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PREFACE

This series, Chemical Sensors: Simulation and Modeling, is the perfect comple-
ment to Momentum Press’s six-volume reference series, Chemical Sensors:
Fundamentals of Sensing Materials and Chemical Sensors: Comprehensive Sensor
Technologies, which present detailed information about materials, technologies,
fabrication, and applications of various devices for chemical sensing. Chemical
sensors are integral to the automation of myriad industrial processes and every-
day monitoring of such activities as public safety, engine performance, medical
therapeutics, and many more.

Despite the large number of chemical sensors already on the market, selec-
tion and design of a suitable sensor for a new application is a difficult task for
the design engineer. Careful selection of the sensing material, sensor platform,
technology of synthesis or deposition of sensitive materials, appropriate coatings
and membranes, and the sampling system is very important, because those deci-
sions can determine the specificity, sensitivity, response time, and stability of the
final device. Selective functionalization of the sensor is also critical to achieving
the required operating parameters. Therefore, in designing a chemical sensor, de-
velopers have to answer the enormous questions related to properties of sensing
materials and their functioning in various environments. This five-volume com-
prehensive reference work analyzes approaches used for computer simulation and
modeling in various fields of chemical sensing and discusses various phenomena
important for chemical sensing, such as surface diffusion, adsorption, surface
reactions, sintering, conductivity, mass transport, interphase interactions, etc.
In these volumes it is shown that theoretical modeling and simulation of the pro-
cesses, being a basic for chemical sensor operation, can provide considerable
assistance in choosing both optimal materials and optimal configurations of
sensing elements for use in chemical sensors. The theoretical simulation and
modeling of sensing material behavior during interactions with gases and liquid
surroundings can promote understanding of the nature of effects responsible for
high effectiveness of chemical sensors operation as well. Nevertheless, we have to
understand that only very a few aspects of chemistry can be computed exactly.
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However, just as not all spectra are perfectly resolved, often a qualitative or ap-
proximate computation can give useful insight into the chemistry of studied phe-
nomena. For example, the modeling of surface-molecule interactions, which can
lead to changes in the basic properties of sensing materials, can show how these
steps are linked with the macroscopic parameters describing the sensor response.
Using quantum mechanics calculations, it is possible to determine parameters
of the energetic (electronic) levels of the surface, both inherent ones and those
introduced by adsorbed species, adsorption complexes, the precursor state, etc.
Statistical thermodynamics and kinetics can allow one to link those calculated
surface parameters with surface coverage of adsorbed species corresponding to
real experimental conditions (dependent on temperature, pressure, etc.). Finally,
phenomenological modeling can tie together theoretically calculated characteris-
tics with real sensor parameters. This modeling may include modeling of hot plat-
forms, modern approaches to the study of sensing effects, modeling of processes
responsible for chemical sensing, phenomenological modeling of operating char-
acteristics of chemical sensors, etc.. In addition, it is necessary to recognize that
in many cases researchers are in urgent need of theory, since many experimental
observations, particularly in such fields as optical and electron spectroscopy, can
hardly be interpreted correctly without applying detailed theoretical calculations.

Each modeling and simulation volume in the present series reviews model-
ing principles and approaches particular to specific groups of materials and de-
vices applied for chemical sensing. Volume 1: Microstructural Characterization and
Modeling of Metal Oxides covers microstructural characterization using scanning
electron microscopy (SEM), transmission electron spectroscopy (TEM), Raman
spectroscopy, in-situ high-temperature SEM, and multiscale atomistic simulation
and modeling of metal oxides, including surface state, stability, and metal oxide
interactions with gas molecules, water, and metals. Volume 2: Conductometric-
Type Sensors covers phenomenological modeling and computational design of
conductometric chemical sensors based on nanostructured materials such as
metal oxides, carbon nanotubes, and graphenes. This volume includes an over-
view of the approaches used to quantitatively evaluate characteristics of sensitive
structures in which electric charge transport depends on the interaction between
the surfaces of the structures and chemical compounds in the surroundings.
Volume 3: Solid-State Devices covers phenomenological and molecular model-
ing of processes which control sensing characteristics and parameters of various
solid-state chemical sensors, including surface acoustic wave, metal-insulator-
semiconductor (MIS), microcantilever, thermoelectric-based devices, and sensor
arrays intended for “electronic nose” design. Modeling of nanomaterials and nano-
systems that show promise for solid-state chemical sensor design is analyzed as
well. Volume 4: Optical Sensors covers approaches used for modeling and simu-
lation of various types of optical sensors such as fiber optic, surface plasmon
resonance, Fabry-Pérot interferometers, transmittance in the mid-infrared region,



PREFACE o xi

luminescence-based devices, etc. Approaches used for design and optimization
of optical systems aimed for both remote gas sensing and gas analysis cham-
bers for the nondispersive infrared (NDIR) spectral range are discussed as well.
A description of multiscale atomistic simulation of hierarchical nanostructured
materials for optical chemical sensing is also included in this volume. Volume 5:
Electrochemical Sensors covers modeling and simulation of electrochemical pro-
cesses in both solid and liquid electrolytes, including charge separation and
transport (gas diffusion, ion diffusion) in membranes, proton-electron transfers,
electrode reactions, etc. Various models used to describe electrochemical sensors
such as potentiometric, amperometric, conductometric, impedimetric, and ion-
sensitive FET sensors are discussed as well.

I believe that this series will be of interest of all who work or plan to work in
the field of chemical sensor design. The chapters in this series have been prepared
by well-known persons with high qualification in their fields and therefore should
be a significant and insightful source of valuable information for engineers and
researchers who are either entering these fields for the first time, or who are al-
ready conducting research in these areas but wish to extend their knowledge in
the field of chemical sensors and computational chemistry. This series will also be
interesting for university students, post-docs, and professors in material science,
analytical chemistry, computational chemistry, physics of semiconductor devices,
chemical engineering, etc. I believe that all of them will find useful information in
these volumes.

G. Korotcenkov
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CHAPTER 6

MODELING AND SIGNAL PROCESSING
STRATEGIES FOR MICROACOUSTIC
CHEMICAL SENSORS

G. Fischerauer
F. Thalmayr

1. SENSING PRINCIPLES OF MICROACOUSTIC
CHEMICAL SENSORS

1.1. INTRODUCTION

Microacoustic devices are miniaturized physical units based on the interaction
of elastic waves with electric fields at kilohertz, megahertz, or gigahertz frequen-
cies. The interaction is effected by plate or interdigital electrodes close to a piezo-
electric material and connected with the electrical terminals of the device. As
the efficiency of the electroacoustic transduction inside the microacoustic device
depends on frequency, the device can be used as a frequency filter. In fact, such
filters have been sold by the billions and are omnipresent in TV sets, cellular
phones, remote controls, etc.

Figure 6.1 shows some common geometries of microacoustic devices. In prin-
ciple, the device characteristics such as, e.g., the frequency response depend
not only on the materials involved and the geometry, but also on disturbance
variables such as temperature, mechanical stresses, atmospheric pressure, etc.
When used for signal processing purposes, the devices are housed in packages

DOI: 10.5643/9781606503171/ch6 231
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Si0,, LiNbO,,

Figure 6.1. Microacoustic device geometries with plate electrodes (a) and interdigital electrodes (b—d),
respectively. (a) Quartz crystal resonator. (b) Surface acoustic wave (SAW) device. (c) Membrane
(Lamb wave) geometry. (d) Acoustic plate mode (APM) device. Single-crystal quartz (SiO,), lithium
niobate (LiNbO,), lithium tantalate (LiTaO;), and zinc oxide (ZnQ) are all piezoelectric materials.

that shield them from environmental influences as much as possible. The wanted
action path runs from an input voltage v,,(t) applied between, e.g., the terminals
of an interdigital transducer (IDT) to an output voltage v, (t) showing up between
the two electrodes of another IDT (Figure 6.2). In between, v, (t) is converted to
an acoustic wave, described, for instance, by the scalar wave amplitude w,(t) in
a chosen reference plane. This wave propagates along the substrate surface and
arrives at the output IDT with amplitude w,(t), which is reconverted to the voltage
U,ue(t). A disturbance variable z(t) from which the device is not sufficiently isolated
will corrupt both w,(t) and v,,(t).

The latter effect can be used to monitor the disturbance variable z(t). This is
the basic principle of microacoustic sensors. In this context, the variable z(t) is
not a disturbance at all, but the wanted input variable, the value of which must be
retrieved from a suitable feature of the output voltage v,,(t) of the microacoustic
device. Commonly used features are related to the frequency response G, (jw) of
the device, defined as

; Vo (J ’ s (0
(o) = 0 =16, o)l % (6.1)

where V| (jo) and V, ,(jo) are the Fourier transforms of v, (t) and v,,(t), respec-
tively. Such features are, for instance, the center angular frequency ®, (wWhere
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z(1)

1

wy (t) ] v
Vin (O— IDT = Propagation path IDT |—Voui(l: 2)
— .
Electro-acoustic Acousto-electric
transduction transduction

Figure 6.2. Functional diagram of a microacoustic device (see text).

the gain response |G,(jo)| peaks) or the group delay time at center frequency,
T, =—dg,/do],_, (roughly the time it takes an acoustic wave packet to propa-
gate from the input IDT to the output IDT).

1.2. MICROACOUSTIC CHEMICAL SENSORS

From the preceding section, it is obvious that any variable that influences the
propagation velocity v of the acoustic waves in a microacoustic device will modu-
late certain features of the output voltage v, ,(t). We are here concerned with the
ambient, or external, concentration c.(t) of an analyte molecule. To make it act on
the microacoustic device, the latter is coated with a thin layer which selectively
incorporates the analyte molecules of interest (Figure 6.3). In this manner, one
obtains a chemical sensor converting c.(t) to a feature of the voltage v,,(t). The
thin film can be deposited by spraying, brushing, dipping, spin-on, physical vapor
deposition, chemical vapor deposition, or a number of other methods.

Both the acoustic wave velocity and the propagation attenuation depend on
the substrate material parameters, the sensor film material parameters, and
the boundary conditions at the surface. As a consequence, there exist several

Figure 6.3. Examples of microacoustic chemical sensors. (a) Quartz crystal microbalance (QMB),
obtained by coating a quartz crystal resonator with a selective layer. (b.) Surface acoustic wave
(SAW) sensor, obtained by coating a SAW delay line with a selective layer.



