(o o)
—
|
—
T
(= o )
|
[ o)
— =
e




GASE STUDIES
IN TIME SERIES
ANALYSIS

| | [ 1]
Xie Zhongjie
Department of Probability and Statistics

Peking University
China

\' World Scientific

Singapore « New Jersey * London « Hong Kong



EHBERME (C1P) iR

AT 5 /4 LBl 55 = Case Studies in Time
Series Analysis/#t/EAE. —3 k. —db: #HR
E B /AR LA E], 2006.11

ISBN 7—5062—7307—1

Lo I8 NIRRT — 3830
IV.0211.61

R EMR AR F1E CIP $#E#7 (20060 % 135716 &

B #: Case Studies in Time Series Analysis
£ #: Xie-Zhongjie

fOIE & KRS AT SEBITT

RIEHE: WH

R & HAEBHRAFRIERRAF

BN Bl & JbstHtEEnR

% iT. HAEBHRAFIERAF ERBAKE 1375 100010)
BAREIE:  010-64015659, 64038347

BF{E:  kjsk@vip.sina.com

FooOoEx: 24F

En 3K 125

RR R 2006 5 12 A% 1 IRER
AR B:01-2006-6622

3 S: 7-5062-7307-1/0 = 569 E ft: 45.00 7o

52 P H AR B b 74 B B #£48 World Scientific Publishing Co. Pte. Ltd.

AR E AL IR EEN K17



= Fl iR Bl &

FAVR — A R (851 4 AT R T SE R SEE M T R B 3
SV NPIKES: B EENH T B EFIH7 ERE SFJ5
7%, ZENRFREER TR RO L ENERMR: BHIRE
BIBF ST - i5E 2 T A (8] P51 S0 BT R ] V2 R B T SRRt R
oS FR R0 TR BPRHRE KB LEPEREFINEEH
MNEFF WA RIR EERICIRN; R N T ERE
B E N MR 150 BT anfa )50 se R bk B AL LE MR A . 25T
) K-L 5 BB S H TO0F5 AT 7 AR BRRFAE ARSI s 98 & 3 o 4
ey AL S A AT A A 43 PO A . TR B BT R TR %
FIRBATR, SETFLIEFHBMEENTIRRG] . XLEPFFRRRE
EEIRE T EER QAR RAE A S B TR T _

T L A D 9 2% ST AN AT LA B i (8] 5 51 4307 1O B AR 3 40 0
2, EEEMERBENRT U —A 2 hR B R
WIF2 A MG F K BRI 5N Ak, X EREREERS
Br, LI ER I DU 5 ) SE Hd 72

F PR URZ BN IMER TV 2 E BT E RN G52
HAPBEE SN.Gupta 25 NFIVEL). A BATVES R R FE 51 44745
BRI RFENTALEZFSH BRI REM: HWRNAL &S
ZEREMBHIA G . TRIMBEMENSE EE.,

R E
IERFRFRF %R
2006 4 11 A



Preface

In 1958, Chinese scientists, technologists, mathematicians, etc., in answer to their
Government’s appeal, went out of colleges and institutes with an ardent zeal for
reconstructing their motherland and joined a movement of integrating theory and
practice to do real practical work in factories and farmlands. This nation-wide move-
ment gave tremendous impetus to further developments of sciences and technologies
particularly mathematics. The author, at that time, was a fourth year undergradu-
ate in a course of five years majoring in mathematics at the Peking University. He
and two other classmates, under the guidance of Professor Chiang Tse-pei went out
of the University to take part in a radar project to analyze the performance of filters
using their knowledge of spectral analysis learned in class. It was from this occassion
that the author developed an affinity for applied research.

The real, solid and all-front development of applied probability and statistics in
China started after the promulgation of a policy of reform and opening to the outside
world by the Government in the 1980’s. In the Second National Conference of the
Chinese Society of Probability and Statistics, both Chairman T. Chiang and Vice-
Chairman Z. Wei stressed the urgent need of applied research in probability and
statistics with practical applications as the primary motivation. Their views were
warmly received by the audience. In only a span of a few years, applied research in
probability and statistics fluorished first in quantity, and then in quality, and has
now attained a fairly high level. A group of devoted probabilitists and statisticians
is gradually forming; so how to train good researchers with emphasis on applications
has become the key item on the agenda.

With the encouragement of my colleagues in the Department of Probability and
Statistics, especially the Chairman, Professor Chen Jiading, I inaugurated a course
on “Case Studies of Applied Probability and Statistics” for second year post-
graduate students in 1987. I discussed in class some of my case studies that were
closely related to the basic principles and had achieved good results. My aim was to
see that a student, after a year’s training, should understand how abstract mathe-
matical concepts are related to practical problems, learn how an applied mathemati-
cian thinks, and what methodology should be adopted to solve a practical problem.
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In class, I never refrained from talking about my experiences of failure. The students
liked my class. Perhaps, it was such experiences that won me the students’ appre-
ciation. In 1987, I was invited by Linz Kappler University of Austria to lecture on
a course “Applied Time Series Analysis” to postgraduates, who heartily welcomed
it. Many friends and colleagues, upon learning of my achievement, encouraged me
to write a book on “The Case Studies of Applied Time Series”; Professor Yan Shi-
jian, former Chairman of the Chinese Society of Probability and Statistics, gave
the biggest push. Through kind arrangement of Mr. Xu Jiagu of World Scientific
Publishing, the book is now published. I, as the author of the book, wish to thank
them all and say the following words to the reader.

1. I must have a word of warning for scientists and technologists who, having
worked with various software packages on a computer for too long, may not have
bothered to find out the relevant theoretical background and/or premises, as they
may then arrive at wrong conclusions. In order to help readers who are not time-
series specialists to better understand the theoretical basis of these methods, I have
collected a number of them, hitherto scattered in different books and journals, and
explained them either in the first part of the book or when discussing the appropriate
case studies. The time-series specialists, however, may skip over these explanations
without loss of understanding of the context.

2. Nearly every research is constrained by a time limit, and to get the solution
done before the time is up often becomes the goal of a project. It is well-known that
the solutions of many practical problems are not unique. A solution given here in
the book is often only one of the possible solutions, not necessarily the best. Many
problems could have been done better, but shortage of time prevented me from
indulging in searching for the best solutions.

3. This book is intended as a reference book in applied statistics, though it actually
consists of brief reports of my own research. It may be used as a source book for
student seminars.

Besides the case studies listed in the book, I have also done some other researches
closely related with time series. For instance, I have collaborated with some com-
munication engineers to study various methods of reducing intersymbol interference
in a tropo-scatter communication system; such methods are quite closely connected
with some theories and methods of time series. In oil exploration, to predict from a
few deep-well data (e.g. permeability data) permeability rates at points in the upper
space over the oil fields may be treated as a problem of modelling and prediction
of a spatial series. Intermodulation communication analyses in satellite communica-
tion and predictions of workers’ hearing loss due to factory noise are all related to
nonlinear models. Owing to the limited time available, such topics have not been
included here.
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I wish to take this opportunity to express my deep indebtedness to Professor Wei
Zong-shu who, not only encouraged me to write the book, but also kindly consented
to read my manuscript and refine m); English, at a mature age of eighty-one.

I also owe Messrs. Zheng Pingping and Zhang Dabao heavily for their patient
undertaking of the tedious work of typing and I thank them for their seriousness
and responsible spirit.

Finally, I wish to express my hearty thanks to the International Center, Depart-
ment of Mathematics, Waseda Universityk, particularly to Professors T. Kusama
and T. Suzuki for their kind support by offering me excellent working surroundings,
availability of the latest reference material and use of their wonderful computer fa-
cilities for my writing of the second part of the book, which I was able to complete
within such a short time.

The writing of this book was supported by the National Natural Science Founda-
tion of China.

Zhongjie Xie



Contents

Preface 5

PART ONE
An Introduction to the Theory and Methods of Time Series Analysis

Chapter 1. Theory of Stationary Time Series .

1.1 The definition of stationary stochastic processes . . . . . . . . . . . . 3
1.2 The spectral representation of covariance function . . . . . . . . . . . 12
1.3 The Hilbert space of second order processes . . . ... 18
1.4 Stochastic integral and the isomorphic relationship between H € a.nd
the functional space L2(dFg) . . . . . . . . . . . . ... ... .21
1.4.1 Orthogonal stochastic measure . . . ..o 21
1.4.2 Stochastic integral and the representatlon of sta.txonary processes . . 22
1.4.3. Karhunen theorem . . . )
1.5 Strong law of large numbers for sta.tlona.ry series . . . . . . . . . . . 28
1.6 Sampling theorem for stochastic stationary processes . . . . . . . . . . 33

Chapter 2. ARMA Model and Model Fitting . . . . . . . . . . 36

2.1 ARMA model and the Wold decomposition . . . . . . . . .. . . . . 36
2.2 Orthogonal basis in Hilbert space He . . . oL 41
2.3 The covariance function of ARMA model a.nd Yule Walker equatlon ... 4T
2.4 Model fitting under the criterion of one-step ahead prediction error . . . 53
2.5 M.E. model fitting for observed data . . . . . . . . . . . ... ... 63

2.5.1 M.E. model fitting with sample covariance . . . . . . . . . . . . 63

2.5.2 Order selection problem . . . . . . . . . . . . . . ... ... 65



Chapter 3. Prediction, Filtering and Spectral Analysis of Time

Series . . . . . . . . . L0000 s T2
3.1 Prediction of time series . . cosow oW o3 o8 B e owm wid 3 oF 5 02
3.1.1 The prediction formula for AR models ¢ o5 ow @ 5 s 8 B B o® % & 8 - &
3.1.2 The prediction formula for ARMA models . . . . . . .. ... . 78
3.2 The linear filtering of time series . . . . . . . . . . . . . . . ... .81
3.3 Spectral analysis of time series . . B ) |
3.3.1 Theory and methods of hidden permdlc:tles analysw e .92
3.3.2 Theory and methods of spectral density estimations . . . . . . . 100
PART TWO

Case Studies in Time Series Analysis

Case I. Digital Processing of a Dynamic Marine Gravity Meter . . 113

1. Problem statement and working diagram of a dynamic marine

gravity meter . . . T B )
2. The first test for solvmg the problem Ce e B b 1!
3. Design a new digital filter under Min-Max criterion . . . . . . . . . . 120
4. The frequency rectification by filtering . . . ... 129
5. Practical checking in the prospecting field of the East Sea of Chma ... 132

Case II. Digital Filters Design by Maximum Entropy Modelling . . 135

1. Problem statement . . . . T
2. Design the filter by maximum entropy modellmg e T B ¢
3. A practical filterdesign . . . . . . . . . . . . .. ... ... 144

Case III. The Spectral Analysis of the Visual Evoked Potentials of
Normal and Congenital Dull Children (Down’s disease) . 147

1. Introduction . . . . Y
2. Spectral analysis of VEP records for dull and norma.l c}nldren ... . 148
3. Statistical analysis for detection of characteristics . . . . . . . . . . . 1383
4. Physiological interpretation . . . . . . . . . . . . .. . ... .. 187

Appendix III . . . . . . . . . . . . . . . . . ... ... 189



Case IV. Statistical Analysis of VEP and AI by the Principal

Component Analysis of Time Series in Frequency Domain 162
1. Introduction . N . . 162
2. Principal component analysxs in frequency domam and its appl:cahon
in AT analysis 165
3. Practical checking 169
4. Discussion . 170
Appendix IV . 172
Case V. Periodicity Analysis of LH Release in Isolated Pituitary
Gland by Hidden Frequency Analysis . . . . . . . . 178
1. Introduction . 178
2. Statistical analysis of LH release 179
3. Practical rhythm analysis of LH release 185
4. Discussion . 187
Case VI. Statistical Detection of Uranian Ring Signals from the
Light Curve of Photoelectric Observation . . . . . . . 193
1. Introduction . 193
2. Statistical detection of weak ring 51gna.ls from t.he noise background 196
3. Discussion . 204
Case VII. On the Forecasting of Freight Transportation by a New
Model Fitting Procedure of Time Series . 207
1. Introduction . . 207
2. A new model fitting procedure for frelght transoortatxon pre(hctlon . 212
3. Forecasting for freight transportation of practical data 218
4. Dicussion 221
Appendix VII 226
A.1 On the X-11 processing procedure 226
A.2 Simple exponential smoothing predictor . 231
A.3 Program for fitting a spline function 232
Case VIII. The Water Flow Prediction in Xiang River . . 235

1. Introduction .

235



Xii

2. Constructing a prediction formula based on the hidden periodicities
by the quantile method
3. Comparison and discussion
Appendix VIII
A.1 Quantile method for detectmg the hxdden perlodlcmes
A.2 RMA forecasting method

Case IX. Miscellaneous Cases Study .

IX.1 Long term weather forecasting by seasonal ARIMA model .
IX.1.1 Some relevant knowledge . . . . . . .
(1) Seasonal ARIMA model . o s .
(2) M.L.E. and M.S.S.E. under the norma.l dxstnbutlon .
(3) Powell’s algorithm for seeking the extreme value of a
convex function
(4) Roots identification of a polynorma.l by Jury s method

IX.1.2 Modelling and forecasting for the temperature in Shanghai .

IX.2 Outlier analysis and interpolation of missing data in a measuring
system . . . . . . . .. .. 5 %
IX.2.1 Basic knowledge on outlier a.na.ly51s R
IX.2.2 Interpolation for missing data for AR(p) model
IX.2.3 Practical application for a range measuring system

Bibliography . . . . . . . . . . . ... ... .

Subject Index

236
241
247
247
248

. 250

250
250
250
252

254
256
259

261
261
267
269

. 273

. 277



PART ONE

AN INTRODUCTION TO
THE THEORY AND METHODS OF
TIME SERIES ANALYSIS






CHAPTER 1

Theory of Stationary Time Series

In this chapter, we shall introduce some basic ideas and models of time series
which are very often used in applications. One of the most important concepts in
time series is “stationary” even though observations recorded in practice are not
always stationary. The reader may easily find that many techniques and theory
for analyzing nonstationary data series are based on the theory and methods of
stationary time series.

ARMA series is the most important stationary time series, which plays a cen-
tral role both in theory and applications since ARMA model not only covers a lot
of problems in diverse fields but also relates with very deep mathematical back-
grounds, such as rational spectral functions, Markovian extension problems, state
space models, etc. Accordingly, we shall discuss the ARMA model in rather detail.

Some basic laws of large numbers are also introduced in this chapter which are
particularly important for the estimation theory and techniques in statistical anal-
ysis of time series.

§1.1 The Definition of Stationary Stochastic Processes

The reader is presumed to have a basic knowledge of single and multiple random
variables and their distribution functions. But in practice, many many problems
are related with infinite random variables, at least for the convenience of theoretical
analysis we need not restrict ourselves only to the finite number of random variables.
Some examples will be given in the sequel.

Definition 1.1 (Stochastic Processes). Suppose that (11, ¥, P) is a probability
space, and T is an index set. If for any t € T, there exists a random variable &;(w)
defined on (0, 7, P), then the family of random variables {{:(w),t € T} will be
called a stochastic process.

In Definition 1.1, the index set T may be understood as any set, real or complex,



finite or infinite, countable and uncountable, etc. In this book, T generally repre-
sents the time index set, such as T' = {t :t = 1,2,...} or T = {t : a < t < b} and
denote the real line as R, the integer set as Z. In particularly, when T is a discrete
time index set, then we shall call {£;(w),t € T'} a time series.

The random variables &;(w),t € T in Definition 1.1 should be understood as
complex-valued variables in general, so the moments are defined as

E€(w) =E€{® (w) +iE€" (w) (L1)
E& ()& (W) =E€{P (w)eP (w) + EE (w)el" (w)
+1 B ()P (w) - B (w)eP (W),  (1.2)

when (1.1), (1.2) exist, where £(®)(w), £9)(w) are real and imaginary parts of €. (w)
respectively.

When T = {t : a < t < b}, for a realization of {£:(w),t € T}, our convention
is to denote it as {X;(w),t € T}, which can be considered as a function of ¢. In
practical record, different realizations X¢(w1), Xt(w2),... , Xt(wn),t € T, may not
coincide with each other. In general, X;(w),t € T, presents dual specifications: on
one hand, the realization given by the recorder in practical problem seems like a
real curve or a deterministic function; on the other hand, theoretically, we always
consider the observed sample as a stochastic process, i.e. its “randomness” still
exists in mathematical analysis.

In the sequel, a succinct form of stochastic process is {&;,t € T}, the element w
will be omitted.

Definition 1.2 (Gaussian Stochastic Process). Suppose that {¢;,t € T} is
a real-valued stochastic process, if for any t,¢s,... ,t, € T, the n-dimensional
characteristic function of {£:,,&t,,- .. ,&t, } can be represented in the form of

f(u) = exp{za’u — Ju'Zu} (1.3)

where a = (a1, a2,...,a,)" is a real vector of n-dimensions, T is a real, non-negative
definite symmetric matrix, then {{;,t € T} will be called a Gaussian process or a
Normal process.

It is very clear that if the covariance matrix is positive definite & > 0, then the
distribution function determined by (1.3) is an n-dimensional normal distribution,
with probability density N(a, L), i.e.

p(x) = (27) % (det £) ™% exp{—1X'T'X}, (1.4)
where X = x — a. Now, if & > 0, det £ = 0 may occur, so we cannot expect that

(1.4) will always keep true, but the following derivation shows that (1.3) will still
be a characteristic function of an n-variate vector.



In fact, we can put
Iy =X +I/N , (1.5)

where N > 0 is a sufficiently large integer, I is an n X n unit matrix. Then for any
non-zero n-variate vector a € R,, we have

dTya=dTa+ Nozrx> La'a>0
which shows that

fn(u) = exp{ia'u — Ju'Syu} = f(u) exp{—zyu'u} (1.6)

is a characteristic function. Now, for u in any bounded set U, fy(u) will uniformly
converge to f(u), and f(u) is continuous at u = 0. According to the limiting
theorem of characteristic functions (see Cramér (1946)), we know that f(u) is «
characteristic function of random variables.

Now suppose that {{;,¢ € T} is a complex-valued stochastic process. We shall
call {&:,t € T} a Gaussian process or Normal process if for any integer n > 0, the
joint 2n-variates

(e, €0 80 DY

of the real and imaginary parts of complex variates (é;,,... ,:,) are Gaussian, i.e.
their characteristic function possesses the form of (1.3).

The following theorem gives the existence of Gaussian processes, its proving can
be found in Doob (1953).

Theorem 1.1 (Existence of Gaussian Process). Let T be an index set, a;
a complex function defined on T, and oy, a bivariate function on T x T. If the
following conditions:

1. 04t =0t Y(s,t) €T x T,
2. For any ty,t3,...,t, € T,

T = (04,t;)1<i5<n > 0 (non-negative definite),
are fulfilled, then there exist a complex Gaussian process {{:,¢t € T}, such that

EEt = at,
E(& — at)(&s _a'a)_ataa V(t,s) €T x T.

This theorem is very important both in theoretical and methodological research
in time series analysis.



Definition 1.3 (Stationary Process). Let {{:,t € T} be a stochastic process
with second ordered moment, E|5¢|2 < 400, t € T. & is said to be a stationary
process in the wide sense if the following conditions are satisfied:

1.E¢=a, WVteT, (1.7)

2. E(&— E&)(& —EE6)=R(t—s), Vt,seT. (1.8)

The condition of (1.7) shows that the mean of £; is invariant for the shifting
of t. In practical problems, the recording curves {X;,t € T} look like a random
vibration along a constant level E¢; (see Fig. 1.1). The condition of (1.8) can also
be rewritten as

E(&t4r — Eétyr) (& — E&) = R(r), (1.9)
forany t,t+17€T.

$ &

xm
E&:

x®

tl/ T \t1+f tg/T \t2+1'
0 £ 2 + — ¢

Fig. 1.1 Realization of stochastic processes

Accordingly, the second condition in the Definition 1.3 can be understood as that
the covariance function of “£;,, vs. £,” is invariant for the shifting of . This means
that the statistical linear correlation of (&;r, &:) only depends on the spacing 7,
and is free from their initial time ¢.

Generally, we call

B(T) = E(f(+r5) . (1-10)

the correlation function of &,t € T and R(7) the covariance function. No loss of
generality, we shall always assume that the stationary process in the wide sense has



