number which is known to be composite?
One can start trying possible divisors 2, 3,..., but this is hopelessly ineffi-
cient. Using techniques from number theory, various algorithms have been
devised, with exotic sounding names like the continued fraction method,
the ideal class group method, the p — 1 method, and the quadratic sieve
method. But one of the best methods currently available is Lenstra’s El-
liptic Curve Algorithm, which as the name indicates relies on the theory
of elliptic curves. So it is essential to understand the strength of Lenstra’s
algorithm if one is to ensure that one’s public key cipher will not be broken.
We will describe how Lenstra’s algorithm works in Chapter IV.



