llllllllllllllllllll

'Eﬂ'ecti\'v (++

[hird Editiomes

® &" 22l ~ °
© F 1% & AkAd
w=wams PUBLISHING HOUSE OF ELECTRONICS INDUSTRY

http://www.phei.com.cn

Effective C++, Third Edition ZEX bz
Effective C++, Third Edition

Scott Meyers

%w F I 4% & AR AL
Publishing House of Electronics Industry

b5t « BEIJING

naEE N

A CHIEFE R AT RIS, T Bffective CH+IFIBEEITH. TG C++KI Scott Meyers 4 2 MBI
SRR, XA B LG, WIE T RERI 6 C CHII 5.

L A BFBIRMRER | BN R HIRYE RFESRM. JUPEFE CrBMNRERLR L B4
BARTR=4. (FERBUHATES . WASONA. KERROSERE. AR OHAFAR BRI
Pk, AT . FARRE ANIRXA RO BSAIRES.

SR e RARAT A2 B R, R LA TN S T, TRREEERAM SRR,
CHREFREFRNES, BEERRANEREESILNIOAMRT, XEAERARLFERIRS . FRXPIMES
IR Cr i EERI, TEBAA B IHEROE, MBI R CHfEF 5.

Original edition, entitled Effective C++: 55 Specific Ways to Improve Your Programs and Designs,B’dEdiﬁon, 0321334876 by Meyers, Scott,
published by Pearson Education, Inc, publishing as Addison Wesley Professional, Copyright ©2005 Pearson Education, Inc.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronics or mechanical,
including photocopying, recording or by any information storage retrieval system, without permission from Pearson Education, Inc.
China edition published by Pearson Education Asia Ltd. and Publishing House of Electronics Industry, Copyright ©2006

This edition is manufactured in the People’s Republic of China, and is authorized for sale only in People’s Republic of China excluding
Hong Kong, Macau and Taiwan.

245 ph1 e F Tl H AR Pearson Education $FAE#H HIARTEHH B A & fFHIAR R HIRE T EBE VAT, AELMEFT
R P RAAKAEFTHR S«

ApEth EARER A, R TER EAMHXAE.
AU Pearson Education HiA= 0 H i sk IO B hPREE, Fhrse s B,
IR S & R BE S B 01-2005-3583

EBEMS&E (CIP) #iE

M Ci+: 53 fi=Effective C++, Third Edition / (3£) HHE/RNT (Meyers.S.) 2%, —JbEt: BT TIHARAE, 20063
ISBN 7-121-00827-0
[A&.. I.3. [LCES-—MFRi—33C V.TP312

o [E i A P B8 CIP $aR T (2006) 58 004200 5

FiEHE: A B
B Rl dbminRE R P R
HAREAT: BT
JeETTidEE X A 173 (548 #R4% 100036
% B BHOFERE
A 787X980 116 ENFK: 2025 ¥ 500 TF
Ep W 200643 A% 1 IRENKI
&£ Y 45.000T

UGS e T Tl A RS, S R e, S TS U e oA, 1 S A RATIECR. BRHIE: (010)
68279077, JREBFIEKMEFZ Zits@phei.com.cn, VSRR AN ESHRIE & IBF 2 dbgq@phei.com.cn.

=

1991 £ E T (Effective C++) . 1997 FEHEHE " fRINREF T L EENE,
B4 T AL RS — R B N X, Bl LT REOR B AR 4544 . JRSE 50 N 48
PR AR AT SR . WIS BN — SR, 8 RO T R R b BT 1, R
el — 3 17 o

BITH=/R, B4 TSP ART S (LRI E B2 A HAESRMPHE) . A
1991 Fi, C++ A CEEH TEREE, A Hx FE— AN A R D A
BEER L C++ WfEMEN —— HOATGREH 15 TIPS 53T K .
“C++ PP RPA C HR7 XAUETE 1991 FRAMEH R,

WMACH++ FEF RHR AT AEH S HIava BUCH# PEE . Inheritance (4E7K) Flobjectoriented
programming ([[7) X G4 Fe) 761991 XK 2 HORE 7 AR B iE, AR A C 2 g
N RO, exceptions (FH) . templates (F5AR) Flgeneric programming (V2 4wFE) A
ST EE L5 4R, 19914E % AW it it i design patterns (B0 , wid/b T EIR X
WA RS 1991 FC++ ENbHEA RIZE i, W4CH+ ArHERIME CA8 %, Bl
HERAG DL ERFFR .

H T AR L AR, AT KA — T i, SRS) F 292005 AT ARXNCH+ 2
FFRABREENEE? 7 SEFELE MK LK. KABEHINHE, — Zresource
management (ZFJREFE) , B — M jtprogramming with templates (FiAR%iFE) . F5: Ftemplate
XREPEATE, KA T C++ N A1 E%H ZMIE UG fEexceptions
FIMES T 9ifE . ZHdesign patterns. LR A BITR FE/FPE#ME (TR1 ik T-5%3K54) «
AT A ST {E AR FE R 4L (single-threaded systems) HIZEAE KA AR R vl fEARIE
T2 4FE &% (multithreaded systems) o ASPPE L EHNBZHH. ELFRR, £
R PRI K B 23 LRl TRATY AR AR EE L, iy DAFRAR H — MR B E A B Fp2: ARAT DAZEME R BARE] =
=R R

W53k A BE B RIS L BERSE, BIXIFARRECLTER. WRIRIA N
WL BRIE A R — A, SRR SE AR I INE S A B TR IS T4, skt

Effective C++, Third Edition ZEXMT

xiv

> E=

B RITIRAEIE RAE 4, ERART, EEFR. QR B AEMER—H AR
L e R HERRER B, SRR ——tiE A R R IRARR RS — LR
R | B R ACINN T R BRI RV B08 42 e

RMEA BT 7 ASS, XA GAHENE R RA Eog . SR ER s AR
IR Ut 3 2 J LA AT B I 3 T LT AT B A e 0 I —— B AR S rp XA %
LSRR A oA g A) (R AEVE SR I, TR IR EL S

WY HEABE RO RS B, HhafEahREeir. s Pum. BURERE
Br. XArTEBINAE M HE Inttp: //aristeia.com/BookErrata/ec++3e-errata.html ¥
“Effective C++ Errata” WL 4 AR SAEX i oSBT A RAG I S, 3 I AN BRI i
5%& (mailing list) o FRAIHRAF512 Ak K AR v B 45 wT REX J A&k TAR GBI AL, 7

& http: //aristeia.com/MailingList /.

Scott Douglas Meyers Stafford.Oregon
http://aristeia.com/ April 2005

Effective C++, Third Edition ZEXAT

Preface

I wrote the original edition of Effective C++ in 1991. When the time came for a second
edition in 1997, I updated the material in important ways, but, because I didn’t want to
confuse readers familiar with the first edition, I did my best to retain the existing
structure: 48 of the original 50 Item titles remained essentially unchanged. If the book
were a house, the second edition was the equivalent of freshening things up by replacing

carpets, paint, and light fixtures.

For the third edition, I tore the place down to the studs. (There were times I wished I'd
gone all the way to the foundation.) The world of C++ has undergone enormous change
since 1991, and the goal of this book — to identify the most important C++ programming
guidelines in a small, readable package — was no longer served by the Items I'd
established nearly 15 years earlier. In 1991, it was reasonable to assume that C++
progrémmers came from a C background. Now, programmers moving to C++ are just as
likely to come from Java or C#. In 1991, inheritance and object-oriented programming
were new to most programmers. Now they’re well-established concepts, and exceptions,
templates, and generic programming are the areas where people need more guidance. In
1991, nobody had heard of design patterns. Now it’s hard to discuss software systems
without referring to them. In 1991, work had just begun on a formal standard for C++.

Now that standard is eight years old, and work has begun on the next version.

To address these changes, I wiped the slate as clean as I could and asked myself, “What are
the most important pieces of advice for practicing C++ programmers in 2005?” The result
is the set of Items in this new edition. The book has new chapters on resource management
and on programming with templates. In fact, template concerns are woven throughout the
text, because they affect almost everything in C++. The book also includes new material on

programming in the presence of exceptions, on applying design patterns, and on using the

Effective C++, Third Edition ZEXHT

xvi P> Preface

new TR1 library facilities. (TR1 is described in Item 54.) It acknowledges that techniques
and approaches that work well in single-threaded systems may not be appropriate in
multithreaded systems. Well over half the material in the book is new. However, most of
the fundamental information in the second edition continues to be important, so I found
a way to retain it in one form or another. (Y ou’ll find a mapping between the second and

third edition Items in Appendix B.)

I've worked hard to make this book as good as I can, but I have no illusions that it’s
perfect. If you feel that some of the Items in this book are inappropriate as general advice;
that there is a better way to accomplish a task examined in the book; or that one or more
of the technical discussions is unclear, incomplete, or misleading, please tell me. If you
find an error of any kind — technical, grammatical, typographical, whatever — please tell
me that, too. I'll gladly add to the acknowledgments in later printings the name of the
first person to bring each problem to my attention.

Even with the number of Items expanded to 55, the set of guidelines in this book is far
from exhaustive. But coming up with good rules — ones that apply to almost all
applications almost all the time — is harder than it might seem. If you have suggestions
for additional guidelines, I would be delighted to hear about them.

I maintain a list of changes to this book since its first printing, including bug fixes,
clarifications, and technical updates. The list is available at the Effective C++ Errata web
page, http://aristeia. com/BookErrata/ ec++3e-errata.html. If you'd like to
be notified when I update the list, I encourage you to join my mailing list. I use it to make
announcements likely to interest people who follow my professional work. For details,
consult http://aristeia.com/Mail ingList/.

Scorr Doucras MEeYERrs StarrorD, OREGON

http://aristeia.com/ APRIL 2005

Effective C++, Third Edition Z83Ji%

Acknowledgments

Effective C++ has existed for fifteen years, and I started learning C++ about five years
before I wrote the book. The “Effective C++ project” has thus been under development
for two decades. During that time, I have benefited from the insights, suggestions,
corrections, and, occasionally, dumbfounded stares of hundreds (thousands?) of people.
Each has helped improve Effective C++. I am grateful to them all.

I've given up trying to keep track of where I learned what, but one general source of
information has helped me as long as I can remember: the Usenet C++ newsgroups,
especially comp.lang.c++.moderated and comp.std.c++. Many of the Items in this
book — perhaps most — have benefited from the vetting of technical ideas at which the
participants in these newsgroups excel.

Regarding new material in the third edition, Steve Dewhurst worked with me to come
up with an initial set of candidate Items. In Item 11, the idea of implementing
operator= via copy-and-swap came from Herb Sutter’s writings on the topic, e.g.,
Item 13 of his Exceptional C++ (Addison- Wesley, 2000). RAII (see Item 13) is from
Bjarne Stroustrup’s The C++ Programming Language (Addison-Wesley, 2000). The
idea behind Item 17 came from the “Best Practices” section of the Boost shared_ptr
web page, http://boost.org/libs/smart_ptr/shared_ptr.htm#Best-Practices and was refined by Item
21 of Herb Sutter’s More Exceptional C++ (Addison-Wesley, 2002). Item 29 was
strongly influenced by Herb Sutter’s extensive writings on the topic, e.g., Items 8-19
of Exceptional C++, Items 17-23 of More Exceptional C++, and Items 11—-13 of
Exceptional C++ Style (Addison-Wesley, 2005); David Abrahams helped me better
understand the three exception safety guarantees. The NVI idiom in Item 35 is from
Herb Sutter’s column, “Virtuality,” in the September 2001 C/C++ Users Journal. In
that same Item, the Template Method and Strategy design patterns are from Design
Patterns (Addison- Wesley, 1995) by Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides. The idea of using the NVI idiom in Item 37 came

Effective C++, Third Edition Z8XAF

xviii®» Acknowledgments

from Hendrik Schober. David Smallberg contributed the motivation for writing a custom
set implementation in Item 38. Item 39’s observation that the EBO generally isn’t
available under multiple inheritance is from David Vandevoorde’s and Nicolai M.
Josuttis’ C++ Templates (Addison-Wesley, 2003). In Item 42, my initial understanding
about typename came from Greg Comeau’s C++ and C FAQ (http://
www . comeaucomputing.com/techtalk/ #typename), and Leor Zolman helped me realize
that my understanding was incorrect. (My fault, not Greg’s.) The essence of Item 46 is
from Dan Saks’ talk, “Making New Friends.” The idea at the end of Item 52 that if you
declare one version of operator new, you should declare them all, is from Item 22 of
Herb Sutter's Exceptional C++ Style. My understanding of the Boost review process
(summarized in Item 55) was refined by David Abrahams.

Everything above corresponds to who or where I learned about something, not
necessarily to who or where the thing was invented or first published.

My notes tell me that I also used information from Steve Clamage, Antoine Trux,
Timothy Knox, and Mike Kaelbling, though, regrettably, the notes fail to tell me how or
where.

Drafts of the first edition were reviewed by Tom Cargill, Glenn Carroll, Tony Davis, Brian
Kernighan, Jak Kirman, Doug Lea, Moises Lejter, Eugene Santos, Jr., John Shewchuk,
John Stasko, Bjarne Stroustrup, Barbara Tilly, and Nancy L. Urbano. I received
suggestions for improvements that I was able to incorporate in later printings from
Nancy L. Urbano, Chris Treichel, David Corbin, Paul Gibson, Steve Vinoski, Tom Cargill,
Neil Rhodes, David Bern, Russ Williams, Robert Brazile, Doug Morgan, Uwe Steinmiiller,
Mark Somer, Doug Moore, David Smallberg, Seth Meltzer, Oleg Shteynbuk, David Papurt,
Tony Hansen, Peter McCluskey, Stefan Kuhlins, David Braunegg, Paul Chisholm, Adam
Zell, Clovis Tondo, Mike Kaelbling, Natraj Kini, Lars Nyman, Greg Lutz, Tim Johnson,
John Lakos, Roger Scott, Scott Frohman, Alan Rooks, Robert Poor, Eric Nagler, Antoine
Trux, Cade Roux, Chandrika Gokul, Randy Mangoba, and Glenn Teitelbaum.

Drafts of the second edition were reviewed by Derek Bosch, Tim Johnson, Brian Kernighan,
Junichi Kimura, Scott Lewandowski, Laura Michaels, David Smallberg, Clovis Tondo, Chris
Van Wyk, and Oleg Zabluda. Later printings benefited from comments from Daniel
Steinberg, Arunprasad Marathe, Doug Stapp, Robert Hall, Cheryl Ferguson, Gary Bartlett,
Michael Tamm, Kendall Beaman, Eric Nagler, Max Hailperin, Joe Gottman, Richard
Weeks, Valentin Bonnard, Jun He, Tim King, Don Maier, Ted Hill, Mark Harrison, Michael
Rubenstein, Mark Rodgers, David Goh, Brenton Cooper, Andy Thomas-Cramer,

Effective C++, Third Edition ZEXHR

Acknowledgments <« xix

Antoine Trux, John Wait, Brian Sharon, Liam Fitzpatrick, Bernd Mohr, Gary Yee, John
O'Hanley, Brady Patterson, Christopher Peterson, Feliks Kluzniak, Isi Dunietz,
Christopher Creutzi, Ian Cooper, Carl Harris, Mark Stickel, Clay Budin, Panayotis
Matsinopoulos, David Smallberg, Herb Sutter, Pajo Misljencevic, Giulio Agostini, Fredrik
Blomgqvist, Jimmy Snyder, Byrial Jensen, Witold Kuzminski, Kazunobu Kuriyama,
Michael Christensen, Jorge Yaiiez Teruel, Mark Davis, Marty Rabinowitz, Ares Lagae,
and Alexander Medvedev.

An early partial draft of this edition was reviewed by Brian Kernighan, Angelika Langer,
Jesse Laeuchli, Roger E. Pedersen, Chris Van Wyk, Nicholas Stroustrup, and Hendrik
Schober. Reviewers for a full draft were Leor Zolman, Mike Tsao, Eric Nagler, Gene
Gutnik, David Abrahams, Gerhard Kreuzer, Drosos Kourounis, Brian Kernighan, Andrew
Kirmse, Balog Pal, Emily Jagdhar, Eugene Kalenkovich, Mike Roze, Enrico Carrara,
Benjamin Berck, Jack Reeves, Steve Schirripa, Martin Fallenstedt, Timothy Knox, Yun
Bai, Michael Lanzetta, Philipp Janert, Guido Bartolucci, Michael Topic, Jeff Scherpelz,
Chris Nauroth, Nishant Mittal, Jeff Somers, Hal Moroff, Vincent Manis, Brandon Chang,
Greg Li, Jim Meehan, Alan Geller, Siddhartha Singh, Sam Lee, Sasan Dashtinezhad, Alex
Marin, Steve Cai, Thomas Fruchterman, Cory Hicks, David Smallberg, Gunavardhan
Kakulapati, Danny Rabbani, Jake Cohen, Hendrik Schober, Paco Viciana, Glenn Kennedy,
Jeffrey D. Oldham, Nicholas Stroustrup, Matthew Wilson, Andrei Alexandrescu, Tim
Johnson, Leon Matthews, Peter Dulimov, and Kevlin Henney. Drafts of some individual
Items were reviewed by Herb Sutter and Attila F. Feher.

Reviewing an unpolished (possibly incomplete) manuscript is demanding work, and
doing it under time pressure only makes it harder. I continue to be grateful that so many
people have been willing to undertake it for me.

Reviewing is harder still if you have no background in the material being discussed and
are expected to catch every problem in the manuscript. Astonishingly, some people still
choose to be copy editors. Chrysta Meadowbrooke was the copy editor for this book, and
her very thorough work exposed many problems that eluded everyone else.

Leor Zolman checked all the code examples against multiple compilers in preparation for
the full review, then did it again after I revised the manuscript. If any errors remain, I'm
responsible for them, not Leor.

Karl Wiegers and especially Tim Johnson offered rapid, helpful feedback on back cover
copy.

Effective C++, Third Edition ZEXM%

xx P Acknowledgments

Since publication of the first printing, I have incorporated revisions suggested by Jason
Ross and Robert Yokota.

John Wait, my editor for the first two editions of this book, foolishly signed up for
another tour of duty in that capacity. His assistant, Denise Mickelsen, adroitly handled
my frequent pestering with a pleasant smile. (At least I think she’s been smiling. I've
never actually seen her.) Julie Nahil drew the short straw and hence became my
production manager. She handled the overnight loss of six weeks in the production
schedule with remarkable equanimity. John Fuller (her boss) and Marty Rabinowitz (his
boss) helped out with production issues, too. Vanessa Moore’s official job was to help
with FrameMaker issues and PDF preparation, but she also added the entries to
Appendix B and formatted it for printing on the inside cover. Solveig Haugland helped
with index formatting. Sandra Schroeder and Chuti Prasertsith were responsible for
cover design, though Chuti seems to have been the one who had to rework the cover each
time I said, “But what about this photo with a stripe of that color...?” Chanda Leary-
Coutu got tapped for the heavy lifting in marketing.

During the months I worked on the manuscript, the TV series Buffy the Vampire Slayer
often helped me “de-stress” at the end of the day. Only with great restraint have I kept
Buffyspeak out of the book.

Kathy Reed taught me programming in 1971, and I'm gratified that we remain friends to
this day. Donald French hired me and Moises Lejter to create C++ training materials in
1989 (an act that led to my really knowing C++), and in 1991 he engaged me to present
them at Stratus Computer. The students in that class encouraged me to write what
ultimately became the first edition of this book. Don also introduced me to John Wait,
who agreed to publish it.

My wife, Nancy L. Urbano, continues to encourage my writing, even after seven book
projects, a CD adaptation, and a dissertation. She has unbelievable forbearance. I
couldn’t do what I do without her.

From start to finish, our dog, Persephone, has been a companion without equal. Sadly,
for much of this project, her companionship has taken the form of an urn in the office.
We really miss her.

Effective C++, Third Edition ZEXiK

Contents

Preface XV
Acknowledgments xvii
Introduction 1
Chapter 1: Accustoming Yourself to C++ 11
Item 1: View C++ as a federation of languages. 11
Item 2: Prefer consts, enums, and inlines to #defines. 13
Item 3: Use const whenever possible. 17
Item 4: Make sure that objects are initialized before they’re used. 26

Chapter 2: Constructors, Destructors, and
Assignment Operators 34

Item 5: Know what functions C++ silently writes and calls. 34

Item 6: Explicitly disallow the use of compilergenerated

functions you do not want. 37

Item 7: Declare destructors virtual in polymorphic base classes. 40
Item 8: Prevent exceptions from leaving destructors. 44
Item 9: Never call virtual functions during construction or destruction. 48
Item 10: Have assignment operators return a reference to *this. 52
Item 11: Handle assignment to self in operator=. 53
Item 12: Copy all parts of an object. 57
Chapter 3: Resource Management 61
Item 13: Use objects to manage resources. 61

Effective C++, Third Edition ZEXM%

X

P Contents

Item 14: Think carefully about copying behavior in resource-managing classes.

Item 15: Provide access to raw resources in resourcemanaging classes.
Item 16: Use the same form in corresponding uses of new and delete.

Item 17: Store newed objects in smart pointers in standalone statements.

Chapter 4: Designs and Declarations

Item 18: Make interfaces easy to use correctly and hard to use incorrectly.

Item 19: Treat class design as type design.

Item 20: Prefer pass-by-reference-to-const to pass-by-value.

Item 21: Don't try to return a reference when you must return an object.
Item 22: Declare data members private.

Item 23: Prefer non-member non-friend functions to member functions.

Item 24: Declare non-member functions when type
conversions should apply to all parameters.

Item 25: Consider support for a non-throwing swap.

Chapter 5: Implementations

Item 26: Postpone variable definitions as long as possible.
Item 27: Minimize casting.

Item 28: Avoid returning “handles” to object internals.
Item 29: Strive for exception-safe code.

Item 30: Understand the ins and outs of inlining.

Item 31: Minimize compilation dependencies between files.

Chapter 6: Inheritance and Object-Oriented Design

Item 32: Make sure public inheritance models “is-a.”
Ttem 33: Avoid hiding inherited names.

Item 34: Differentiate between inheritance of interface and

inheritance of implementation.
Item 35: Consider alternatives to virtual functions.

Item 36: Never redefine an inherited non-virtual function.

Effective C++, Third Edition ZEXHTZ

66
69
73
75
78
78
84
86
90
94
98

102
106
113
113
116
123
127

134

140
149

150

156

161
169
178

Contents <« xi

Item 37: Never redefine a function’s inherited default parameter value. 180
Item 38: Model “has-a” or is-implemented-in-terms-of” through composition. 184
Item 39: Use private inheritance judiciously. 187
Item 40: Use multiple inheritance judiciously. 192
Chapter 7: Templates and Generic Programming 199
Item 41: Understand implicit interfaces and compiletime polymorphism. 199
Item 42: Understand the two meanings of typename. 203
Item 43: Know how to access names in templatized base classes. 207
Item 44: Factor parameter-independent code out of templates. 212
Item 45: Use member function templates to accept “all compatible types.” 218

Item 46: Define non-member functions inside templates

when type conversions are desired. 222
Item 47: Use traits classes for information about types. 226
Item 48: Be aware of template metaprogramming. 233
Chapter 8: Customizing new and delete 239
Item 49: Understand the behavior of the new-handler. 240
Item 50: Understand when it makes sense to replace new and delete. 247
Item 51: Adhere to convention when writing new and delete. 252
Item 52: Write placement delete if you write placement new. 256
Chapter 9: Miscellany 262
Item 53: Pay attention to compiler warnings. 262
Item 54: Familiarize yourself with the standard library, including TR1. 263
Item 55: Familiarize yourself with Boost. 269
Appendix A: Beyond Effective C++ 273
Appendix B: Item Mappings Between Second
and Third Editions 277
Index 280

Effective C++, Third Edition ZEXHT

Introduction

Learning the fundamentals of a programming language is one thing; learning how to
design and implement effective programs in that language is something else entirely. This
is especially true of C++, a language boasting an uncommon range of power and
expressiveness. Properly used, C++ can be a joy to work with. An enormous variety of
designs can be directly expressed and efficiently implemented. A judiciously chosen and
carefully crafted set of classes, functions, and templates can make application
programming easy, intuitive, efficient, and nearly error-free. It isn’t unduly difficult to
write effective C++ programs, if you know how to do it. Used without discipline, however,
C++ can lead to code that is incomprehensible, unmaintainable, inextensible, inefﬁéient,
and just plain wrong.

The purpose of this book is to show you how to use C++ effectively. I assume you already
know C++ as a language and that you have some experience in its use. What I provide here
is a guide to using the language so that your software is comprehensible, maintainable,
portable, extensible, efficient, and likely to behave as you expect.

The advice I proffer falls into two broad categories: general design strategies, and the nuts
and bolts of specific language features. The design discussions concentrate on how to
choose between different approaches to accomplishing something in C++. How do you
choose between inheritance and templates? Between public and private inheritance?
Between private inheritance and composition? Between member and non-member
functions? Between pass-by-value and pass-by-reference? It’s important to make these
decisions correctly at the outset, because a poor choice may not become apparent until
much later in the development process, at which point rectifying it is often difficult,
time-consuming, and expensive.

Even when you know exactly what you want to do, getting things just right can be tricky. What's the proper
return type for assignment operators? When should a destructor be virtual? How should operator

Effective C++, Third Edition ZEXHT

2

» Introduction

new behave when it can’t find enough memory? It's crucial to sweat details like these,
because failure to do so almost always leads to unexpected, possibly mystifying program
behavior. This book will help you avoid that.

This is not a comprehensive reference for C++. Rather, it's a collection of 55 specific
suggestions (I call them Items) for how you can improve your programs and designs.
Each Item stands more or less on its own, but most also contain references to other Items.
One way to read the book, then, is to start with an Item of interest, then follow its
references to see where they lead you.

The book isn’t an introduction to C++, either. In Chapter 2, for example, I'm eager to tell
you all about the proper implementations of constructors, destructors, and assignment
operators, but I assume you already know or can go elsewhere to find out what these
functions do and how they are declared. A number of C++ books contain information
such as that.

The purpose of this book is to highlight those aspects of C++ programming that are often
overlooked. Other books describe the different parts of the language. This book tells you
how to combine those parts so you end up with effective programs. Other books tell you
how to get your programs to compile. This book tells you how to avoid problems that
compilers won't tell you about.

At the same time, this book limits itself to standard C++. Only features in the official
language standard have been used here. Portability is a key concern in this book, so if
you're looking for platform-dependent hacks and kludges, this is not the place to find
them.

Another thing you won't find in this book is the C++ Gospel, the One True Path to perfect
C++ software. Each of the Items in this book provides guidance on how to develop better
designs, how to avoid common problems, or how to achieve greater efficiency, but none
of the Items is universally applicable. Software design and implementation is a complex
task, one colored by the constraints of the hardware, the operating system, and the
application, so the best I can do is provide guidelines for creating better programs.

If you follow all the guidelines all the time, you are unlikely to fall into the most common
traps surrounding C++, but guidelines, by their nature, have exceptions. That’s why each
Item has an explanation. The explanations are the most important part of the book. Only by
understanding the rationale behind an Item can you determine whether it applies to the
software you are developing and to the unique constraints under which you toil.

Effective C++, Third Edition Z8X/%

Introduction <« 3

The best use of this book is to gain insight into how C++ behaves, why it behaves that
way, and how to use its behavior to your advantage. Blind application of the Items in this

book is clearly inappropriate, but at the same time, you probably shouldn’t violate any of
the guidelines without a good reason.

Terminology

There is a small C++ vocabulary that every programmer should understand. The
following terms are important enough that it is worth making sure we agree on what they
mean.

A declaration tells compilers about the name and type of something, butit omits
certain details. These are declarations:

extern int x; // object declaration
std::size_t numDigits(int number); // function declaration

class Widget; // class declaration
template<typename T> // template declaration
class GraphNode; // (see Item 42 for info on

// the use of “typename”)

Note that I refer to the integer x as an “object,” even though it’s of built-in type. Some
people reserve the name “object” for variables of user-defined type, but I'm not one of
them. Also note that the function numpigits return type is std::size_t, i.e., the type
size_t in namespace std. That namespace is where virtually everything in C++’s
standard library is located. However, because C’s standard library (the one from C89, to
be precise) can also be used in C++, symbols inherited from C (such as size_t) may exist
at global scope, inside std, or both, depending on which headers have been #inciuded.
In this book, I assume that C++ headers have been #included, and that’s why I refer to
std::size_t instead of just size_t. When referring to components of the standard
library in prose, I typically omit references to std, relying on you to recognize that things
like size_t, vector, and cout are in std. In example code, I always include std, because
real code won’t compile without it.

size_t, by the way, is just a typedef for some unsigned type that C++ uses when
counting things (e.g., the number of characters in a char*- based string, the number of
elements in an STL container, etc.). It’s also the type taken by the operator[] functions
in vector, deque, and string, a convention we’ll follow when defining our own

operator [] functions in Item 3.

Each function’s declaration reveals its signature, i.e., its parameter and return
types. A function’s signature is the same as its type. In the

Effective C++, Third Edition Z8XHT

