OREILLY

Y\
Y

Functiona
Thinking

HAWERE (2OKR)

% K% HERA Neal Ford £

T iR B e

Functional Thinking

Neal Ford &

Beijing - Cambridge - Farnham - Koln - Sebastopol - Tokyo [K@AS{=I| NI &

O’Reilly Media, Inc. 424 & d K % & Bt ik

MR REAFH R

E B &R 4 B (CIP)E 8

o A o B B S/ (38) 3B 7 (Ford, ND 3. — 3
ENAS . — i &L« A A Ko HHREE, 20152

F544 J5 3 : Functional Thinking

ISBN 978 7- 5641 — 5388 -5

[.Of- 0.0%#H- I O EFiE
H—3x N. OTP31LI

v [AR [54 CIP 34 4% 5 (2014) 35 294381 5

TLINE AR Z VERLE RIEAE
B 5. 10- 2014 - 156 &

© 2014 bv O'Reillv Media, Inc.

Reprint of the Enelish Edition, iointlv published by O'Reilly Media, Inc. and Southeast UniversitV Press,
2015. Authorized reprint of the original Enelish edition, 2014 O'Reilly Media, Inc., the owner of all rights to
publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in anV form
SE S B 1 O'Reilly Media, Inc. H ¥ 2014 '

KXY RS A B R A R 2015, S AT AR iR Aol 2 AT B th AR A 4 B A0 TR &
—— O'Reilly Media, Inc.#3 % 7 .

WA A8 3 @ T, A B R ITH D Fo AR R A AEFTH X EH

oA B R SRR GEER RSO

AR & 4T : AR AL

b HE: Bt PUREEE 2 5 HIE 45 : 210096
O A LEp

] Jik: htto//www.seupress.com

B, FHR{: press@seunress.com

Fil s & M 77 B = BRI FR/A #
A 787 EK X B ENK 16 HAE
Ak 1125

¥ 220 TF

W 20154F 2 A% 1 IR
/4

=

#h

: 20154F 2 A% 1 RENRI
: ISBN 978 - 7— 5641 — 5388 — 5
: 39.00 7T

HEDFNHEHAD

Ak 45 2 2 R 1AL A S R R . BE (1 D) - 025 - 83791830

Preface

The first time I seriously looked at functional programming was in 2004. I became
intrigued by alternative languages on the .NET platform, and started playing with Has-
kell and a few pre-F#, ML-based languages. In 2005, I did a conference talk named
“Functional Languages and .NET” at a few venues, but the languages at the time were
more proof-of-concept and toys than anything else. The possibilities of thinking within
a new paradigm fascinated me, however, and changed the way I approached some
problems in more familiar languages.

I revisited this topic in 2010 because I observed the rise of languages such as Clojure
and Scala in the Java ecosystem and remembered the cool stuff from five years before.
I started one afternoon on Wikipedia, following link after link, and was mesmerized by
the end of the day. That started an exploration of numerous branches of thought in the
functional programming world. That research culminated in the “Functional Thinking”
talk, debuting in 2011 at the 33rd Degree Conference (http://33degree.org) in Poland and
the IBM developerWorks article series of the same name (http:/bit.ly/dev-works-ft-
series). Over the course of the next two years, wrote an article each month on functional
programming, whick was a great way to establish and maintain a research and explo-
ration plan. I continued delivering (and refining, based on feedback) the presentation
until the present day.

This book is the culmination of all the ideas from the “Functional Thinking” talk and
article series. I've found that the best way to hone material is to present it to audiences
over and over, because I learn something new about the material every time I present
or write about it. Some relationships and commonalities appear only after deep research
and forced thought (deadlines are great focusers!).

My last book, Presentation Patterns (http://presentationpatterns.com), described the
importance of visual metaphors in conference presentations. For Functional Thinking,
I chose a blackboard and chalk theme (to invoke the mathematical connection to func-
tional programming concepts). At the end of the presentation, as I talk about practical

vii

applications, I show a picture of a piece of chalk resting at the foot of a blackboard,
metaphorically imploring viewers to pick it up and explore these ideas on their own.

My goal in the talk, the article series, and this book is to present the core ideas of func-
tional programming in a way that is accessible to developers steeped in imperative,
object-oriented languages. I hope you enjoy this distillation of ideas, and pick up the
chalk and continue your own exploration.

—Neal Ford, Atlanta, June 2014

Chapter Overview

Each chapter in this book shows examples of functional thinking. Chapter 1, Why,
provides a broad overview and shows some examples of the mental shift prevalent in
the rest of the book. Chapter 2, Shift, describes the gradual process of shifting your
perspective from that of an object-oriented, imperative programmyer to that of a func-
tional programmer. To illustrate the shift in thinking required, I solve a common prob-
lem in both imperative and functional styles. I then do an extensive case study, showing
the way a functional perspective (and some helper syntax) can help shift you toward a
functional mindset.

Chapter 3, Cede, shows examples of common chores you can now cede to your language
or runtime. One of the “moving parts” described by Michael Feathers is state, which is
typically managed explicitly in nonfunctional languages. Closures allow you to defer
some state-handling to the runtime; [show examples of how that state handling mech-
anism works underneath. In this chapter, I show how functional thinking also allows
you to cede details like accumulation to recursion, and impacts your granularity of code
reuse.

Chapter 4, Smarter, Not Harder, focuses on two extended examples of eliminating mov-
ing parts by allowing the runtime to cache function results for you and implementing
laziness. Many functional languages include memoization (either natively, via a library,
or a trivial implementation), which handles a common performance optimization for
you. I show an example, based on the number classifier example in Chapter 2, of several
levels of optimization, both handwritten and via memoization. At the risk of giving away
the ending, memoization wins. Lazy data structures, which defer calculation until nec-
essary, allow you to think differently about data structures. I show how to implement
lazy data structures (even in nonfunctional languages) and how to leverage laziness that
already exists.

Chapter 5, Evolve, shows how languages are evolving to become more functional. I also
talk about evolutionary language trends such as operator overloading and new dispatch
options beyond just method calls, about bending your language toward your problem
(not the other way around), and common functional data structures such as Option.

vii | Preface

Chapter 6, Advance, shows examples of common approaches to problems. I show how
design patterns change (or disappear) in the functional programming world. I also
contrast code reuse via inheritance versus composition and discuss their explicit and
implicit coupling points.

Chapter 7, Practical Thinking, shows specific long-anticipated functional features that
recently appeared in the Java Developer Kit (JDK). I show how Java 8 fits in with the
functional thinking from other languages, including the use of higher-order functions
(i.e., lambda blocks). I also discuss some clever ways in which Java 8 maintains graceful
backward compatibility, and I highlight the Stream API, which allows concise and de-
scriptive workflows. And, finally, I show how Java 8 has added Option to eliminate
potential null confusion. I also cover topics such as functional architecture and data-
bases and how the functional perspective changes those designs.

Chapter 8, Polyglot and Polyparadigm, describes the impact of functional programming
on the polyglot world we now live in; we increasingly encounter and incorporate nu-
merous languages on projects. Many new languages are also polyparadigm, supporting
several different programming models. For example, Scala supports object-oriented and
functional programming. The last chapter discusses the pros and cons of living in a
paradigmatically richer world.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable pr function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

Preface | ix

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at

https://github.com/oreillymedia/functional_thinking.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you're reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex-
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Functional Thmkmgby Neal Ford (O’Reilly).
Copyright 2014 Neal Ford, 978-1-449-36551-6.

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

9 Safari Books Online is an on-demand digital library that
Sa fa r dehvers expert content in both book and video form from
BooksOnline the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research, prob-
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison- Wesley Pro-
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol-
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

X | Preface

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/functional-thinking.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Thanks to my family at ThoughtWorks, the best place of employment around, and to
all my fellow speakers on the conference circuit, especially the No Fluff, Just Stuff
speakers, against whgm I've bounced many ideas. Thanks to all the people who have
attended my “Functional Thinking” talks at conferences over the years—your feedback
helped me hone this material. Special thanks to the technical reviewers on this book,
who made outstanding substantive suggestions, especially the early readers who took
the time to submit errata, many of which exposed subtle opportunities for clarification.
Thanks to friends and family too numerous to mention who actas my incredible support
network, especially John Drescher, who looks after the cats when we’re away. And, of
course, my long-suffering wife Candy, who long ago lost hope that I would ever stop
doing this.

Preface | xi

Table of Contents

Preface.oaisscinasoosanonsasevovaoss R PR wwhsd b e 9Ee b vii
T. WhY..oonumsonsnnsnasvssnoavns A A S E R S e 1
Shifting Paradigms 2
Aligning with Language Trends 4
Ceding Control to the Language/Runtime 4
Concision 5

2. ShHfti.veioviveasnssnnsinvesnspasvwnonsnepnnsnsonisnsvs e A3 w0 W 6 W wums s 11
A Common Example 11
Imperative Processing 11
Functional Processing 12
Case Study: Number Classification 17
Imperative Number Classification 17
Slightly More Functional Number Classification 19

Java 8 Number‘ Classifier 21
Functional Java Number Classifier 22
Common Building Blocks 24
Filter 24

Map 25
Fold/Reduce 29
Synonym Suffering 31
Filter 31

Map 34
Fold/Reduce 36

3, Cede..ooosisns T P L8P N S i AR e N 8 S S T8 39
Iteration to Higher-Order Functions 39

Closures

40

Currying and Partial Application 44

Definitions and Distinctions 44
In Groovy 45
In Clojure 47
Scala 47
Common Uses 51
Recursion 52
Seeing Lists Differently 52
Streams and Work Reordering 56

. Soater Not Baider .. vo o mwammavusens i mirasid dnsie in Eess s osin 99

Memoization 59
Caching 60
Adding Memoization 63

Laziness 70
Lazy Iterator in Java 70
Totally Lazy Number Classifier 72
Lazy Lists in Groovy 74
Building a Lazy List 77
Benefits of Laziness 80
Lazy Field Initialization 82

5. Evolve..... SETpp— 6 8 W . B S0 ‘i wih o 808w i mid o i W 3508 RS 10T 83

Few Data Structures, Many Operations 83

Bending the Language Toward the Problem 85

Rethinking Dispatch 86
Improving Dispatch with Groovy 86
Clojure’s “Bendable” Language 87
Clojure Multimethods and a la carte Polymorphism 89

Operator Overloading 91
Groovy 91
Scala 93

Functional Data Structures 95
Functional Error Handling 96
The Either Class 97
The Option Class 105
Either Trees and Pattern Matching 106

6. Advance........ P SrpTR— SRE—— o T S a R s S e 113

Design Patterns in Functional Languages 113

Function-Level Reuse 114
Template Method 116

iv | TableofContents

Strategy
The Flyweight Design Pattern and Memoization
Factory and Currying
Structural Versus Functional Reuse
Code Reuse Via Structure

. Practical Thinking............ i R TS W 3

Java 8
Functional Interfaces
Optional
Java 8 Streams
Functional Infrastructure
Architecture
Web Frameworks
Databases

. Polyglot and Polyparadigm..................

Combining Functional with Metaprogramming

Mapping Data Types with Metaprogramming
Infinite Streams with Functional Java and Groovy

Consequences of Multiparadigm Languages

Context Versus Composition

Functional Pyramid

INOX .0 « 0 visie orm 166 516 51004 50 wivre a7 o 8106 62618 6166818 81608 0ia4 0/ & e @'an g0’ Qias 6 s &6 Bik1a 070

118
119
122
124
124

133
133
135
136
136
137
137
141
142

145
146
147
148
150
151
154

Table of Contents

| v

CHAPTER 1

Why

Let’s say for a moment that you are a lumberjack. You have the best axe in the forest,
which makes you the most productive lumberjack in the camp. Then one day someone
shows up and extols the virtues of a new tree-cutting paradigm, the chainsaw. The sales
guy is persuasive, so you buy a chainsaw, but you don’t know how it works. Demon-
strating your expertise with the previous tree-cutting paradigm, you swing it vigorously
at a tree—without cranking it. You quickly conclude that this newfangled chainsaw is a
fad, and you return to your axe. Then, someone appears and shows you how to crank
the chainsaw.

The problem with a completely new programming paradigm isn’t learning a new lan-
guage. After all, everyone reading this has learned numerous computer languages—
language syntax is merely details. The tricky part is learning to think in a different way.

This book explores the subject of functional programming but isn’t really about func-
tional programming languages. Make no mistake—I show lots of code, in numerous
languages; this book s all about code. As I'll illustrate, writing code in a “functional”
manner touches on design trade-offs, different reusable building blocks, and a host of
other insights. Because I favor ideas over syntax, I start with Java, the most familiar
baseline for the largest group of developers, and mix in both pre-Java 8 and Java 8
examples. As much as possible, I show functional programming concepts in Java (or
close relatives) and move to other languages only to demonstrate unique capabilities.

Even if you don’t care about Scala or Clojure, and are happy coding in your current
language for the rest of your career, your language will change underneath you, looking
more functional all the time. Now is the time to learn functional paradigms, so that you
can leverage them when (not if) they appear in your everyday language. Let’s take a look
at the reasons why all languages are gradually becoming more functional.

Shifting Paradigms

Computer science often advances in fits and starts, with good ideas appearing decades
before they suddenly become part of the mainstream. For example, Simula 67, created
in 1967, is the first object-oriented language, yet object orientation didn’t really become
mainstream until after the popularization of C++, which first appeared in 1983. Often,
good ideas await foundation technologies to catch up. In its early years, Java was regu-
larly considered too slow and expansive in memory usage for high-performance appli-
cations, but shifts in the hardware market made it an attractive choice.

Functional programming follows the same conceptual trajectory as object orientation:
developed in academia over the last few decades, it has slowly crept into all modern
programming languages. Yet just adding new syntax to a language doesn’t inform de-
velopers of the best way to leverage this new way of thinking.

I start with a contrast between the traditional programming style (imperative loops)
and a more functional way of solving the same problem. For the problem to solve, I dip
into a famous event in computer science history, a challenge issued from Jon Bentley,
the writer of a regular column in Communications of the ACM called “Programming
Pearls,” to Donald Knuth, an early computer science pioneer. The challenge is common
to anyone who has written text-manipulation code: read a file of text, determine the most
frequently used words, and print out a sorted list of those words along with their fre-
quencies. Just tackling the word-frequency portion, I write a solution in “traditional”
Java, shown in Example 1-1.

Example 1-1. Word frequencies in Java

public class Words {
private Set<String> NON_WORDS = new HashSet<String>() {{
add("the"); add("and"); add("of"); add("to"); add("a");
add("i"); add("it"); add("in"); add("or"); add("is");
add("d"); add("s"); add("as"); add("so"); add("but");
add("be"); 1}};

public Map wordFreq(String words) {

TreeMap<String, Integer> wordMap = new TreeMap<String, Integer>();
Matcher m = Pattern.compile("\\w+").matcher(words);
while (m.find()) {

String word = m.group().toLowerCase();

if (! NON_WORDS.contains(word)) {

if (wordMap.get(word) == null) {
wordMap.put(word, 1);

}
else {

wordMap.put(word, wordMap.get(word) + 1);
}

}
}

return wordMap;

2 | Chapter1:Why

}

In Example 1-1, I create a set of nonwords (articles and other “glue” words), then create
the wordFreq() method. In it, I build a Map to hold the key/value pairs, then create a
regular expression to allow me to determine words. The bulk of this listing iterates over
the found words, ensuring that the actual word is either added the first time to the map
or its occurrence is incremented. This style of coding is quite common in languages that
encourage you to work through collections (such as regular expression matches)
piecemeal.

Consider the updated version that takes advantage of the Stream API and the support
for higher-order functions vialambdablocks in Java 8 (all discussed in more detail later),
shown in Example 1-2.

Example 1-2. Word frequency in Java 8

private List<String> regexToList(String words, String regex) {
List wordList = new ArraylList<>();
Matcher m = Pattern.compile(regex).matcher(words);
while (m.find())
wordList.add(m.group());
return wordList;

}

public Map wordFreq(String words) {
TreeMap<String, Integer> wordMap = new TreeMap<>();
regexToList(words, "\\w+").stream()
.map(w -> w.tolLowerCase())
.filter(w -> !NON_WORDS.contains(w))
.forEach(w -> wordMap.put(w, wordMap.getOrDefault(w, 0) + 1));
return wordMap;

}

In Example 1-2,1 conVert the results of the regular expression match to a stream, which
allows me to perform discrete operations: make all the entries lowercase, filter out the
nonwords, and count the frequencies of the remaining words. By converting the iterator
returned via find() to a stream in the regexToList() method, I can perform the re-
quired operations one after the other, in the same way that I think about the problem.
Although I could do that in the imperative version in Example 1-1 by looping over the
collection three times (once to make each word lowercase, once to filter nonwords, and
once to count occurrences), | know not to do that because it would be terribly inefficient.
By performing all three operations within the iterator block in Example 1-1, I'm trading
clarity for performance. Although this is a common trade-off, it’s one I'd rather not make.

In his “Simple Made Easy” keynote (http://www.infoq.com/presentations/Simple-Made-
Easy) at the Strange Loop conference, Rich Hickey, the creator of Clojure (http://
clojure.org), reintroduced an arcane word, complect: to join by weaving or twining

Shifting Paradigms | 3

together; to interweave. Imperative programming often forces you to complect your
tasks so that you can fit them all within a single loop, for efficiency. Functional pro-
gramming via higher-order functions such as map() and filter () allows you to elevate
your level of abstraction, seeing problems with better clarity. I show many examples of
functional thinking as a powerful antidote to incidental complecting.

Aligning with Language Trends

If you look at the changes coming to all major languages, they all add functional ex-
tensions. Groovy hasbeen adding functional capabilities for a while, including advanced
features such as memoization (the ability for the runtime to cache function return values
automatically). Even Java itself will finally grow more functional extensions, as lambda
blocks (i.e., higher-order functions) finally appear in Java 8, and arguably the most
widely used language, JavaScript, has numerous functional features. Even the venerable
C++ added lambda blocks in the language’s 2011 standard, andshas generally shown
more functional programming interest, including intriguing libraries such as the
Boost.Phoenix library (http://bit.ly/phoenix-library).

Learning these paradigms now allows you to utilize the features as soon as they appear,
either in your use of a new language such as Clojure or in the language you use every
day. In Chapter 2,1 cover how to shift your thinking to take advantage of these advanced
facilities.

Ceding Control to the Language/Runtime

During the short history of computer science, the mainstream of technology sometimes
spawns branches, either practical or academic. For example, in the 1990s, the move to
personal computers saw an explosion in popularity of fourth-generation languages
(4GL) such as dBASE, Clipper, FoxPro, Paradox, and a host of others. One of the selling
points of these languages was a higher-level abstraction than a 3GL like C or Pascal. In
other words, you could issue a single command in a 4GL that would take many com-
mands in a 3GL because the 4GL already had more “prebaked” context. These languages
were already equipped to read popular database formats from disk rather than force
customized implementations.

Functional programming is a similar offshoot from academia, where computer scien-
tists wanted to find ways of expressing new ideas and paradigms. Every so often,abranch
will rejoin the mainstream, which is what is happening to functional programming now.
Functional languages are sprouting not just on the Java Virtual Machine (JVM), where
the two most interesting new languages are Scala and Clojure, but on the NET platform
as well, which includes F# as a first-class citizen. Why this embrace of functional pro-
gramming by all the platforms?

4 | Chapter1:Why

Back in the early 1980s, when I was in university, we used a development environment
called Pecan Pascal, whose unique feature was the ability to run the same Pascal code
on either the Apple][or IBM PC. The Pecan engineers achieved this feat by using
something mysterious called “bytecode” When the developer compiled his code, he
compiled it to this “bytecode,” which ran on a “virtual machine,” written natively for
each of the two platforms. And it was a hideous experience. The resulting code was
achingly slow even for simple class assignments. The hardware at the time just wasn’t
up to the challenge.

Of course, we all recognize this architecture. A decade after Pecan Pascal, Sun released
Java using the same techniques, straining but succeeding in mid-1990s hardware envi-
ronments. It also added other developer-friendly features, such as automatic garbage
collection. I never want to code in a non-garbage-collected language again. Been there,
done that, got the T-shirt, and don’t want to go back, because I'd rather spend my time
at a higher level of abstraction, thinking about ways to solve complex business scenarios,
not complicated plumbing problems. I rejoice in the fact that Java reduces the pain of
explicit memory management, and I try to find that same level of convenience in other
places.

Life’s too short for malloc.

Over time, developers cede more control over tedious tasks to our languages and run-
times. I don’t lament the lack of direct memory control for the types of applications I
write, and ignoring that allows me to focus on more important problems. Java eased
our interaction with memory management; functional programming languages allow
us to replace other corg building blocks with higher-order abstractions.

Examples of replacing detailed implementations with simpler ones relying on the run-
time to handle mundane details abound in this book.

Concision

Michael Feathers, author of Working with Legacy Code, captured a key difference be-
tween functional and object-oriented abstractions in 140 lowly characters on Twitter
(https://twitter.com/mfeathers/status/29581296216):

OO makes code understandable by encapsulating moving parts. FP makes code under-
standable by minimizing moving parts.

— Michael Feathers

Concision | 5

Think about the things you know about object-oriented programming (OOP) con-
structs: encapsulation, scoping, visibility, and other mechanisms exist to exert fine-
grained control over who can see and change state. More complications pile up when
you deal with state plus threading. These mechanisms are what Feathers referred to as
“moving parts.” Rather than build mechanisms to control mutable state, most functional
languages try to remove mutable state, a “moving part” The theory follows that if the
language exposes fewer potentially error-prone features, it is less likely for developers
to make errors. I will show numerous examples throughout of functional programming
eliminating variables, abstractions, and other moving parts.

In object-oriented imperative programming languages, the units of reuse are classes
and the messages they communicate with, captured in a class diagram. The seminal
work in that space, Design Patterns: Elements of Reusable Object-Oriented Software (by
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides), includes at least one
class diagram with each pattern. In the OOP world, developers are encouraged to create
unique data structures, with specific operations attached in the fotm of methods. Func-
tional programming languages don’t try to achieve reuse in quite the same way. In
functional programming languages, the preference is for a few key data structures (such
as list, set, and map) with highly optimized operations on those data structures. To
utilize this machinery, developers pass data structures plus higher-order functions to
plug into the machinery, customizing it for a particular use.

Consider a simplified portion of the code from Example 1-2:

regexToList(words, "\\b\\w+\\b").stream()
.filter(w -> !NON_WORDS.contains(w))

To retrieve a subset of a list, call the filter () method, passing the list as a stream of
values and a higher-order function specifying the filter criteria (in this case, the syn-
tactically sugared (w = !NON_WORDS.contains(w))). The machinery applies the filter
criteria in an efficient way, returning the filtered list.

Encapsulation at the function level allows reuse at a more granular, fundamental level
than building new class structures for every problem. Dozens of XML libraries exist in
the Java world, each with its own internal data structures. One advantage of leveraging
higher-level abstractions is already appearing in the Clojure space. Recent clever inno-
vations in Clojure’s libraries have managed to rewrite the map function to be automat-
ically parallelizable, meaning that all map operations get a performance boost without
developer intervention.

Functional programmers prefer a few core data structures, building optimized machi-
nery to understand them. Object-oriented programmers tend to create new data struc-
tures and attendant operations constantly—building new classes and messages between
them is the predominant object oriented paradigm. Encapsulating all data structures
within classes discourages reuse at the method level, preferring larger framework-style

6 | Chapter1:Why

