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Preface to the Second Edition

On the occasion of this new edition, the text was enlarged by several new
sections. Two sections on B-splines and their computation were added to the
chapter on spline functions: Due to their special properties, their flexibility,
and the availability of well-tested programs for their computation, B-splines
play an important role in many applications.

Also, the authors followed suggestions by many readers to supplement
the chapter on elimination methods with a section dealing with the solution
of large sparse .systems of linear equations. Even though such systems are
usually solved by iterative methods, the realm of elimination methods has
been widely extended due to powerful techniques for handling sparse matrices.
We will explain some of these techniques in connection with the Cholesky
algorithm for solving positive definite linear systems.

The chapter on eigenvalue problems was enlarged by a section on the
Lanczos algorithm; the sections on the LR and QR algorithm were rewritten
and now contain a description of implicit shift techniques.

In order to some extent take into account the progress in the area of
ordinary differential equations, a new section on implicit differential equa-
tions and differential-algebraic systems was added, and the section on stiff
differential equations was updated by describing further methods to solve
such equations.

The last chapter on the iterative solution of linear equations was also
improved. The modern view of the conjugate gradient algorithm as an itera-
tive method was stressed by adding an analysis of its convergence rate and a
description of some preconditioning techniques. Finally, a new section on
multigrid methods was incorporated: It contains a description of their basic
ideas in the context of a simple boundary value problem for ordinary differen-
tial equations.



vi Preface to the Second Edition

Many of the changes were suggested by several colleagues and readers. In
particular, we would like to thank R. Seydel, P. Rentrop, and A. Neumaier
for detailed proposals and our translators R. Bartels, W. Gautschi, and
C. Witzgall for their valuable work and critical commentaries. The original
German version was handled by F. Jarre, and 1. Brugger was responsible for
the expert typing of the many versions of the manuscript.

Finally we thank Springer-Verlag for the encouragement, patience, and
close cooperation leading to this new edition.

Wiirzburg, Miinchen J. Stoer
May 1991 R. Bulirsch



Preface to the First Edition

This book is based on a one-year introductory course on numerical analysis
given by the authors at several universities in Germany and the United States.
The authors concentrate on methods which can be worked out on a digital
computer. For important topics, algorithmic descriptions (given more or less
formally in ALGOL 60), as well as thorough but concise treatments of their
theoretical foundations, are provided. Where several methods for solving a
problem are presented, comparisons of their applicability and limitations are
offered. Each comparison is based on operation counts, theoretical properties
such as convergence rates, and, more importantly, the intrinsic numerical
properties that account for the reliability or unreliability of an algorithm.
Within this context, the introductory chapter on error analysis plays a special
role because it precisely describes basic concepts, such as the numerical
stability of algorithms, that are indispensable in the thorough treatment of
numerical questions.

The remaining seven chapters are devoted to describing numerical meth-
ods in various contexts. In addition to covering standard topics, these chap-
ters encompass some special subjects not usually found in introductions to
numerical analysis. Chapter 2, which discusses interpolation, gives an ac-
count of modern fast Fourier transform methods. In Chapter 3, extrapolation
techniques for speeding up the convergence of discretization methods in
connection with Romberg integration are explained at length.

The following chapter on solving linear equations contains a description
of a numerically stable realization of the simplex method for solving linear
programming problems. Further minimization algorithms for solving uncon-
strained minimization problems are treated in Chapter 5, which is devoted to
solving nonlinear equations.

After a long chapter on eigenvalue problems for matrices, Chapter 7 is

vii



viii Preface to the First Edition

devoted to methods for solving ordinary differential equations. This chapter
contains a broad discussion of modern multiple shooting techniques for
solving two-point boundary-value problems. In contrast, methods for partial
differential equations are not treated systematically. The aim is only to point
out analogies to certain methods for solving ordinary differential equations,
e.g., difference methods and variational techniques. The final chapter is de-
voted to discussing special methods for solving large sparse systems of linear
equations resulting primarily from the application of difference or finite ele-
ment techniques to partial differential equations. In addition to iteration
methods, the conjugate gradient algorithm of Hestenes and Stiefel and the
Buneman algorithm (which provides an example of a modern direct method
for solving the discretized Poisson problem) are described.

Within each chapter numerous examples and exercises illustrate the
numerical and theoretical properties of the various methods. Each chapter
concludes with an extensive list of references.

The authors are indebted to many who have contributed to this introduc-
tion into numerical analysis. Above all, we gratefully acknowledge the deep
influence of the early lectures of F.L. Bauer on our presentation. Many
colleagues have helped us with their careful reading of manuscripts and many
useful suggestions. Among others we would like to thank are C. Reinsch,
M.B. Spijker, and, in particular, our indefatigable team of transldators,
R. Bartels, W. Gautschi, and C. Witzgall. Our co-workers K. Butendeich,
G. Schuller, J. Zowe, and 1. Brugger helped us to prepare the original German
edition. Last but not least we express our sincerest thanks to Springer-Verlag
for their good cooperation during the past years.

Wiirzburg, Miinchen J. Stoer
August 1979 R. Bulirsch
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Error Analysis

Assessing the accuracy of the results of calculations is a paramount goal in
numerical analysis. One distinguishes several kinds of errors which may
limit this accuracy:

(1) errors in the input data,
(2) roundoff errors,
(3) approximation errors.

Input or data errors are beyond the control of the calculation. They may be
due, for instance, to the inherent imperfections of physical measurements.
Roundoff errors arise if one calculates with numbers whose representation is
restricted to a finite number of digits, as is usually the case.

As for the third kind of error, many methods will not yield the exact
solution of the given problem P, even if the calculations are carried out
without rounding, but rather the solution of another simpler problem P
which approximates P. For instance, the problem P of summing an infinite
series, e.g.,

1 1 1
e=1-4—ﬂ -}-i .|.i 4o
may be replaced by the simpler problem P of summing only up to a finite
number of terms of the series. The resulting approximation error is
commonly called a truncation error (however, this term is also used for the
roundoff related error committed by deleting any last digit of a number
representation). Many approximating problems P are obtained by
“discretizing” the original problem P: definite integrals are approximated
by finite sums, differential quotients by a difference quotients, etc. In such
cases, the approximation error is often referred to as discretization error.

1



1 Error Analysis

Some authors extend the term “truncation error” to cover discretization
errors.

In this chapter, we will examine the general effect of input and roundoff
errors on the result of a calculation. Approximation errors will be discussed
in later chapters as we deal with individual methods. For a comprehensive

treatment of roundoff errors in floating-point computation see Sterbenz
(1974).

1.1 Representation of Numbers

Based on their fundamentally different ways of répresenting numbers, two
categories of computing machinery can be distinguished:

(1) analog computers,
(2) digital computers.

Examples of analog computers are slide rules and mechanical integrators as
well as electronic analog computers. When using these devices one replaces
numbers by physical quantities, e.g., the length of a bar or the intensity of a
voltage, and simulates the mathematical problem by a physical one, which is
solved through measurement, yielding a solution for the original mathemati-
cal problem as well. The scales of a slide rule, for instance, represent num-
bers x by line segments of length k In x. Multiplication is simulated by
positioning line segments contiguously and measuring the combined length
for the result.

It is clear that the accuracy of analog devices is directly limited by the
physical measurements they employ.

Digital computers express the digits of a number representation by a
sequence of discrete physical quantities. Typical instances are desk calcula-
tors and electronic digital computers.

EXAMPLE

|23|0|~——-»I{ I_1

Each digit is represented by a specific physical quantity. Since only a
small finite number of different digits have to be encoded—in the decimal
number system, for instance, there are only 10 digits—the representation of
digits in digital computers need not be quite as precise as the representation
of numbers in analog computers. Thus one might tolerate voltages between,
say, 7.8 and 8.2 when aiming at a representation of the digit 8 by 8 volts.



1.1 Representation of Numbers 3

Consequently, the accuracy of digital computers is not directly limited by
the precision of physical measurements.

For technical reasons, most modern electronic digital computers repre-
sent numbers internally in binary rather than decimal form. Here the
coefficients or bits a; of a decomposition by powers of 2 play the role of digits
in the representation of a number x:

x=t(2" + -2+t 22 Fa 27 fa 272 40,
;=0 or 1.

In order not to confuse decimal and binary representations of numbers, we
denote the bits of a binary number representation by Q and L, respectively.

ExAaMPLE. The number x = 18.5 admits the decomposition
185=1x2*+0x22+0x22+1x2' +0x2°+1x27!
and has therefore the binary representation

LOOLO.L.

We will use mainly the decimal system, pointing out differences between
the two systems whenever it is pertinent to the examination at hand.

As the example 3.999... = 4 shows, the decimal representation of a
number may not be unique. The same holds for binary representations. To
exclude such ambiguities, we will always refer to the finite representation
unless otherwise stated.

In general, digital computers must make do with a fixed finite number of
places, the word length, when internally representing a number. This number
n is determined by the make of the machine, although some machines have
built-in extensions to integer multiples 2n, 3n, ... (double word length, triple
word length, ...) of n to offer greater precision if needed. A word length of n
places can be used in several different fashions to represent a number.

Fixed-point representation specifies a fixed number n; of places before and
a fixed number n, after the decimal (binary) point, so that n = n; + n,
(usually n, = 0 or n; = n).

ExAMPLE. Forn=10,n, =4,n, =6

30.421 — | 0030 | 421000

0.0437 — | 0000 | 043700

——

ny nz

In this representation, the position of the decimal (binary) point is fixed.
A few simple digital devices, mainly for accounting purposes, are still re-



4 1 Error Analysis

stricted to fixed-point representation. Much more important, in particular for
scientific calculations, are digital computers featuring floating-point rep-
resentation of numbers. Here the decimal (binary) point is not fixed at the
outset; rather its position with respect to the first digit is indicated for each
number separately. This is done by specifying a so-called exponent. In other
words, each real number can be represented in the form

(1.1.1) x=ax 10°(x=a x 2*) with |a| < 1, b integer

(say, 30.421 by 0.30421 x 10?), where the exponent b indicates the position
of the decimal point with respect to the mantissa a. Rutishauser proposed the
following *semilogarithmic” notation, which displays the basis of the
number system at the subscript level and moves the exponent down to
the level of the mantissa:

0.30421,,2
Analogously,
O.LOOLOL,LOL

denotes the number 18.5 in the binary system. On any digital computer there
are, of course, only fixed finite numbers t and e, n = t + e, of places available
for the representation of mantissa and exponent, respectively.

ExaMPLE. For t = 4, ¢ = 2 one would have the floating-point representation

0 | 5420 04 | or more concisely | 5420 | 04
10

for the number 5420 in the decimal system.

The floating-point representation of a number need not be unique. Since
5420 = 0.542,,4 = 0.0542,,5, one could also have the floating-point
representation

0 | 0542 05| or | 0542 | 05

10

instead of the one given in the above example.

A floating-point representation is normalized if the first digit (bit) of the
mantissa is different from 0 (O). Then |a| = 107" (|a| =27') holds in
(1.1.1). The significant digits (bits) of a number are the digits of the mantissa
not counting leading zeros.

In what follows, we will only consider normalized floating-point rep-
resentations and the corresponding floating-point arithmetic. The numbers
t and e determine—together with the basis B = 10 or B = 2 of the number
representation—the set A = R of real numbers which can be represented
exactly within a given machine. The elements of 4 are called the machine
numbers.
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While normalized floating-point arithmetic is prevalent on current elec-
tronic digital computers, unnormalized arithmetic has been proposed to
ensure that only truly significant digits are carried [Ashenhurst and
Metropolis, (1959)].

1.2 Roundoff Errors and Floating-Point Arithmetic

The set 4 of numbers which are representable in a given machine is only
finite. The question therefore arises of how to approximate a number x ¢ A
which is not a machine number by a number g € A which is. This problem is
encountered not only when reading data into a computer, but also when
representing intermediate results within the computer during the course of a
calculation. Indeed, straightforward examples show that the results of
elementary arithmetic operations x + y, x x y, x/y need not belong to A,
even if both operands x, y € A are machine numbers.

It is natural to postulate that the approximation of any number x ¢ A by
a machine number rd(x) € A should satisfy

(1.2.1) |x —rd(x)| < |x—g| forallge A.

Such a machine-number approximation rd(x) can be obtained in most cases
by rounding.

EXAMPLE 1 (t = 4)
rd(0.14285,40) = 0.1429,0,
rd(3.14159,00) = 0.3142,,1,
rd(0.142842,02) = 0.1428 2.
In. general, one can proceed as follows in order to find rd(x) for a t-digit

computer: x ¢ A is first represented in normalized form x = a x 10, so that
|a| > 107". Suppose the decimal representation of |a| is given by

la| =000, ... iisy ...y,  0<2,;<9, o #0.
Then one forms

,_ [0ayoy ..o ifO<o ., <4,

“ |0.aty oty ... 0, + 107" ifo, 0925,

that is, one increases a, by 1 if the (t + 1)st digit «,,, = 5, and deletes all
digits after the tth one. Finally one puts

rd(x) :=sign(x) - @’ x 10%.



