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Birational geometry for nilpotent orbits

Yoshinori Namikawa

Abstract. The following topics are discussed:
(1) Basic facts and examples of resolutions for nilpotent orbit.
(2) Q-factorial terminalizations of nilpotent orbit closures and related birational

geometry.
(3) Poisson deformations of nilpotent orbit closures.
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2 Birational geometry for nilpotent orbits

1. Introduction

The aim of this paper is to give an account of the birational point of view on
nilpotent orbits in a complex simple Lie algebra. Let g be a complex simple Lie
algebra and G the adjoint group. An adjoint orbit O in g is called a nilpotent orbit if
O consists of nilpotent elements of g. The closure O of O is then an affine variety
with singularities. In general, O is not necessarily normal (see for example [15] in
this direction). In this paper we shall take its normalization O of O and consider
the birational geometry on its (partial) resolutions. Each variety O has symplectic
singularities. More precisely, the smooth locus Oreg admits the Kostant-Kirillov
2-form w, which is d-closed and non-degenerate. Moreover, if we take a resolution
i:Y — O, then w extends to a regular 2-form on Y. A resolution p: Y — O is called
a crepant resolution if Ky = p*K 5. The nilpotent cone N is defined to be the subset
of g which consists of all nilpotent elements of g. By definition N is a disjoint union
of all nilpotent orbits of g. There is a largest nilpotent orbit O, and N coincides with
its closure. Moreover, N is a normal variety. Let B be a Borel subgroup of G and let
T*(G/B) be the cotangent bundle of the flag variety G/B. By using the Killing form
of g, one can identify T*(G/B) with a vector bundle G x B [b, b] over G/B. Then there
is a natural map

v:GxB[bbl =g

defined by [g, x] — Ad4(x). The image of v coincides with N and v gives a resolution
of N ( [25]). We call v the Springer resolution of N. Since T*(G/B) admits a canonical
symplectic 2-form and it coincides with the pull-back of the Kostant-Kirillov 2-form
on O, the Springer resolution is a crepant resolution. One can generalize this
construction to a parabolic subgroup Q of G. Let us start with the cotangent bundle
T*(G/Q). Note that T*(G/Q) is identified with G x n(q) where n(q) is the nil-radical
of q. In a similar way to the above, we have a map

v:T*(G/Q) — g,

whose image is the closure of a nilpotent orbit O. In general, v is not birational onto
its image, but a generically finite projective morphism (see 2.6 for a non-birational
Springer map). When v gives a resolution of O, we call v the Springer resolution of
O. In this case, the Stein factorization

T°(6/Q) 5 00
gives a crepant resolution of O. B. Fu [7] proved the following,

Theorem ([7]). Let O be a nilpotent orbit of g and assume that O admits a crepant
resolution. Then it coincides with a Springer resolution. More exactly, there is a parabolic
subgroup Q of G such that v™ is the given crepant resolution.

However there still remain interesting problems. At first, there actually exists
a nilpotent orbit which has no crepant resolutions. Secondly, if O has a crepant
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resolution, it is not unique, that is, the choice of Q is not unique even up to conjugacy
class. Our purpose is to survey complete answers (cf. [18], [19], [21] and [8]) to
these problems.

A substitute for a crepant resolution is a Q-factorial terminalization. A birational
projective morphism p : Y — O is a Q-factorial terminalization if Y has only
Q-factorial terminal singularities and Ky = u*Kg. The existence of a Q-factorial
terminalization is established by Birkar, Cascini, Hacon and M“Kernan [2]. But, we
shall give here more concrete forms of Q-factorial terminalization. A hint is already
in the work of Lusztig and Spaltenstein [17]. They introduced the notion of an
induced orbit. Let us start with a parabolic subgroup Q of G and its Levi factor L(Q).
Let O’ C I(q) be a nilpotent orbit with respect to the adjoint L(Q)-action. Then one
can make an associated bundle G x? (n(q) + O’) and define a map

v:Gx?(n(q)+0’) —g

by v([g,x]) = Adg(x). Since this is a G-equivariant closed map, its image is the
closure of a nilpotent orbit O of g. Then we say that O is induced from O’ and write
O = Indj, q)(O'). The map v is called the generalized Springer map. The generalized
Springer map v is a generically finite projective morphism. But if v is birational onto
its image, then the Stein factorization

Gx2n(q)+01 500
gives a partial resolution of O. Now one can prove:

Theorem 2.6. Let O be a nilpotent orbit of a complex simple Lie algebra g. Then there are
a parabolic subalgebra q of g and a nilpotent orbit O’ of [(q) such that the following holds:
(1) O =Ind{,,(0").
(2) v™ gives a Q-factorial terminalization of O.

In order to look for other Q-factorial terminalizations of O, we introduce a flat
deformation of G x2 (n(q) + O’). For simplicity we put [ := [(q) and let L be the
corresponding Levi subgroup. Let t(q) be the solvable radical of q and consider the
variety G xQ (v(q) + O’). Its normalization X, 0/ is isomorphic to G x? (v(g) + O’).
Let £ be the center of [. In 3.3 we shall define a map

quor — &
whose central fiber Xq,0/,0 is G x? (n(q) + O’). This map factorizes as
Xq,0' =3 Spec T(Xq,07, Ox_o.) = L.
Put
Y0/ == Spec I'(Xg,07, Ox_ o )-
An important fact is that Y; o+ depends only on [ and O’. Moreover its central fiber

Y. 0,0 is isomorphic to O. Define

8(I) := {parabolic subalgebras q" of g; I(q") = I}.
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We can define X,/,o- for each q’ € §(I). We also have a map
Uqr : Xq,00 = Yi00.

The map p,/ is a crepant birational morphism. Moreover, /¢ is an isomorphism
for t € €7°9; hence 4 is an isomorphism in codimension one. Define

M(L) = Homalg.gp“—: C*)

and put M(L)g := M(L) ® R. Then 2-nd cohomology groups H?(X,/,0/,R) are
naturally identified with M(L)g. By these identifications the nef cones Amp(pq/,0/)
are regarded as the cones in M(L)g. This leads to:

Theorem 3.14. For q' € 8(1), the birational map pq : Xq,00 — Y0/ is a Q-factorial
terminalization and is an isomorphism in codimension one. Any Q-factorial terminalization
of Y0 is obtained in this way. If q1 # qa, then g, and g, give different Q-factorial
terminalizations. Moreover,

M(L)r = Ugres(nAmp(pq/).

Two elements of $(I) are connected by a sequence of the operations called twists
(cf. 3.2). Corresponding to a twist q; ~ g, we have a flop

qu,o/ — 7 qu,o/.

So any two Q-factorial terminalizations of O are connected by a sequence of certain
flops. Now let us look at the central fibers X,/ o/,0 of X4/,0- — & The diagram

qu,O',O — Lo X%'O’,O

is not necessarily a flop. Twists are divided into those of the first kind and those of
the second kind. If the twist q; ~ q; is of the first kind, then it induces a flop between
Xq1,01,0 and Xg,,07,0. These flops are completely classified and we call them Mukai
flops (cf. Definition 3.1). If it is of the second kind, the maps X4,,0/,0 = Zo (i = 1,2)
are both divisorial birational maps. Define 8! (I) to be the subset of §(I) consisting
of the parabolic subalgebras q’ obtained from q by a finite succession of the twists
of the first kind. Note that the restriction map H?(Xq,,0, R) — HZ(Xy,,07,0,R) is an
isomorphism and Amp(p,) is mapped onto Amp(pg/,0). We show:

Theorem 3.17. There is a one-to-one correspondence between the set of Q-factorial ter-
minalizations of O and 8'(1). In other words, every Q-factorial terminalization of O is
obtained as \q/,0 : Xq,07,0 — O for q’ € 8!(1). Two different Q-factorial terminalizations
of O are connected by a sequence of Mukai flops. Moreover

Mov(pg0) = Ugrest (yAmp(Kq-,0),

where Mov(|Lq,0) is the movable cone for uq,0 (cf. 3.5).
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A direct approach to Theorem 3.17 usually needs the classification of the
generalized Springer maps which are isomorphisms in codimension one. But our
approach using Theorem 3.14 does not need this and Mukai flops appear in a very
natural way.

Let W be the Weyl group of g and let Ny, (L) be the subgroup of W which
normalizes L. Then the quotient group

W' = Nw(L)/W(L)

naturally acts on M(L)g. The interior Mov(ji4,0) of the movable cone can be char-
acterized as a fundamental domain for this action (Theorem 3.18). The group W’
was extensively studied in [11]. As explained above, the deformation X, 0/ — £ of
G xQ (n(q) + O’) played an important role to study the birational geometry for O.
But this is not merely a flat deformation of G x? (n(q)+0’). In fact, G xQ (n(q)+0")
admits a symplectic 2-form on its regular locus. This symplectic 2-form induces a
Poisson structure of the regular part; moreover, it uniquely extends to a Poisson struc-
ture of G x ? (n(q) + O’). One can introduce the notion of a Poisson deformation (cf.
§4), and X0 — € turns out to be a Poisson deformation of G x < (n(q) + 0’). On
the other hand, since O has symplectic singularities, O also admits a natural Poisson
structure. One can construct a flat deformation of O as follows. Let G- (t(q)+0’) C g
denote the G-orbit of t(q) + O’ by the adjoint G-action. By using the adjoint quotient
map g — h/W, we getamap x : G - (t(q) + O’) — b/W. The image of X is not
necessarily normal, but its normalization coincides with £(q)/W’. Let G- (t(q) +O’)™
be the normalization of G - (¢(q) + O’). Then x induces a map

G- (x(q) + O™ — &(q)/W".

One can check that this is a flat map and its central fiber is 0. Moreover, this is a
Poisson deformation of O. The two Poisson deformations are combined together by
the Brieskorn-Slodowy diagram

Xq01 — G- (r(q) + O™

(1.1) l l

tq) —— £(q) /W'

Theorem 4.5 claims that this gives formally universal Poisson deformations of
G xQ (n(q) + O’) and O.

Finally we shall explain the contents of this paper. The first part of §2 is an
introduction to nilpotent orbits and related resolutions. Many concrete examples
are described in terms of flags; I believe that they would motivate the following
abstract arguments. In the final part of §2, we give a rough sketch of the proof of
Theorem 2.6 in the classical cases. The readers can find a proof in [8] when g is
exceptional. The idea of most arguments in §3 comes from [19]. But all statements
are generalized so that one can apply them to generalized Springer maps. §4 is
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concerned with a Poisson deformation. We quickly review the notions of Poisson
structures and Poisson deformations. After that, we will give a rough sketch of
Theorem 4.5 mentioned above. The results of §4 have been already treated in [22]
when O has a crepant resolution.

Notations. Let G be an algebraic group over C and P a closed subgroup of G. If
V is a variety with a P-action, then we denote by G x" V the associated fiber bundle
over G/P with a typical fiber V. More exactly, G x" V is defined as the quotient of
G x P by an equivalence relation ~, where (g, x) ~ (g’, x’) if there is an element p € P
such that g’ = gpand x’ =p~! - x.

2. Nilpotent orbits and symplectic singularities
2.1. Kostant-Kirillov form

Let G be a semi-simple algebraic group over the complex number field C and
let g be its Lie algebra. An orbit O of the adjoint action Ad : G — Aut(g) is called
an adjoint orbit. Moreover, if O consists of nilpotent elements (resp. semi-simple
elements), then O is called a nilpotent orbit (resp. semi-simple orbit). The tangent space
T« O of an adjoint orbit O at « is identified with

[o, g] == {[ex, x]; x € g}.
Since g is semi-simple, the Killing form
k:gxg—C
is a non-degenerate symmetric form. We define a skew-symmetric form
We: Tx0OxT,O = C
by
w ([o, x], [o, y]) = k(e, [x, y]).

This is well-defined and non-degenerate because if [, x] = 0, then k(«, [x,y]) =
k([e, x],y) = 0. If « runs through all elements of O, the 2-form w = {wy} is a
d-closed form on O. In particular, O is a smooth algebraic variety of even dimension.
The symplectic form w is called the Kostant-Kirillov 2-form. A semi-simple orbit
is a closed subvariety of g. But, a nilpotent orbit O is not closed in g except when
O = {0]. If we take the closure O of O, it is an affine variety with singularities. Note
that O is not necessarily normal. We denote by O its normalization.

2.2. Nilpotent orbits in a classical Lie algebra

Let sl(n) be the Lie algebra consisting of n x n matrices A with tr(A) = 0.
Define

so(n) :={A € sl(n);A'J+JA =0},



