llllllllllllllllllll

'Eﬂ'ecti\'v (++

[hird Editiomes

® &" 22l ~ °
© F 1% & AkAd
w=wams PUBLISHING HOUSE OF ELECTRONICS INDUSTRY

http://www.phei.com.cn



Effective C++, Third Edition ZEX bz
Effective C++, Third Edition

Scott Meyers

%w F I 4% & AR AL
Publishing House of Electronics Industry

b5t « BEIJING



naEE N

A CHIEFE R AT RIS, T Bffective CH+IFIBEEITH. TG C++KI Scott Meyers 4 2 MBI
SRR, XA B LG, WIE T RERI 6 C CHII 5.

L A BFBIRMRER | BN R HIRYE  RFESRM. JUPEFE CrBMNRERLR L B4
BARTR=4. (FERBUHATES . WASONA. KERROSERE. AR OHAFAR BRI
Pk, AT . FARRE ANIRXA RO BSAIRES.

SR e RARAT A2 B R, R LA TN S T, TRREEERAM SRR,
CHREFREFRNES, BEERRANEREESILNIOAMRT, XEAERARLFERIRS . FRXPIMES
IR Cr i EERI, TEBAA B IHEROE, MBI R CHfEF 5.

Original edition, entitled Effective C++: 55 Specific Ways to Improve Your Programs and Designs,B’dEdiﬁon, 0321334876 by Meyers, Scott,
published by Pearson Education, Inc, publishing as Addison Wesley Professional, Copyright ©2005 Pearson Education, Inc.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronics or mechanical,
including photocopying, recording or by any information storage retrieval system, without permission from Pearson Education, Inc.
China edition published by Pearson Education Asia Ltd. and Publishing House of Electronics Industry, Copyright ©2006

This edition is manufactured in the People’s Republic of China, and is authorized for sale only in People’s Republic of China excluding
Hong Kong, Macau and Taiwan.

245 ph1 e F Tl H AR Pearson Education $FAE#H HIARTEHH B A & fFHIAR R HIRE T EBE VAT, AELMEFT
R P RAAKAEFTHR S«

ApEth EARER A, R TER EAMHXAE.
AU Pearson Education HiA= 0 H i sk IO B hPREE, Fhrse s B,
IR S & R BE S B 01-2005-3583

EBEMS&E (CIP) #iE

M Ci+: 53 fi=Effective C++, Third Edition / (3£) HHE/RNT (Meyers.S.) 2%, —JbEt: BT TIHARAE, 20063
ISBN 7-121-00827-0
[ A&.. I.3. [LCES-—MFRi—33C V.TP312

o [E i A P B8 CIP $aR T (2006) 58 004200 5

FiEHE: A B
B Rl dbminRE R P R
HAREAT: BT
JeETTidEE X A 173 (548 #R4% 100036
% B BHOFERE
A 787X980 116 ENFK: 2025 ¥ 500 TF
Ep W 200643 A% 1 IRENKI
&£ Y 45.000T

UGS e T Tl A RS, S R e, S TS U e oA, 1 S A RATIECR. BRHIE: (010)
68279077, JREBFIEKMEFZ Zits@phei.com.cn, VSRR AN ESHRIE & IBF 2 dbgq@phei.com.cn.



=

1991 £ E T (Effective C++) . 1997 FEHEHE " fRINREF T L EENE,
B4 T AL RS — R B N X, Bl LT REOR B AR 4544 . JRSE 50 N 48
PR AR AT SR . WIS BN — SR, 8 RO T R R b BT 1, R
el — 3 17 o

BITH=/R, B4 TSP ART S (LRI E B2 A HAESRMPHE) . A
1991 Fi, C++ A CEEH TEREE, A Hx FE— AN A R D A
BEER L C++ WfEMEN —— HOATGREH 15 TIPS 53T K .
“C++ PP RPA C HR7 XAUETE 1991 FRAMEH R,

WMACH++ FEF RHR AT AEH S HIava BUCH# PEE . Inheritance (4E7K) Flobjectoriented
programming ([ [7) X G4 Fe ) 761991 XK 2 HORE 7 AR B iE, AR A C 2 g
N RO, exceptions (FH) . templates (F5AR) Flgeneric programming (V2 4wFE) A
ST EE L5 4R, 19914E % AW it it i design patterns (B0 , wid/b T EIR X
WA RS 1991 FC++ ENbHEA RIZE i, W4CH+ ArHERIME CA8 %, Bl
HERAG DL ERFFR .

H T AR L AR, AT KA — T i, SRS ) F 292005 AT ARXNCH+ 2
FFRABREENEE? 7 SEFELE MK LK. KABEHINHE, — Zresource
management (ZFJREFE) , B — M jtprogramming with templates (FiAR%iFE) . F5: Ftemplate
XREPEATE, KA T C++ N A1 E%H ZMIE UG fEexceptions
FIMES T 9ifE . ZHdesign patterns. LR A BITR FE/FPE#ME (TR1 ik T-5%3K54) «
AT A ST {E AR FE R 4L (single-threaded systems) HIZEAE KA AR R vl fEARIE
T2 4FE &% (multithreaded systems) o ASPPE L EHNBZHH. ELFRR, £
R PRI K B 23 LRl TRATY AR AR EE L, iy DAFRAR H — MR B E A B Fp2: ARAT DAZEME R BARE] =
=R R

W53k A BE B RIS L BERSE, BIXIFARRECLTER. WRIRIA N
WL BRIE A R — A, SRR SE AR I INE S A B TR IS T4, skt

Effective C++, Third Edition ZEXMT



xiv

> E=

B RITIRAEIE RAE 4, ERART, EEFR. QR B AEMER—H AR
L e R HERRER B, SRR ——tiE A R R IRARR RS — LR
R | B R ACINN T R BRI RV B08 42 e

RMEA BT 7 ASS, XA GAHENE R RA Eog . SR ER s AR
IR Ut 3 2 J LA AT B I 3 T LT AT B A e 0 I —— B AR S rp XA %
LSRR A oA g A ) (R AEVE SR I, TR IR EL S

WY HEABE RO RS B, HhafEahREeir. s Pum. BURERE
Br. XArTEBINAE M HE Inttp: //aristeia.com/BookErrata/ec++3e-errata.html ¥
“Effective C++ Errata” WL 4 AR SAEX i oSBT A RAG I S, 3 I AN BRI i
5%& (mailing list) o FRAIHRAF512 Ak K AR v B 45 wT REX J A&k TAR GBI AL, 7

& http: //aristeia.com/MailingList /.

Scott Douglas Meyers Stafford.Oregon
http://aristeia.com/ April 2005

Effective C++, Third Edition ZEXAT



Preface

I wrote the original edition of Effective C++ in 1991. When the time came for a second
edition in 1997, I updated the material in important ways, but, because I didn’t want to
confuse readers familiar with the first edition, I did my best to retain the existing
structure: 48 of the original 50 Item titles remained essentially unchanged. If the book
were a house, the second edition was the equivalent of freshening things up by replacing

carpets, paint, and light fixtures.

For the third edition, I tore the place down to the studs. (There were times I wished I'd
gone all the way to the foundation.) The world of C++ has undergone enormous change
since 1991, and the goal of this book — to identify the most important C++ programming
guidelines in a small, readable package — was no longer served by the Items I'd
established nearly 15 years earlier. In 1991, it was reasonable to assume that C++
progrémmers came from a C background. Now, programmers moving to C++ are just as
likely to come from Java or C#. In 1991, inheritance and object-oriented programming
were new to most programmers. Now they’re well-established concepts, and exceptions,
templates, and generic programming are the areas where people need more guidance. In
1991, nobody had heard of design patterns. Now it’s hard to discuss software systems
without referring to them. In 1991, work had just begun on a formal standard for C++.

Now that standard is eight years old, and work has begun on the next version.

To address these changes, I wiped the slate as clean as I could and asked myself, “What are
the most important pieces of advice for practicing C++ programmers in 2005?” The result
is the set of Items in this new edition. The book has new chapters on resource management
and on programming with templates. In fact, template concerns are woven throughout the
text, because they affect almost everything in C++. The book also includes new material on

programming in the presence of exceptions, on applying design patterns, and on using the
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xvi P> Preface

new TR1 library facilities. (TR1 is described in Item 54.) It acknowledges that techniques
and approaches that work well in single-threaded systems may not be appropriate in
multithreaded systems. Well over half the material in the book is new. However, most of
the fundamental information in the second edition continues to be important, so I found
a way to retain it in one form or another. (Y ou’ll find a mapping between the second and

third edition Items in Appendix B.)

I've worked hard to make this book as good as I can, but I have no illusions that it’s
perfect. If you feel that some of the Items in this book are inappropriate as general advice;
that there is a better way to accomplish a task examined in the book; or that one or more
of the technical discussions is unclear, incomplete, or misleading, please tell me. If you
find an error of any kind — technical, grammatical, typographical, whatever — please tell
me that, too. I'll gladly add to the acknowledgments in later printings the name of the
first person to bring each problem to my attention.

Even with the number of Items expanded to 55, the set of guidelines in this book is far
from exhaustive. But coming up with good rules — ones that apply to almost all
applications almost all the time — is harder than it might seem. If you have suggestions
for additional guidelines, I would be delighted to hear about them.

I maintain a list of changes to this book since its first printing, including bug fixes,
clarifications, and technical updates. The list is available at the Effective C++ Errata web
page, http://aristeia. com/BookErrata/ ec++3e-errata.html. If you'd like to
be notified when I update the list, I encourage you to join my mailing list. I use it to make
announcements likely to interest people who follow my professional work. For details,
consult http://aristeia.com/Mail ingList/.

Scorr Doucras MEeYERrs StarrorD, OREGON

http://aristeia.com/ APRIL 2005
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Introduction

Learning the fundamentals of a programming language is one thing; learning how to
design and implement effective programs in that language is something else entirely. This
is especially true of C++, a language boasting an uncommon range of power and
expressiveness. Properly used, C++ can be a joy to work with. An enormous variety of
designs can be directly expressed and efficiently implemented. A judiciously chosen and
carefully crafted set of classes, functions, and templates can make application
programming easy, intuitive, efficient, and nearly error-free. It isn’t unduly difficult to
write effective C++ programs, if you know how to do it. Used without discipline, however,
C++ can lead to code that is incomprehensible, unmaintainable, inextensible, inefﬁéient,
and just plain wrong.

The purpose of this book is to show you how to use C++ effectively. I assume you already
know C++ as a language and that you have some experience in its use. What I provide here
is a guide to using the language so that your software is comprehensible, maintainable,
portable, extensible, efficient, and likely to behave as you expect.

The advice I proffer falls into two broad categories: general design strategies, and the nuts
and bolts of specific language features. The design discussions concentrate on how to
choose between different approaches to accomplishing something in C++. How do you
choose between inheritance and templates? Between public and private inheritance?
Between private inheritance and composition? Between member and non-member
functions? Between pass-by-value and pass-by-reference? It’s important to make these
decisions correctly at the outset, because a poor choice may not become apparent until
much later in the development process, at which point rectifying it is often difficult,
time-consuming, and expensive.

Even when you know exactly what you want to do, getting things just right can be tricky. What's the proper
return type for assignment operators? When should a destructor be virtual? How should operator
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new behave when it can’t find enough memory? It's crucial to sweat details like these,
because failure to do so almost always leads to unexpected, possibly mystifying program
behavior. This book will help you avoid that.

This is not a comprehensive reference for C++. Rather, it's a collection of 55 specific
suggestions (I call them Items) for how you can improve your programs and designs.
Each Item stands more or less on its own, but most also contain references to other Items.
One way to read the book, then, is to start with an Item of interest, then follow its
references to see where they lead you.

The book isn’t an introduction to C++, either. In Chapter 2, for example, I'm eager to tell
you all about the proper implementations of constructors, destructors, and assignment
operators, but I assume you already know or can go elsewhere to find out what these
functions do and how they are declared. A number of C++ books contain information
such as that.

The purpose of this book is to highlight those aspects of C++ programming that are often
overlooked. Other books describe the different parts of the language. This book tells you
how to combine those parts so you end up with effective programs. Other books tell you
how to get your programs to compile. This book tells you how to avoid problems that
compilers won't tell you about.

At the same time, this book limits itself to standard C++. Only features in the official
language standard have been used here. Portability is a key concern in this book, so if
you're looking for platform-dependent hacks and kludges, this is not the place to find
them.

Another thing you won't find in this book is the C++ Gospel, the One True Path to perfect
C++ software. Each of the Items in this book provides guidance on how to develop better
designs, how to avoid common problems, or how to achieve greater efficiency, but none
of the Items is universally applicable. Software design and implementation is a complex
task, one colored by the constraints of the hardware, the operating system, and the
application, so the best I can do is provide guidelines for creating better programs.

If you follow all the guidelines all the time, you are unlikely to fall into the most common
traps surrounding C++, but guidelines, by their nature, have exceptions. That’s why each
Item has an explanation. The explanations are the most important part of the book. Only by
understanding the rationale behind an Item can you determine whether it applies to the
software you are developing and to the unique constraints under which you toil.
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The best use of this book is to gain insight into how C++ behaves, why it behaves that
way, and how to use its behavior to your advantage. Blind application of the Items in this

book is clearly inappropriate, but at the same time, you probably shouldn’t violate any of
the guidelines without a good reason.

Terminology

There is a small C++ vocabulary that every programmer should understand. The
following terms are important enough that it is worth making sure we agree on what they
mean.

A declaration tells compilers about the name and type of something, butit omits
certain details. These are declarations:

extern int x; // object declaration
std::size_t numDigits(int number); // function declaration

class Widget; // class declaration
template<typename T> // template declaration
class GraphNode; // (see Item 42 for info on

// the use of “typename”)

Note that I refer to the integer x as an “object,” even though it’s of built-in type. Some
people reserve the name “object” for variables of user-defined type, but I'm not one of
them. Also note that the function numpigits return type is std::size_t, i.e., the type
size_t in namespace std. That namespace is where virtually everything in C++’s
standard library is located. However, because C’s standard library (the one from C89, to
be precise) can also be used in C++, symbols inherited from C (such as size_t) may exist
at global scope, inside std, or both, depending on which headers have been #inciuded.
In this book, I assume that C++ headers have been #included, and that’s why I refer to
std::size_t instead of just size_t. When referring to components of the standard
library in prose, I typically omit references to std, relying on you to recognize that things
like size_t, vector, and cout are in std. In example code, I always include std, because
real code won’t compile without it.

size_t, by the way, is just a typedef for some unsigned type that C++ uses when
counting things (e.g., the number of characters in a char*- based string, the number of
elements in an STL container, etc.). It’s also the type taken by the operator[] functions
in vector, deque, and string, a convention we’ll follow when defining our own

operator [] functions in Item 3.

Each function’s declaration reveals its signature, i.e., its parameter and return
types. A function’s signature is the same as its type. In the
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