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Preface To Volume I1

This volume describes the advances in the quantum theory of fields that
have led to an understanding of the electroweak and strong interactions
of the elementary particles. These interactions have all turned out to be
governed by principles of gauge invariance, so we start here in Chapters
15-17 with gauge theories, generalizing the familiar gauge invariance of
electrodynamics to non-Abelian Lie groups.

Some of the most dramatic aspects of gauge theories appear at high
energy, and are best studied by the methods of the renormalization group.
These methods are introduced in Chapter 18, and applied to quantum
chromodynamics, the modern non-Abelian gauge theory of strong in-
teractions, and also to critical phenomena in condensed matter physics.
Chapter 19 deals with general spontaneously broken global symmetries,
and their application to the broken approximate SU(2) x SU(2) and
SU(3) x SU(3) symmetries of quantum chromodynamics. Both the renor-
malization group method and broken symmetries find some of their most
interesting applications in the context of operator product expansions,
discussed in Chapter 20.

The key to the understanding of the electroweak interactions is the
spontaneous breaking of gauge symmetries, which are explored in Chap-
ter 21 and applied to superconductivity as well as to the electroweak
interactions. Quite apart from spontaneous symmetry breaking is the
possibility of symmetry breaking by quantum-mechanical effects known
as anomalies. Anomalies and various of their physical implications are
presented in Chapter 22. This volume concludes with a discussion in
Chapter 23 of extended field configurations, which can arise either as new
ingredients in physical states, such as skyrmions, monopoles, or vortex
lines, or as non-perturbative quantum corrections to path integrals, where
anomalies play a crucial role.

It would not be possible to provide a coherent account of these de-
velopments if they were presented in a historical order. I have chosen
instead to describe the material of this book in an order that seems to
me to work best pedagogically —I introduce each topic at a point where
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xviil Preface

the motivation as well as the mathematics can be understood with the
least possible reference to material in subsequent chapters, even where
logic might suggest a somewhat different order. For instance, instead of
having one long chapter to introduce non-Abelian gauge theories, this
material-is split between Chapters 15 and 17, because Chapter 15 provides
a motivation for the external field formalism introduced in Chapter 16,
and this formalism is necessary for the work of Chapter 17.

In the course of this presentation, the reader will be introduced to
various formal devices, including BRST invariance, the quantum effec-
tive action, and homotopy theory. The Batalin—Vilkovisky formalism is
presented as an optional side track. It is introduced in Chapter 15 as
a compact way of formulating gauge theories, whether based on open
or closed symmetry algebras, and then used in Chapter 17 to study the
cancellation of infinities in ‘non-renormalizable’ gauge theories, including
general relativity, and in Chapter 22 to show that certain gauge theo-
ries are anomaly-free to all orders of perturbation theory. The effective
field theory approach is extensively used in this volume, especially in
applications to theories with broken symmetry, including the theory of
superconductivity. I have struggled throughout for the greatest possible
clarity of presentation, taking time to show detailed calculations where I
thought it might help the reader, and dropping topics that could not be
clearly explained in the space available.

The guiding aim of both Volumes I and II of this book is to explain to
the reader why quantum field theory takes the form it does, and why in
this form it does such a good job of describing the real world. Volume I
outlined the foundations of the quantum theory of fields, emphasizing the
reasons why nature is described at accessible energies by effective quantum
field theories, and in particular by gauge theories. (A list of chapters of
Volume I is given at the end of the table of contents of this volume.) The
present volume takes quantum field theory and gauge invariance as its
starting points, and concentrates on their implications.

This volume should be accessible to readers who have some familiarity
with the fundamentals of quantum field theory. It is not assumed that
the reader is familiar with Volume I (though it wouldn’t hurt). Aspects of
group theory and topology are explained where they are introduced.

Some of the formal methods described in this volume (such as BRST
invariance and the renormalization group) have important applications
in speculative theories that involve supersymmetry or superstrings. I am
enthusiastic about the future prospects of these theories, but I have not
included them in this book, because it seems to me that they require a
whole book to themselves. (Perhaps supersymmetry and supergravity will
be the subjects of a Volume IIL) I have excluded some other interesting
topics here, such as finite temperature field theory, lattice gauge calcula-
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tions and the large N, approximation, because they were not needed to
provide either motivation or mathematical techniques for the rest of the
book, and the book was long enough.

The great volume of the literature on quantum field theory and its
applications makes it impossible for me to read or quote all relevant
articles. I have tried to supply citations to the classic papers on each
topic, as well as to papers that describe further developments of material
covered here, and to references that present detailed calculations, data, or
proofs referred to in the text. As before, the mere absence of a citation
should not be interpreted as a claim that the material presented is original,
but some of it is.

In my experience this volume provides enough material for a one-year
course for graduate students on advanced topics in quantum field theory,
or on elementary particle physics. Selected parts of Volumes I and II
would be suitable as the basis of a compressed one-year course on both
the foundations and the modern applications of quantum field theory. I
have supplied problems for each chapter. Some of these problems aim
simply at providing exercise in the use of techniques described in the
chapter; others are intended to suggest extensions of the results of the
chapter to a wider class of theories.

* K ok

I must acknowledge my special intellectual debt to colleagues at the
University of Texas, notably Luis Boya, Phil Candelas, Bryce and Cecile
De Witt, Willy Fischler, Joaquim Gomis, and Vadim Kaplunovsky, and
especially Jacques Distler. Also, Luis Alvarez-Gaume, Sidney Coleman,
John Dixon, Tony Duncan, Jiirg Frohlich, Arthur Jaffe, Marc Henneaux,
Roman Jackiw, Joe Polchinski, Michael Tinkham, Cumrun Vafa, Don
Weingarten, Edward Witten and Bruno Zumino gave valuable help with
special topics. Jonathan Evans read through the manuscript of this
volume, and made many valuable suggestions. For corrections to the first
printing of this volume I am indebted to several students and colleagues,
including Mark Byrd, Vincent Liu, Chun-yen Wang, and especially Michio
Masujima. Thanks are due to Alyce Wilson, who prepared the illustrations
and typed the IATEX input files until I learned how to do it, to Terry Riley
for finding countless books and articles, and to Jan Duffy for many helps.
I am grateful to Maureen Storey and Alison Woollatt of Cambridge
University Press for working to ready this book for publication, and
especially to my editor, Rufus Neal, for his continued friendly good
advice.

STEVEN WEINBERG
Austin, Texas
December, 1995



Notation

Latin indices i, j,k, and so on generally run over the three spatial coordi-

nate labels, usually taken as 1, 2, 3. Where specifically indicated, they run
over values 1, 2, 3, 4, with x* = it.

Greek indices u,v, etc. from the middle of the Greek alphabet generally
run over the four spacetime coordinate labels 1, 2, 3, 0, with x° the time
coordinate.

Greek indices a, B, etc. from the beginning of the Greek alphabet generally
run over the generators of a symmetry algebra.

Repeated indices are generally summed, unless otherwise indicated.

The spacetime metric n,, is diagonal, with elements 1y = 122 = n33 =
1, noo = —1.

The d’Alembertian is defined as O = n" 9% /oxkox’ = V? — 02 /dt2, where
V2 is the Laplacian 8%/0x'0x’.

The ‘Levi-Civita tensor’ e*'?? is defined as the totally antisymmetric
quantity with €923 = +1.

Spatial three-vectors are indicated by letters in boldface.
Three-vectors in isospin space are indicated by arrows.

A hat over any vector indicates the corresponding unit vector: Thus,
V=v/|vl.

A dot over any quantity denotes the time-derivative of that quantity.

Dirac matrices y, are defined so that y,py + )vyu = 2. Also, ys =
iyoy17273, and B = iy® = ya.

The step function 0(s) has the value +1 for s > 0 and 0 for s <O0.
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Notation XX1

The complex conjugate, transpose, and Hermitian adjoint of a matrix or
vector A are denoted A°, AT, and A" = A°T, respectively. The Hermitian
adjoint of an operator O is denoted O', except where an asterisk is used to
emphasize that a vector or matrix of operators is not transposed. +H.c. or
+c.c. at the end of an expression indicates the addition of the Hermitian
adjoint or complex conjugate of the foregoing terms. A bar on a Dirac
spinor u is defined by # = u'B. The antifield of a field y in the Batalin—
Vilkovisky formalism is denoted x* rather than x" to distinguish it from
the ordinary complex conjugate or the antiparticle field.

Units are usually used with /i and the speed of light taken to be unity.
Throughout —e is the rationalized charge of the electron, so that the fine
structure constant is o« = e2/4m ~ 1/137.

Numbers in parenthesis at the end of quoted numerical data give the
uncertainty in the last digits of the quoted figure. Where not otherwise
indicated, experimental data are taken from ‘Review of Particle Properties,’
Phys. Rev. D50, 1173 (1994).
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