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Preface

Much of the second and third year undergraduate course in mathematics (as well as
some graduate work) was covered by Volumes 2 and 3 of my book on algebra, now
out of print.' So I was very pleased when Springer Verlag offered to bring out a new
version of these volumes. The present book is based on both these volumes, comple-
mented by the definitions and basic facts on groups and rings. Thus the volume is
addressed to students who have some knowledge of linear algebra and who have
met groups and fields, though all the essential facts are recalled here. My overall
aim has been to present as many of the important results in algebra as would
conveniently fit into one volume. It is my hope to collect the remaining parts of
Volumes 2 and 3 into a second book, more oriented towards applications.®

Apart from chapters on groups (Chapter 2), rings and modules (Chapters 4, 5 and 6)
and fields (Chapters 7 and 11), a number of concepts are treated that are less central
but nevertheless have many uses. Chapter 1, on set theory, deals with countable and
well-ordered sets, as well as Zorn’s lemma and a brief section on graphs. Chapter 3
introduces lattices and categories, both concepts that form an important part of
the language of modern algebra. The general theory of quadratic forms has many
links with ordered fields, which are developed in Chapter 8. Chapters 9 and 10 are
devoted to valuation theory and commutative rings, a subject that has gained in
importance through its use in algebraic geometry.

On a first encounter some readers may find the style of this book somewhat
concise; but they should bear in mind that mathematical texts are best read with
paper and pencil, to work out the full consequences of what is being said and to
check examples. The matter has been well put by Einstein, who said: “Everything
should be explained as far as possible but no further.” There are numerous exercises
throughout, with occasional hints (but no solutions), and some historical remarks.

My thanks are due to the staff of Springer Verlag for the efficient way they have
produced this volume.

University College London P.M. Cohn
June 2002

| Algebra, Vol. 2 (2nd edn, 1989) and Vol. 3 (2nd edn, 1991), Wiley and Sons.
2 Further Algebra and Applications, Springer Verlag, London (2003). Referred to in the text as FA.
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Conventions on
Terminology

We assume that our readers are acquainted with the notion of a set (and even with
groups and rings, though their definitions will be recalled in Chapters 2, 4). They will
have seen notations such as x € S (x is a member of §), ' CSor SD2 S (5 is a
subset of S) and T C S or S D T (T is a proper subset of S) and (J for the empty
set. For any propositions P, Q we write ‘P = Q’ or ‘Q < P’ to indicate that P
implies Q, and ‘P < Q’ to mean ‘P = Q and Q = P’, i.e. that P is equivalent to Q.

A property (of members of a set S) is said to hold for almost all members of S if it
holds for all but a finite number of members of S. If T is a subset of S, its comple-
ment in S will be denoted by S\T. This notation is also used occasionally for the left
coset space (see Section 2.1); the risk of confusion is small.

We can list the elements of a set S by indexing them, e.g. if S is finite, with n
elements, we can write S = {x|, x;, ..., x,}; we also write |S| = n. More generally,
any set can be indexed by a suitable indexing set: S = {x,}, ., where I is the indexing
set. A set in this form is often called a family indexed by I; it is in effect prescribing a
mapping from [ to S. This mapping is generally not assumed to be injective, thus x;
may equal x,, even if A # p.

All mappings between sets are as a rule written on the right, so that fg means: first
f,theng. If f : S — T, i.e. fis a mapping from S to T and S’ is a subset of S, then the
restriction of f to S is denoted by f|S’. A mapping f : S — T is called injective or
one—one if different members of S have different images, surjective or onto if every
member of T is an image of some member of S, and bijective if it is both injective
and surjective. Mappings are often arranged as diagrams (see Section 4.2); a diagram
is commutative if the different ways of going from one point to another along the
arrows give the same result.

Frequently a two-index expression f (i, j) is equal to 1 if i = j and 0 otherwise. This
is indicated by using the Kronecker symbol §;j; thus f(i, j) = &;;..

A set S is partially ordered, often just called ordered, if there is a binary relation <,
called a partial ordering, defined on S with the properties:

0.1 x < x for all x € S (reflexive),
0.2 x<y,y<z=x<zforall x,y,z € S (transitive),
03 x<y,y<x=>x=yforall x,y € § (antisymmetric).

If only O.1 and O.2 hold, we speak of a preordering.
The ordering is total if any two elements are comparable, i.e. x < y or y < x for
any x, y € S. If “<’ is a partial ordering on a set S, we shall write ‘x < y’ (x is strictly

Xi



Xii Basic Algebra

less than y) to mean x <y and x # y’, and we write x > y, x > yfor y < x, y < x
respectively. As is easily verified, the opposite ordering ‘>’ again satisfies 0.1-0.3
and so is again a partial ordering. Thus any general statement about ordered sets
has a dual, which is obtained by interpreting the original statement for the oppositely
ordered set. This principle can often be used to shorten proofs.

A binary relation < on a set S is called an equivalence relation if it is reflexive,
transitive and symmetric, i.e. x~y = y-x, for all x, y € S. For example, equality is
an equivalence relation. Given an equivalence on S, we can list all members equiva-
lent to a given one together in a class, and in this way obtain a partition of S into a
collection of disjoint subsets, the equivalence classes or blocks. The set of equivalence
classes is denoted by S/.. and is called the quotient set of S by the equivalence .

Given sets S, T, their Cartesian or direct product, denoted by S x T, is the set of
pairs (x, y), where x € S, y € T. If S, T are any ordered sets, their direct product
can again be ordered by writing (x,y) < (x’,y’) to mean: x < x’ or x = x’ and
y < y'. This is easily verified to be an ordering, called the lexicographic ordering; it
is a total ordering whenever both S and T are totally ordered.

References to the bibliography are by the name of the author and the date. In each
section all the results are numbered consecutively, e.g. in Section 4.7 we have
Theorem 4.7.1, Lemma 4.7.2, Proposition 4.7.3. We shall also use iff as an abbrevia-
tion for ‘if and only if’ and M indicates the end (or absence) of a proof. Many
exercises are provided with hints, and the harder ones are starred.
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Sets

Much of algebra can be done using only very little set theory; all that is needed is a
means of comparing infinite sets, and the axiom of choice in the form of Zorn’s
lemma. These topics occupy Sections 1.1 and 1.2. They are followed in Section 1.3
by an introduction to graph theory. This is an extensive theory with many applica-
tions in algebra and elsewhere; all we shall do here is to present a few basic results,
some of which will be used later, which convey the flavour of the topic.

1.1 Finite, Countable and Uncountable Sets

Most of our readers will have met sets before; a set for us is a collection of objects, its
members or elements. These elements may themselves be sets; of course one has to be
careful to avoid situations like Russell’s paradox: ‘the set 2 of all sets that are not
members of themselves’; this quickly leads to a contradiction when one asks if
Q2 € Q. There are several ways of resolving this paradox, but they will not concern
us here; all that is needed is some care in forming ‘large’ sets.

Given two sets, we may wish to compare them for size, i.e. the number of elements
in each. We can use the natural numbers to count the members, but this may not be
necessary. When Man Friday wanted to tell Robinson Crusoe that he had seen a boat
with 17 men in it, he did this by exhibiting another 17-element set, and he could do
this without being able to count up to 17. Even for a fully numerate person it may be
easier to compare two sets rather than to count each; e.g. in a full lecture room a
brief glance may suffice to convince us that there are as many people as seats.
This suggests that it may be easier to determine when two sets have the same
‘number of elements’ than to find that number. Let us call two sets equipotent if
there is a bijection (i.e. a one—one correspondence) between them. This relation of
equipotence is an equivalence relation on any given collection of sets; here we
avoid talking about the collection of all sets, as that would bring us dangerously
close to the paradox mentioned above.

A set S is said to be finite, of cardinal n, if S is equipotent to the set {1,2,...,n}
consisting of the natural numbers from 1 to n. By convention the empty set, having
no elements, is reckoned among the finite sets; its cardinal is 0 and it is denoted

by &.



2 Sets

It is clear that two finite sets are equipotent if they have the same cardinal, and this
may be regarded as the basis of counting. It is also true that sets of different finite
cardinalities are not equipotent. This may seem intuitively obvious; we shall
assume it here and defer to FA its derivation from the axioms for the natural
numbers. More generally, we shall assume that for any natural numbers m, n, if
there is an injective mapping from {1,2,...,m} to {1,2,...,n}, then m < n. Let
us abbreviate {1,2,...,n} by [n], for any n € N. It follows that if there is a
bijection between [m] and [n], then m < n and n < m, hence m = n. Thus for
any finite set, the natural number which indicates its cardinal is uniquely deter-
mined. The contrapositive form of the above assertion states that if m > n, then
there can be no injective mapping from [m] to [n]. A more illuminating way of
expressing this observation is Dirichlet’s celebrated

Box Principle (Schubfachprinzip). If n + 1 objects are distributed over n boxes, then
some box must contain more than one of the objects.

Although intuitively obvious, this principle is of great use in number theory and
elsewhere.

Having given a formal definition of finite sets, we now define a set to be infinite if
it is not finite. Until relatively recent times the notion of ‘infinity’ was surrounded by
a good deal of mystery and uncertainty, even in mathematics. Thus towards the
middle of the 19th century, Bernard Bolzano propounded as a paradox the fact
that (in modern terms) an infinite set might be equipotent to a proper subset of
itself. A closer study reveals the fact that every infinite set has this property, and
this has even been taken as the basis of a definition of infinite sets; it certainly no
longer seems a paradox. The work of Georg Cantor, Richard Dedekind and others
from 1870 onwards has dispelled most of the uncertainties, and though mysteries
remain, they will not hamper us in the relatively straightforward use we shall
make of the theory.

In order to extend the notion of counting to infinite sets, we associate with every
set X, finite or not, an object |X| called its cardinal or cardinal number, defined in
such a way that two sets have the same cardinal iff they are equipotent. Such a defi-
nition is possible because, as we have seen, equipotence is an equivalence relation on
any collection of sets.

A non-empty finite set has as its cardinal a natural number; the empty set has
cardinal 0. All other sets are infinite; their cardinals are said to be transfinite or
infinite. In particular, the set N of all natural numbers is infinite; its cardinal is
denoted by Ro. The letter aleph, R, the first of the Hebrew alphabet, is customarily
used for infinite cardinal numbers. A set of cardinal R, is also said to be countable
(or enumerable); thus A is countable iff there is a bijection from N to A. If a set A
is countable, it can be written in the form

A=la,aa,...}, (1.1.1)

where the a; are distinct. Such a representation of A is called an enumeration of A,
and a proof that a set is countable will often consist in giving an enumeration. Some-
times the term ‘enumeration’ is used for a set written as in (1.1.1) even if the g,



1.1 Finite, Countable and Uncountable Sets 3

are not all distinct; in that case we can always produce a strict enumeration by going
through the sequence and omitting all repetitions. The set so obtained is finite or
countable.

Many sets formed from countable sets are again countable, as our first result
shows:

Theorem 1.1.1. Any subset and any quotient of a countable set is countable or finite. If
A and B are countable sets, then the union AU B and Cartesian product A X B are
again countable; more generally, the Cartesian product of any finite number of count-
able sets is countable. Further, a countable union of countable sets is countable and the
collection of all finite subsets of a countable set is countable.

We recall that a quotient set of A is the set of all blocks, i.e. equivalence classes, of
some equivalence on A.

Proof. Any countable set A may be taken in the form (1.1.1); if A" is a subset, we go
through the sequence ay, a,, ... of elements of A and omit all terms not in A’ to
obtain an enumeration of A’. If A” is a quotient set, and x — X is the natural
mapping from A to A”, then {a;, a,,...} is an enumeration of A”, possibly with
repetitions; hence A” is countable (or finite).

Next let A be given by (1.1.1) and let B = {b;, b, ... }; then AU B may be enum-
erated as {ay, by, a;, by, ... }, where repetitions (which will occur if AN B # (%) may
be discarded. Similarly we can enumerate A x B as {(ay, b)), (a, by), (a;, by),
(ay, bs), (a3, by), (a3, b)), ...} by writing A x B as a square table and going along the
finite diagonals. Now the result for a product of r countable sets follows by induction
on r. If we have a countable family {A,} of countable sets, say A,, = {a,;}, then we can
enumerate the union U A = {a,;|n, i € N} by writing the elements a,; as a matrix and
going again along the diagonals.

Finally let A be any countable set and denote by A, for r = 1, 2, ... the set of all
r-element subsets of A. Clearly A, is countable, for it may be mapped into the
Cartesian power A" by the rule

{ai,,...,ai} = (a...., a;, ),

where jj, ..., j, is the sequence iy, ..., i, arranged in ascending order. This provides
a bijection of A, with a subset of A", and it follows that A, is countable. Now the
earlier proof shows that the union U A, is countable, and adding ¢J as a further
member we still have a countable set. ]

With the help of this result many sets can be proved to be countable which do not
at first sight appear to be so. Thus the set Z of all integers can be written as a union of
N=1{1,2,...} and N' = {0, —1, =2, ... }; both N and N’ are countable hence so is
Z. The set Q. of all positive rational numbers is countable, as the image of N? under
the mapping (a, b) 1= ab~'. Now Q itself can be written as the union of the set of
all positive rational numbers, the negative rational numbers and 0; therefore Q is
countable. The set of all algebraic numbers (see Section 7.1 below) is countable:
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for a given degree n, the set of all monic equations of degree n over Q is equipotent
to Q", if we map

(@, ....a0) > x"+ax"" ' +...+a,=0.

Each equation has at most n complex roots, so the set S, of all roots of equations of
degree n is countable, and now the set of all algebraic numbers is S, US, U ...,
which is again countable.

At this point a newcomer might be forgiven for thinking that perhaps every
infinite set is countable. If that were so, there would of course be no need for an
elaborate theory of cardinal numbers. In fact the existence of uncountable sets is
one of the key results of Cantor’s theory, and we shall soon meet examples of
such sets.

Our next task is to extend the natural order on N to cardinal numbers. If «, 8 are
any cardinals, let A, B be sets such that |A| = «, |B| = B. We shall write @ <  when-
ever there is an injective mapping from A to B. Whether such a mapping exists
clearly depends only on @, 8 and not on A, B themselves, so the notation is justified.
Further, @ < o holds for all @, because the identity mapping on A is injective, and
since the composition of two injections is an injection, it follows that o < 8,
B < y implies & < y. Thus we have a preordering; this will in fact turn out to be
a total ordering, but for the moment we content ourselves with proving that it is
an ordering, i.e. that ‘<’ is antisymmetric. In terms of sets we must establish

Theorem 1.1.2 (Schroder-Bernstein theorem). Let A, B be any sets and f : A — B,
g : B— A be any injective mappings. Then there is a bijection h : A — B.

Proof. By alternating applications of f and g we produce an infinite sequence of
successive images starting from a € A : a, af, afg, afgf, . ... Further, each element
a € A is the image of at most one element of B under g, which may be written
ag~', and each b € B is the image of at most one element bf ~! of A under f, so
from a € A we obtain a sequence of inverse images which may or may not break
off: ag~"', ag~'f ', .... If we trace a given element a € A as far back as possible
we find one of three cases: (i) there is a first ‘ancestor’ in A, i.e. ap € A\Bg, such
that a = ay(fg)" for some n > 0; (ii) there is a first ancestor in B, i.e. by € B\Af,
such that a = by(gf)"g for some n > 0; (iii) the sequence of inverse images continues
indefinitely.

Each element of A comes under one of these headings, and likewise each element
of B. Thus A is partitioned into three subsets A, A;, As; similarly B is partitioned
into B = Aif, B, = A)g ™" and B; = A;f = Asg~"'. It is clear that the restriction
of fto A, is a bijection between A; and B,, for each element of B, comes from
one element of A;. For the same reason the restriction of g to B, provides a bijection
between B, and A,, and we can use either f restricted to A; or g restricted to B; to
obtain a bijection between A; and B;. Thus we have found a bijection between A,

and B; (i=1,2,3) and putting these together we obtain the desired bijection
between A and B. -
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This proof is essentially due to Gyula Konig (in 1906).

The sum and product of cardinals may be defined as follows. Let a, 8 be any
cardinals, say a = |A|, B = |B|, and assume that AN B = (. Then it is easily seen
that |A U B| depends only on «, B, not on A, B and we may define

a4+ pf=|AUB|.
Similarly we put
af = |A x BJ.

It is easy to verify that these operations satisfy the commutative and associative laws,
and a distributive law, as in the case of the natural numbers. Moreover, for finite
cardinals these operations agree with the usual operations of addition and multipli-
cation. On the other hand, the cancellation law does not hold, thus we may have
a+B=d + Boraf=cPfora#dc,and there is nothing corresponding to sub-
traction or division. In fact, it can be shown that if &, 8 7 0 and at least one of @, B is
infinite, then

a+ B =apf = max {a, B}. (1.1.2)

For any cardinals o, B we define 8% as |B#|, where A, B are sets such that |A| = q,
|B| = B and B* denotes the set of all mappings from A to B. It is again clear that
B¢ is independent of the choice of A, B, and we note that for finite cardinals, *
has its usual meaning: if A has m elements and B has n elements, then there is a
choice of n elements to which to map each element of A, and these choices are
independent, so there are n.n...n (m factors) = n™ choices. Of course this inter-
pretation applies only to finite sets.

If Bis a 1-element set, then so is B*, for any set A: each element of A is mapped to
the unique element of B, and this applies even if A is empty, for a mapping A — B is
defined as soon as we have specified the images of the elements of A; so when
A = , nothing needs to be done. When B is empty, then so is B, unless also
A = (), for there is nowhere for the elements of A to map to. Hence we have

0 if @#0,

1=1,0" = 1.1.3
1 ifa=0. ( )

Let us now assume that B has more than one element. Then we necessarily have
|B4| = |Al. (1.1.4)

For let b, b’ be distinct elements of B; we can map A to B* by the rule a i— §,, where

[b if x=a,
x8, = .
b' if x # a.

This mapping is injective because for a # a’, §, differs from 8, at a. It is a remark-
able fact that the inequality (1.1.4) is always strict. As usual we writea < Bor B > «
to mean ‘o < Band @ # B’
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Theorem 1.1.3. For any cardinals «, B, if B > 1, then « < B*. In particular,

a<2” (1.1.5)

for any cardinal a.

Proof. We have just seen that o < f* and it only remains to show that equality
cannot hold. Taking sets A, B such that [A| = @, |B| = B, we shall show that there
is no surjective mapping from A to B%; it then follows that these sets are not
equipotent. Thus let f : A — B* be given; in detail, f associates with each a € A a
mapping from A to B, which may be denoted by f,. We must show that f is not
surjective, i.e. we must find g : A — B such that g # f, for all a € A. This may be
done very simply by constructing a mapping g to differ from f, at a. By hypothesis,
B has at least two elements, say b, b’, where b # b’. We put

b" if af, =b,
ag = .
b otherwise.
Then g is well-defined and for each a € A, g # f, because ag # af,. [ |

If in this theorem we take A to be countable and B a 2-element set, simply denoted
by 2, then 2# is again infinite, but uncountable. Moreover, we can in this way obtain
arbitrarily large cardinals by starting from any infinite cardinal & and forming in
succession 2%, 2% .. ..

Theorem 1.1.3 again illustrates the dangers of operating with the ‘set of all sets’.
If we could form the union of all sets, U say, then U would contain 2 as a
subset, and it would follow that |2Y| < |U|, in contradiction to Theorem 1.1.3.
This paradox was discussed by Cesare Burali-Forti and others in the closing years
of the 19th century, and it provided the impetus for much of the axiomatic develop-
ment that followed. Any axiomatic system now in use is designed to avoid the
possibility of such paradoxes. For our purpose it is sufficient to note that we can
avoid the paradoxes by not admitting constructions involving ‘all sets’ without
further qualification.

We conclude this section with some applications of Theorem 1.1.3. Given any set
A, we denote by 2(A) the set whose members are all the subsets of A; eg 2(QJ) =
(D}, 2({x}) = {D, {x}}. This set 2(A) is often called the power set of A; it is equi-
potent with 2%, To obtain a bijection we associate with each subset C of A its
characteristic function xc € 2%; taking 2 = {0, 1}, we have

1 if xeC,

xc(x) = .
¢ 0 ifx¢gC.
It is easily seen that the mapping C 1— xc provides a bijection between 2(A) and 24,
The inverse mapping is obtained by associating with each f € 24 the inverse image
of 1: 1f ™! = {x € Alxf = 1}. Now Theorem 1.1.3 shows the truth of
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Corollary 1.1.4. No set is equipotent with its power set. More precisely, given any set A,
there is no surjection from A to P(A). [ |

As a further application we determine the cardinal of the set R of all real numbers.
This cardinal is usually denoted by ¢ and is called the cardinal (or power) of the
continuum.

Proposition 1.1.5. ¢ = 2™,

Proof. We can replace R by the open interval (0, 1) = {x € R|0 < x < 1}, for there is
a bijection, e.g.

X
XI—> -+ —.
2 201+ x2)1?

If we express each number in the binary scale: a = 0.414;...(a; =0 or 1), then
a1~ f,, where fy(n) = a,, is a mapping (0, 1) — 2N which is injective, for distinct
real numbers have distinct binary expansions. Indeed, some have more than one,
e.g. 0.0111...=0.1000.. ., but we can achieve uniqueness by excluding representa-
tions in which only finitely many digits are 0. It follows that ¢ < 2™, On the other
hand, there is an injective mapping from 2~ to (0, 1), obtained by mapping f,,
defined as before, to 0.4;4; ... in the decimal scale; thus the image consists of the
real numbers between 0 and 1 whose decimal expansion contains only 0’s and I’s.
This shows that 2® < ¢, and the desired equality follows. [ ]

It was conjectured by Cantor that ¢ is the least cardinal greater than ®g; this is
known as Cantor’s continuum hypothesis (CH). In 1939 Kurt Godel showed that it
is consistent with the usual axioms of set theory; thus if the usual system of
axioms (which we have not given explicitly) is consistent, then it remains consistent
when CH is added. In 1963 Paul J. Cohen showed CH to be independent of the usual
axioms of set theory. Thus if the negation of CH is added to the axioms of set theory
(assumed consistent), we again get a consistent system. This means that within the
usual axiom system of set theory CH is undecidable.

Exercises

1. Show that the set of all intervals in R with rational endpoints is countable.

2. Let A be an infinite set, A’ be a finite subset and B be its complement in A. By
picking a countable subset of B, show that |A| = |B| without assuming Equation
(1.1.2).

3. Let A be an uncountable set, A" be a countable subset and B be its complement in
A. Show that |A| = |B| without assuming Equation (1.1.2).

4. Fill in the details of the following proof that the interval (0, 1) is uncountable. If
the real numbers in binary form (as in the proof of Proposition 1.1.5) could be
enumerated as a''’, a'®, .., we can find a number not included in the enumera-
tion by putting a = 0.b,b, ..., where b, = 0 or 1 according as a™ has 1 or 0 in



